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Preface 

Of the five editions of this text, this is the third edition that I have prepared. In 
doing so, I have attempted to adhere to the late Jerry Marion's original purpose of 
producing a modern and reasonably complete account of the classical mechanics 
of particles, systems of particles, and rigid bodies for physics students at the ad-
vanced undergraduate level. The purpose of the book continues to be threefold: 

1. To present a modern treatment of classical mechanical systems in such a way 
that the transition to the quantum theory of physics can be made with the 
least possible difficulty. 

2. To acquaint the student with new mathematical techniques wherever possi-
ble, and to give h im/he r sufficient practice in solving problems so that the 
student may become reasonably proficient in their use. 

3. To impart to the student, at the crucial period in the student's career be-
tween "introductory" and "advanced" physics, some degree of sophistication 
in handling both the formalism of the theory and the operational technique 
of problem solving. 

After a firm foundation in vector methods is presented in Chapter 1, further 
mathematical methods are developed in the textbook as the occasion demands. 
It is advisable for students to continue studying advanced mathematics in sepa-
rate courses. Mathematical rigor must be learned and appreciated by students of 
physics, but where the continuity of the physics might be disturbed by insisting 
on complete generality and mathematical rigor, the physics has been given 
precedence. 

Changes for the Fifth Edition 
The comments and suggestions of many users of Classical Dynamics have been in-
corporated into this fifth edition. Without the feedback of the many instructors 
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Special Feature 
The author has kept one popular feature of jerry Marion's original book: the ad-
dition of historical footnotes spread throughout. Several users have indicated 
how valuable these historical comments have been. The history of physics has 
been almost eliminated from present-day curricula, and as a result, the student is 
frequently unaware of the background of a particular topic. These footnotes are 
intended to whet the appetite and to encourage the student to inquire into the 
history of his field. 

Teaching Aids 
Teaching aids to accompany the textbook are available online at 
http:y/info.brookscole.com/thornton. The Instructor's Manual (ISBN 0-534-
40898-2) contains solutions to all the end-of-chapter problems in addition to 
Transparency Masters of selected key figures from the text. This password-
protected resource is easily printable in .pdf format. To receive your password, 
just go to the above website and register; a username and password will be sent to 
you once the information you have provided is verified. The verification 
procedure ensures that you are an instructor teaching this course. If you are not 
able to download the Instructor's Manual files and would like a printed copy sent 
to you, please contact your local sales representative. If you do not know who 
your sales representative is, please visit www.brookscole.com, and click on the 
Find your Rep tab, which is located at the top of the web page. Please do not dis-
tribute the Instructor's Manual to students, or post the solutions on the Internet. 
Students are not permitted to access the Instructor's Manual. 

Student Solutions Manual 
A Student Solutions Manual by Stephen T. Thornton, which contains solutions to 
25% of the problems, is available for sale to the students. Instructors are encour-
aged to order the Student Solutions Manual for their students to purchase at the 
school bookstore. To package the Student Solutions Manual with the text, use 
ISBN 0-534-08378-1, or to order the Student Solutions Manual separately use ISBN 
0-534r40897-4. Students can also purchase the manual online at the publisher's 
website www.brookscole.com/physics. 

Acknowledgments 
I would like to graciously thank those individuals who wrote me with suggestions 
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the 4th edition. They include 

http://www.brookscole.com
http://www.brookscole.com/physics


PREFACE i x 

Steve Mellema, Gustavus Adolphus 
College 

Keith Riles, University of Michigan 
Lyle Roelofs, Haverford College 
Sally Seidel, University of New Mexico 
Mark Semon, Bates College 
Phil Spickler, Bridgewater College 
Larry Tankersley, United States Naval 

Adrian Melott, University of Kansas 
William A. Mendoza, Jacksonville 

University 
Colin Morningstar, Carnegie Mellon 

University Academy 
Li You, Georgia Tech Martin M. Ossowski, Naval Research 

Laboratory 

I would especially like to thank Theodore Burkhardt of Temple University 
who graciously allowed me to use several of his problems (and provided solutions) 
for the new end-of-chapter problems. The help of Patrick J. Papin, San Diego State 
University, and Lyle Roelofs, Haverford College, in checking the accuracy of the 
manuscript is gratefully acknowledged. In addition I would like to acknowledge 
the assistance of Tran ngoc Khanh who helped considerably with the problem so-
lutions for the fifth edition as well as Warren Griffith and Brian Giambattista who 
did a similar service for the fourth and third editions, respectively. 

The guidance and help of the Brooks/Cole Publishing professional staff is 
greatly appreciated. These persons include Alyssa White, Assistant Editor; Chris 
Hall, Acquisitions Editor; Karen Haga, Project Manager; Kelley McAllister, 
Marketing Manager; Stacey Purviance, Advertising Project Manager; Samuel 
Subity, Technology Project Manager; Seth Dobrin, Editorial Assistant, and Maria 
McColligan and staff at Nesbitt Graphics, Inc. for their production help. 

I would appreciate receiving suggestions or notices of errors in any of these 
materials. I can be contacted by electronic mail at STT@Virginia.edu. 

Stephen T. Thornton 
Charlottesville, Virginia 

mailto:STT@Virginia.edu


Contents 

Matrices, Vectors, and Vector Calculus 1 
1.1 Introduction 1 
1.2 Concept of a Scalar 2 
1.3 Coordinate Transformations 3 
1.4 Properties of Rotation Matrices 6 
1.5 Matrix Operations 9 
1.6 Further Definitions 12 
1.7 Geometrical Significance of Transformation Matrices 14 
1.8 Definitions of a Scalar and a Vector in Terms of 

Transformation Properties 20 
1.9 Elementary Scalar and Vector Operations 20 
1.10 Scalar Product of Two Vectors 21 
1.11 Unit Vectors 23 
1.12 Vector Product of Two Vectors 25 
1.13 Differentiation of a Vector with Respect to a Scalar 29 
1.14 Examples of Derivatives—Velocity and Acceleration 30 
1.15 Angular Velocity 34 
1.16 Gradient Operator 37 
1.17 Integration of Vectors 40 

Problems 43 

Newtonian Mechanics—Single Particle 48 
2.1 Introduction 48 
2.2 Newton's Laws 49 
2.3 Frames of Reference 53 
2.4 The Equation of Motion for a Particle 55 

xi 



[TENTS xiii 

6.4 The "Second Form" of the Euler Equation 216 
6.5 Functions with Several Dependent Variables 218 
6.6 Euler Equations When Auxiliary Conditions Are Imposed 219 
6.7 The 8 Notation 224 

Problems 226 

Hamilton's Principle—Lagrangian and 
Hamiltonian Dynamics 228 
7.1 Introduction 228 
7.2 Hamilton's Principle 229 
7.3 Generalized Coordinates 233 
7.4 Lagrange's Equations of Motion in 

Generalized Coordinates 237 
7.5 Lagrange's Equations with Undetermined Multipliers 248 
7.6 Equivalence of Lagrange's and Newton's Equations 254 
7.7 Essence of Lagrangian Dynamics 257 
7.8 A Theorem Concerning the Kinetic Energy 258 
7.9 Conservation Theorems Revisited 260 
7.10 Canonical Equations of Motion—Hamiltonian Dynamics 265 
7.11 Some Comments Regarding Dynamical Variables and 

Variational Calculations in Physics 272 
7.12 Phase Space and Liouville's Theorem (Optional) 274 
7.13 Virial Theorem (Optional) 277 

Problems 280 

Central-Force Motion 287 
8.1 Introduction 287 
8.2 Reduced Mass 287 
8.3 Conservation Theorems—First Integrals of the Motion 289 
8.4 Equations of Motion 291 
8.5 Orbits in a Central Field 295 
8.6 Centrifugal Energy and the Effective Potential 296 
8.7 Planetary Motion—Kepler's Problem 300 
8.8 Orbital Dynamics 305 
8.9 Apsidal Angles and Precession (Optional) 312 
8.10 Stability of Circular Orbits (Optional) 316 

Problems 323 

Dynamics of a System of Particles 328 
9.1 Introduction 328 
9.2 Center of Mass 329 
9.3 Linear Momentum of the System 331 



CONTENTS XV 

12.9 The Loaded String 498 
Problems 507 

Continuous Systems; Waves 512 
13.1 Introduction 512 
13.2 Continuous String as a Limiting Case of the 

Loaded String 513 
13.3 Energy of a Vibrating String 516 
13.4 Wave Equation 520 
13.5 Forced and Damped Motion 522 
13.6 General Solutions of the Wave Equation 524 
13.7 Separation of the Wave Equation 527 
13.8 Phase Velocity, Dispersion, and Attenuation 533 
13.9 Group Velocity and Wave Packets 538 

Problems 542 

1 4 Special Theory of Relativity 546 
14.1 Introduction 546 
14.2 Galilean Invariance 547 
14.3 Lorentz Transformation 548 
14.4 Experimental Verification of the Special Theory 555 
14.5 Relativistic Doppler Effect 558 
14.6 Twin Paradox 561 
14.7 Relativistic Momentum 562 
14.8 Energy 566 
14.9 Spacetime and Four-Vectors 569 
14.10 Lagrangian Function in Special Relativity 578 
14.11 Relativistic Kinematics 579 

Problems 583 

Appendices 

A Taylor's Theorem 589 
Problems 593 

B Elliptic Integrals 594 
B.l Elliptic Integrals of the First Kind 594 
B.2 Elliptic Integrals of the Second Kind 595 
B.3 Elliptic Integrals of the Third Kind 595 

Problems 598 



T H O M S O N 
* 

BROOKS/COLE 

Acquisitions Editor: Chris Hall 
Assistant Editor: Alyssa White 
Editorial Assistant: Seth Dobrin 
Technology Project Manager: Sam Subity 
Marketing Manager: Kelley McAllister 
Marketing Assistant: Sandra Perin 
Project Manager, Editorial Production: 

Karen Haga 
Print/Media Buyer: Kris Waller 

COPYRIGHT © 2004 Brooks/Cole, a division 
of Thomson Learning, Inc. Thomson 
Learning™ is a trademark used herein under 
license. 

ALL RIGHTS RESERVED. No part of this work 
covered by the copyright hereon may be repro-
duced or used in any form or by any means— 
graphic, electronic, or mechanical, including 
but not limited to photocopying, recording, 
taping, Web distribution, information net-
works, or information storage and retrieval sys-
tems—without the written permission of the 
publisher. 

Printed in the United States of America 
1 2 3 4 5 6 7 07 06 05 04 03 

For more information about our products, 
contact us at: 

Thomson Learning Academic Resource Center 
1-800-423-0563 

For permission to use material from this text, 
contact us by: Phone: 1-800-730-2214 

Fax: 1-800-730-2215 
Web: http://wvAV.thomsonrights.com 

Library of Congress Control Number: 
2003105243 

ISBN 0-534-40896-6 

Permissions Editor: Joohee Lee 
Production Service and Compositor: 

Nesbitt Graphics, Inc. 
Copy Editor: Julie M. DeSilva 
Illustrator: Rolin Graphics, Inc. 
Cover Designer: Ross Carron 
Text Printer: Maple-Vail Book Mfg. Group 
Cover Printer: Lehigh Press 

Brooks/Cole—Thomson Learning 
10 Davis Drive 
Belmont, CA 94002 
USA 

Asia 
Thomson Learning 
5 Shenton Way #01-01 
UIC Building 
Singapore 068808 

Australia/New Zealand 
Thomson Learning 
102 Dodds Street 
Southbank, Victoria 3006 
Australia 

Canada 
Nelson 
1120 Birchmount Road 
Toronto, Ontario M1K5G4 
Canada 

Europe/Middle East/Africa 
Thomson Learning 
High Holborn House 
50/51 Bedford Row 
London WC1R4LR 
United Kingdom 

Latin America 
Thomson Learning 
Seneca, 53 
Colonia Polanco 
11560 Mexico D.F. 
Mexico 

Spain/Portugal 
Paraninfo 
Calle/Magallanes, 25 
28015 Madrid, Spain 

http://wvAV.thomsonrights.com


vi PREFACE 

who have used this text, it would not be possible to produce a textbook of signif-
icant value to the physics community. After the extensive revision for the fourth 
edition, the changes in this edition have been relatively minor. Only a few re-
arrangements of material have been made. But several examples, especially nu-
merical ones, and many end-of-chapter problems have been added. Users have 
not wanted extensive changes in the topics covered, but more examples for stu-
dents and a wider range of problems are always requested. 

A strong effort continues to be made to correct the problem solutions avail-
able in the Instructor and Student Solutions Manuals. I thank the many users 
who sent comments concerning various problem solutions, and many of their 
names are listed below. Answers to even-numbered problems have again been in-
cluded at the end of the book, and the selected references and general biblio-
graphy have been updated. 

Course Suitability 
The book is suitable for either a one-semester or two-semester upper level (jun-
ior or senior) undergraduate course in classical mechanics taken after an intro-
ductory calculus-based physics course. At the University of Virginia we teach a 
one-semester course based mostly on the first 12 chapters with several omissions 
of certain sections according to the Instructor's wishes. Sections that can be 
omitted without losing continuity are denoted as optional, but the instructor can 
also choose to skip other sections (or entire chapters) as desired. For example, 
Chapter 4 (Nonlinear Oscillations and Chaos) might be skipped in its entirety 
for a one-semester course. Some instructors choose not to cover the calculus of 
variations material in Chapter 6. Other instructors may want to begin with 
Chapter 2, skip the mathematical introduction of Chapter 1, and introduce the 
mathematics as needed. This technique of dealing with the mathematics intro-
duction is perfectly acceptable, and the community is divided on this issue with a 
slight preference for the method used here. The textbook is also suitable for a 
full academic year course with an emphasis on mathematical and numerical 
methods as desired by the instructor. 

The textbook is appropriate for those who choose to teach in the traditional 
manner without computer calculations. However, more and more instructors 
and students are both familiar and adept with numerical calculations, and much 
can be learned by doing calculations where parameters can be varied and real-
world conditions like friction and air resistance can be included. I decided be-
fore the 4th edition to leave the choice of method to the instructor and/or stu-
dent to choose the computer techniques to be used. That decision has been 
confirmed, because there are many excellent software programs (including 
Mathematica, Maple, and Mathcad to mention three) available to use. In addi-
tion, some Instructors have students write computer programs, which is an im-
portant skill to obtain. 
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CHAPTER 

Matrices, Vectors, 
and Vector Calculus 

1.1 Introduction 
Physical phenomena can be discussed concisely and elegantly through the use of 
vector methods.* In applying physical "laws" to particular situations, the results 
must be independent of whether we choose a rectangular or bipolar cylindrical 
coordinate system. The results must also be independent of the exact choice of 
origin for the coordinates. The use of vectors gives us this independence. A 
given physical law will still be correctly represented no matter which coordinate 
system we decide is most convenient to describe a particular problem. Also, the 
use of vector notation provides an extremely compact method of expressing 
even the most complicated results. 

In elementary treatments of vectors, the discussion may start with the state-
ment that "a vector is a quantity that can be represented as a directed line seg-
ment." To be sure, this type of development will yield correct results, and it is 
even beneficial to impart a certain feeling for the physical nature of a vector. We 
assuttie that the reader is familiar with this type of development, but we forego 
the approach here because we wish to emphasize the relationship that a vector 
bears to a coordinate transformation. Therefore, we introduce matrices and ma-
trix notation to describe not only the transformation but the vector as well. We 
also introduce a type of notation that is readily adapted to the use of tensors, al-
though we do not encounter these objects until the normal course of events re-
quires their use (see Chapter 11). 

*Josiah Willard Gibbs (1839-1903) deserves much of the credit for developing vector analysis 
around 1880-1882. Much of the present-day vector notation was originated by Oliver Heaviside 
(1850-1925), an English electrical engineer, and dates from about 1893. 

1 
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We do not attempt a complete exposition of vector methods; instead, we 
consider only those topics necessary for a study of mechanical systems. Thus in 
this chapter, we treat the fundamentals of matrix and vector algebra and vector 
calculus. 

1.2 Concept of a Scalar 
Consider the array of particles shown in Figure 1-1 a. Each particle of the array is 
labeled according to its mass, say, in grams. The coordinate axes are shown so 
that we can specify a particular particle by a pair of numbers (x, y). The mass M 
of the particle at (x, y) can be expressed as M(x, y); thus the mass of the particle 
at x = 2, y = 3 can be written as M (x = 2, y = 3) = 4 . Now consider the axes ro-
tated and displaced in the manner shown in Figure 1-lb. The 4 g mass is now lo-
cated at x' = 4, / = 3.5; that is, the mass is specified by M (xr = 4, yf = 3.5) — 4. 
And, in general, 

M(x,y) = M(x', y') 

because the mass of any particle is not affected by a change in the coordinate 
axes. Quantities that are invariant under coordinate transformation—those that obey 
an equation of this type—are termed scalars. 

Although we can describe the mass of a particle (or the temperature, or the 
speed, etc.) relative to any coordinate system by the same number, some physical 
properties associated with the particle (such as the direction of motion of the 
particle or the direction of a force that may act on the particle) cannot be speci-
fied in such a simple manner. The description of these more complicated quan-
tities requires the use of vectors. Just as a scalar is defined as a quantity that re-
mains invariant under a coordinate transformation, a vector may also be defined 
in terms of transformation properties. We begin by considering how the coordi-
nates of a point change when the coordinate system rotates around its origin. 

(a) (b) 

FIGURE 1-1 An array of particles in two different coordinate systems. 
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1.3 Coordinate Transformations 
Consider a point Pwith coordinates x2, x3) with respect to a certain coordi-
nate system.* Next consider a different coordinate system, one that can be gen-
erated from the original system by a simple rotation; let the coordinates of the 
point Pwith respect to the new coordinate system be (x[, x2, x$). The situation is 
illustrated for a two-dimensional case in Figure 1-2. 

The new coordinate x{ is the sum of the projection of Xj onto the x{-axis 
(the line Oa) plus the projection of x2 onto the xj-axis (the line ab + be); that is, 

x\ ~ X\ cos 0 + x2 sin 0 

( i t \ 
— xxcos 0 + x 2 cos l~ — OJ (1.2a) 

The coordinate x2 is the sum of similar projections: x2 = Od — de, but the 
line de is also equal to the line Of. Therefore 

x2 = ~~xx sin 0 + x2 cos 0 

fir \ 
= X\ cosl — + 01 + x2 cos 6 (1.2b) 

Let us introduce the following notation: we write the angle between the 
x{-axis and the tfj-axis as (x[, x^, and in general, the angle between the x--axis 
and the *7-axis is denoted by (x'i9 Xj). Furthermore, we define a set of numbers 
A* by 

Â  == cos(«-, Xj) (1.3) 

axis 

one rotated from the other. 

*We label axes as xif x3 instead of x, y» z to simplify the notation when summations are performed. 
For the moment, the discussion is limited to Cartesian (or rectangular) coordinate systems. 
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Therefore, for Figure 1-2, we have 

-il cos(x[, Xi) = cos 6 
7 7 

A12 = cos(x[, x2) = cosl — — 0 sin 0 

7 7 
A2i — cos(^2, Xi) — cos^— + 6J = —sin 0 

A22 = cos(x2, x2) = cos 0 
The equations of transformation (Equation 1.2) now become 

x[ = XjCOS(x{, Xj) 4- x2 COS(*{, x2) 
= 4* A12x2 

x2 = x1 cos(x2, *i) + x2 cos(x2, #2) 

Thus, in general, for three dimensions we have 
X-y = \ \ 2 X 2 H~ Ajj^g 

X2 ~ A2i#j + A-22^2 
x3 = A33X3 

or, in summation notation, 

(1.4) 

(1.5a) 

(1.5b) 

(1.6) 

(1.7) 

The inverse transformation is 
= x[ COS(xI, Xj) + C O S ( + X3 COS(x$, Xj) 
= AjjXJ A.21%2 A31X3 

or, in general, 
3 

* , - = 2 a u x ' , i= 1 , 2 , 3 ;=1 (1.8) 

The quantity Ay is called the direction cosine of the x--axis relative to the 
*;-axis. It is convenient to arrange the Â  into a square array called a matrix. The 
boldface symbol A denotes the totality of the individual elements Ay when 
arranged as follows: 

An a12 Au\ 
A2i a22 2̂3 (1.9) 
A31 A32 A33/ 

Once we find the direction cosines relating the two sets of coordinate axes, 
Equations 1.7 and 1.8 give the general rules for specifying the coordinates of a 
point in either system. 

When A is defined this way and when it specifies the transformation proper-
ties of the coordinates of a point, it is called a transformation matrix or a rota-
tion matrix. 



1.3 COORDINATE TRANSFORMATIONS 

EXAMPLE 1.1 

A point Pis represented in the x2, x5) system by P(2, 1, 3). In another coor-
dinate system, the same point is represented as P(x{, x2, x$) where x2 has been 
rotated toward x3 around the a^-axis by an angle of 30° (Figure 1-3). Find the 
rotation matrix and determine P{x{, x2, #3). 

FIGURE 1-3 Example 1.1. A point Pis represented in two coordinate-systems, one 
rotated from the other by 30°. 

Solution. The direction cosines Â  can be determined from Figure 1-3 using 
the definition of Equation 1.3. 

An - COS(*{, Xj) = cos(0°) = 1 
A12 = cos(x{, x2) = cos (90°) = 0 
^13 = cos(*j, x$) = cos (90°) = 0 
A2i = COS(*2» *l) = cos (90°) = 0 
A22 — COS(*2> ^2) = cos (30°) = 0.866 
A23 = cos (x2) X3) = cos(90° - 30°) = cos(60°) = 0.5 
A31 = COS ( *3, = cos(90°) = 0 
A32 = COS ( *3, x2) = cos (90° + 30°) = - 0 . 5 
A33 ~ COS ( *3, *3) = cos (30°) = 0.866 

A = 
1 0 0 
0 0.866 0.5 
0 - 0 . 5 0.866 

and using Equation 1.7, P(x[, x2, #3) is 
x\ = ^Uxl + A12*2 -̂13*3 
x2 + A22x2 + A23^3 
XS = ^31^1 ^32x2 ^.33*3 

*i = 2 
0.866x2 + 0.5*3 = 2.37 
-0 .5x 2 + 0.866*3 = 2.10 
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Notice that the rotation operator preserves the length of the position vector, 

r - Vxf + x\ 4 x\ = V*f + x'i 4 x̂ 2 - 3.74 

1.4 Properties of Rotation Matrices* 
To begin the discussion of rotation matrices, we must recall two trigonometric 
results. Consider, as in Figure l-4a, a line segment extending in a certain direc-
tion in space. We choose an origin for our coordinate system that lies at some 
point on the line. The line then makes certain definite angles with each of the 
coordinate axes; we let the angles made with the Xj-, X2~y x3-axes be a, j3, y. The 
quantities of interest are the cosines of these angles; cos a, cos cos y. These 
quantities are called the direction cosines of the line. The first result we need is 
the identity (see Problem 1-2) 

cos 2 a 4 cos2jS 4- cos2 y = 1 (1*10) 
Second, if we have two lines with direction cosines cos a, cos /3, cos y and cos a 

cos /3', cos y\ then the cosine of the angle 0 between these lines (see Figure l-4b) 
is given (see Problem 1-2) by 

cos 6 = cos a cos a' 4 cos cos + cos y cos y' (1«H) 

With a set of axes Xit Xgf let us now perform an arbitrary rotation about 
some axis through the origin. In the new position, we label the axes x{, x%, x3. 

(a, 0,7) 
(a, A y) 

(a',p', 7') 

(a) (b) 

FIGURE 1-4 (a) A line segment is defined by angles (a, y) f rom the coordinate axes. 
(b) Another line segment is added that is defined by angles ( a ' , p ' , y ' ) . 

*Much of Sections 1.4-1.13 deals with matrix methods and transformation properties and will not be 
needed by the reader until Chapter 11. Hence the reader may skip these sections until then if de-
sired. Those relations absolutely needed—scalar and vector products, for example—should already 
be familiar from introductory courses. 
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The coordinate rotation may be specified by giving the cosines of all the angles 
between the various axes, in other words, by the A .̂ 

Not all of the nine quantities Â  are independent; in fact, six relations exist 
among the Ay, so only three are independent. We find these six relations by 
using the trigonometric results stated in Equations 1.10 and 1.11. 

First, the xj-axis may be considered alone to be a line in the coor-
dinate system; the direction cosines of this line are (An, A12, A13). Similarly, the di-
rection cosines of the x2-axis in the (xlf x2, x3) system are given by (A21, A22, A23). 
Because the angle between the xj-axis and the x^-axis is 7t/2, we have, from 
Equation 1.11, 

AnA21 + A12A22 + A13A23 = cos $ = cos(tt/2) = 0 

or* 

And, in general, 

i±k (1.12a) 

Equation 1.12a gives three (one for each value of i or k) of the six relations 
among the Ay. 

Because the sum of the squares of the direction cosines of a line equals unity 
(Equation 1.10), we have for the xi-axis in the x3) system, * 

Afi + Af2 + A?3 = 1 

or 

2Af ; - 2 Aj AJ = 1 
J J 

and, in general, 

2a#-A# =1, i = k (1.12b) 

which are the remaining three relations among the Ay. 
We may combine the results given by Equations 1.12a and 1.12b as 

(1.13) 

where 8ik is the Kronecker delta symbol* 

_ Jo, i f i # k 

The validity of Equation 1.13 depends on the coordinate axes in each of the 
systems being mutually perpendicular. Such systems are said to be orthogonal, 

*A11 summations here are understood to run from 1 to 3. 
^Introduced by Leopold Kronecker (1823-1891). 
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and Equation 1.13 is the orthogonality condition. The transformation matrix A 
specifying the rotation of any orthogonal coordinate system must then obey 
Equation 1.13. 

If we were to consider the x raxes as lines in the x- coordinate system and 
perform a calculation analogous to our preceding calculations, we would find 
the relation 

— (1.15) 

The two orthogonality relations we have derived (Equations 1.13 and 1.15) 
appear to be different. (Note: In Equation 1.13 the summation is over the second 
indices of the A^ whereas in Equation 1.15 the summation is over the first in-
dices.) Thus, it seems that we have an overdetermined system: twelve equations 
in nine unknowns.* Such is not the case, however, because Equations 1.13 and 
1.15 are not actually different. In fact, the validity of either of these equations 
implies the validity of the other. This is clear on physical grounds (because the 
transformations between the two coordinate systems in either direction are 
equivalent), and we omit a formal proof. We regard either Equation 1.13 or 1.15 
as providing the orthogonality relations for our systems of coordinates. 

In the preceding discussion regarding the transformation of coordinates 
and the properties of rotation matrices, we considered the point P to be fixed 
and allowed the coordinate axes to be rotated. This interpretation is not unique; 
we could equally well have maintained the axes fixed and allowed the point to 
rotate (always keeping constant the distance to the origin). In either event, the 
transformation matrix is the same. For example, consider the two cases illustrated 
in Figures l-5a and b. In Figure l-5a, the axes xi and x2 are reference axes, and 
the Xj - and x2 - axes have been obtained by a rotation through an angle 6. 

*2 
*k 

\ 

\J-

(a) 

*2 

(b) 

FIGURE 1-5 (a) The coordinate axes xltx2 are rotated by angle 0, but the point P 
remains fixed, (b) In this case, the coordinates of point P a r e rotated 
to a new point P ' , but not the coordinate system. 

*Recall that each of the orthogonality relations represents six equations. 
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Therefore, the coordinates of the point P with respect to the rotated axes may 
be found (see Equations 1.2a and 1.2b) from 

x[ = Xi cos 6 + x2 sin 0 
x2 = — xx sin 0 + x2 cos 0 

However, if the axes are fixed and the point P is allowed to rotate (as in Figure 
l-5b) through an angle 6 about the origin (but in the opposite sense from that 
of the rotated axes), then the coordinates of Pf are exactiy those given by 
Equation 1.16. Therefore, we may elect to say either that the transformation acts 
on the point giving a new state of the point expressed with respect to a fixed co-
ordinate system (Figure l-5b) or that the transformation acts on the frame of ref-
erence (the coordinate system), as in Figure l-5a. Mathematically, the interpreta-
tions are entirely equivalent. 

(1.16) 

1.5 Matrix Operations * 

The matrix A given in Equation 1.9 has equal numbers of rows and columns and 
is therefore called a square matrix. A matrix need not be square. In fact, the co-
ordinates of a point may be written as a column matrix 

(1.17a) 

or as a row matnx 

X — x2 (1.17b) 

We must now establish rules to multiply two matrices. These rules must be 
consistent with Equations 1.7 and 1.8 when we choose to express the x{ and the 
x- in matrix form. Let us take a column matrix for the coordinates; then we have 
the following equivalent expressions: 

*< = ^ Kj xj 
i 

j 
Ax 

fx[ 
x2 

\ x3 

X-[ — 

x2 — 
x3 = 

AjjXI + Ai2^2 A13X3 
A2i#i X22x2 H~ A23X3 

+ A32X2 + A33X3 ^ 

(1.18a) 

(1.18b) 

(1.18c) 

(1.18d) 

*The theory of matrices was first extensively developed by A. Cayley in 1855, but many of these ideas 
were the work of Sir William Rowan Hamilton (1805-1865), who had discussed "linear vector opera-
tors" in 1852. The term matrix was first used by J.J. Sylvester in 1850. 
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Equations 1.18a-d completely specify the operation of matrix multiplication 
for a matrix of three rows and three columns operating on a matrix of three 
rows and one column. (To be consistent with standard matrix convention we 
choose x and x' to be column matrices; multiplication of the type shown in 
Equation 1.18c is not defined if X and x' are row matrices.)* We must now ex-
tend our definition of multiplication to include matrices with arbitrary numbers 
of rows and columns. 

The multiplication of a matrix A and a matrix B is defined only if the num-
ber of columns of A is equal to the number of rows of B. (The number of rows of 
A and the number of columns of B are each arbitrary.) Therefore, in analogy 
with Equation 1.18a, the product AB is given by 

c = AB 

As an example, let the two matrices A and B be 

B 

We multiply the two matrices by 

(1.19) 

AB 

The product of the two matrices, C, is 
fia- 2d+ 2g 
k4a - 3d+ 5g 

(1.20) 

AB 
3 b 
4 b 

2e+ 2 h 
3e + 5 h 

3c - 2 / + 2 / 
4c - 3 / + 5jj (1.21) 

To obtain the Qj element in the sth row and 7th column, we first set the two 
matrices adjacent as we did in Equation 1.20 in the order A and then B. We then 
multiply the individual elements in the ith row of A, one by one from left to 
right, times the corresponding elements in the 7th column of B, one by one 
from top to bottom. We add all these products, and the sum is the Cy element. 
Now it is easier to see why a matrix A with m rows and n columns must be multi-
plied times another matrix B with n rows and any number of columns, say p. The 
result is a matrix C of m rows and p columns. 

*Although whenever we operate on X with the A matrix the coordinate matrix X must be expressed 
as a column matrix, we may also write X as a row matrix (xj, x2, x5), for other applications. 
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EXAMPLE 1.2 

Find the product AB of the two matrices listed below: 

2 1 3 \ 
A = - 2 2 4 

\ - l - 3 - 4 / 

/ - 1 
B = 1 

3 : 
Solution. We follow the example of Equations 1.20 and 1.21 to multiply the two 
matrices together. 

AB 

AB 
- 4 + 2 + 12 

4 + 4 + 1 6 
2 - 6 - 1 6 . 

The result of multiplying a 3 X 3 matrix times a 3 X 2 matrix is a 3 X 2 matrix. 

It should be evident from Equation 1.19 that matrix multiplication is not 
commutative. Thus, if A and B are both square matrices, then the sums 

^A i kBk j and ^B l kAk j 

are both defined, but, in general, they will not be equal. 

EXAMPLE 1.3 

Show that the multiplication of the matrices A and B in this example is non-
commutative. 

Solution. If A and B are the matrices 

- 1 s)' B 
- 1 

4 - 2 . 

then 

AB 
2 2 

IB -8 , 



12 1 / MATRICES, VECTORS, AND VECTOR CALCULUS 

but 

thus 

BA 

AB * BA 

1.6 Further Definitions 
A transposed matrix is a matrix derived from an original matrix by interchange 
of rows and columns. We denote the transpose of a matrix A by A'. According to 
the definition, we have 

Aj\ - Ay 

Evidendy, 

(A<)< = A 

(1.22) 

(1.23) 

Equation 1.8 may therefore be written as any of the following equivalent expres-
sions: 

= Ea 
= 2 A \ x ] 

x - A'x' 

(1.24a) 

(1.24b) 

(1.24c) 

* l \ a21 A»i\ 
*2 = a12 a22 ^32 1 M (1.24d) J U l 3 ^23 ^33/ W 

The identity matrix is that matrix which, when multiplied by another matrix, 
leaves the latter unaffected. Thus 

that is, 

1A 

1A = A, B1 = B 

(o X J GJ 

(1.25) 

Let us consider the orthogonal rotation matrix A for the case of two dimensions: 

An A12\ 
A = 

L21 l22> 
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Then 

AA< = 1̂2 \( ^11 ^21 
\ A 2 i A 2 2 / \ A I 2 A 2 2 / 

(^ 1 1 + ^ 1 2 ^ 1 1 ^ 2 1 + ^ 1 2 A 2 2 \ 

Using the orthogonality relation (Equation 1.13), we find 

A f i + A f 2 = A l 2 + A f 2 = 1 

A 2 J A ^ j A 2 2 A 1 2 — A J J A 2 2 A 1 2 A 2 2 — 0 

so that for the special case of the orthogonal rotation matrix A we have* 

A A « = ( J j ) - l (1.26) 

The inverse of a matrix is defined as that matrix which, when multiplied by 
the original matrix, produces the identity matrix. The inverse of the matrix A is 
denoted by A-1: 

A A 1 = 1 (1.27) 

By comparing Equations 1.26 and 1.27, we find 

A* — A 1 for orthogonal matrices * (1.28) 

Therefore, the transpose and the inverse of the rotation matrix A are identical. 
In fact, the transpose of any orthogonal matrix is equal to its inverse. 

To summarize some of the rules of matrix algebra: 

1. Matrix multiplication is not commutative in general: 
AB ^ BA (1.29a) 

The special case of the multiplication of a matrix and its inverse is commu-
tative: 

A A 1 = A 1 A = 1 (1.29b) 

The identity matrix always commutes: 

1A = A1 = A (1.29c) 

2. Matrix multiplication is associative: 

[AB]C = A[BC] (1.30) 
3. Matrix addition is performed by adding corresponding elements of the two 

matrices. The components of C from the addition C = A + B are 

Qj = A, + fy (1.31) 
Addition is defined only if A and B have the same dimensions. 

*This result is not valid for matrices in general. It is true only for orthogonal matrices. 
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1.7 Geometrical Significance 
of Transformation Matrices 

Consider coordinate axes rotated counterclockwise* through an angle of 90° 
about the %3-axis, as in Figure 1-6. In such a rotation, x[ = x2, x2 — x$ = 

The only nonvanishing cosines are 

Next consider the counterclockwise rotation through 90° about the ^-axis, 
as in Figure 1-7. We have x[ = x2 — x$ — ~x2, and the transformation ma-

To find the transformation matrix for the combined transformation for rota-
tion about the -axis, followed by rotation about the new #{-axis (see Figure 
1-8), we have 

cos(x{, x2) = 1 = A12 

cos(x2, Xi) = — 1 = A21 

cos(*3, x$) = 1 = A3S 

so the A matrix for this case is 

trix is 

x ' - AjX (1.32a) 

and 

x" - A2x' (1.32b) 

or 

x — AoAiX (1.33a) 

1 0 0 
0 0 1 
0 - 1 0 

0 1 0 
- 1 0 0 

0 0 1 
(1.33b) 

*We determine the sense of the rotation by looking along the positive portion of the axis of rotation 
at the plane being rotated. This definition is then consistent with the "right-hand rule," in which the 
positive direction of advance of a right-hand screw when turned in the same sense. 
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c t > 

90° rotation 
about x^-axis 

FIGURE 1-6 Coordinate system x$ is rotated 90° counter-clockwise (ccw) 
about the x3-axis. This is consistent with the right-hand rule of 
rotation. 

90° rotation 
about JCj-axis 

xi XI 
FIGURE 1-7 Coordinate system x2, xs is rotated 90° ccw about the * raxis . 

FIGURE 1-8 Coordinate system xiy x2, x3 is rotated 90° ccw about the *3-axis followed 
by a 90° rotation about the intermediate x{-axis. 
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Therefore, the two rotations already described may be represented by a single 
transformation matrix: 

0 
A3 = A2AX = I 0 

1 
(1.34) 

and the final orientation is specified by x'[ — x2, x2 — xs, x% — xv Note that the 
order in which the transformation matrices operate on X is important because 
the multiplication is not commutative. In the other order, 

A4 = AjA2 

0 1 / I 0 0 \ 
1 0 0 0 0 1 
0 0 1 / \ 0 - 1 0 / 

\ 
(1.35) 

and an entirely different orientation results. Figure 1-9 illustrates the different 
final orientations of a parallelepiped that undergoes rotations corresponding to 
two rotation matrices XA, XB when successive rotations are made in different 
order. The upper portion of the figure represents the matrix product XB XA, and 
the lower portion represents the product XA XB. 

*2 

90° rotation 
about x3-axis 

90° rotation 
about ^-axis 

90° rotation 
about a^-axis 

90° rotation 
about xg-axis 

FIGURE 1-9 A parallelepiped undergoes two successive rotations in different order. 
The results are different. 
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Next, consider the coordinate rotation pictured in Figure 1-10 (which is the 
same as that in Figure 1-2). The elements of the transformation matrix in two 
dimensions are given by the following cosines: 

cos(xJ, Xj) = cos 0 ~ An 

(nr ' 
cos(xJ, x2) = cosl ~ 

7T 

cos(x2> = c o s 0 = A22 

Therefore, the matrix is 

c o s e 

V — sin 6 

6 J = sin 6 = A12 

: — sin 6 = A21 

sin 0 
cos 0, 

(1.36a) 

If this rotation were a three-dimensional rotation with — x3f we would 
have the following additional cosines: 

cos(x{, x3) = 0 — A13 

cos(x2, xs) ~ 0 = A23 
cos(x3, xs) = 1 = A33 

cos(x3, Xj) = 0 = A31 

cos(%3, x2) = 0 = A 32 

and the three-dimensional transformation matrix is 

(1.36b) 

FIGURE 1-10 Coordinate system xif x2y xs is rotated an angle 6 ccw about the *3-axis. 
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*i 

*1 

(Inversion) 

xs 
FIGURE 1-11 An object undergoes an inversion, which is a reflection about the origin 

of all the axes. 

As a final example, consider the transformation that results in the reflection 
through the origin of all the axes, as in Figure 1-11. Such a transformation is 
called an inversion. In such a case, x{ = — xu x2 = — x2, x3 = —x3, and 

(1.37) 

In the preceding examples, we defined the transformation matrix A3 to be 
the result of two successive rotations, each of which was an orthogonal transfor-
mation: A3 = A2Ax. We can prove that the successive application of orthogonal 
transformations always results in an orthogonal transformation. We write 

/ - I 0 0 
A6 = 0 - 1 0 

0 0 - 1 

x\ — Xj, x'k — x[ 
j * 

Combining these expressions, we obtain 

= 2 [ft A]*jXj 
j 

Thus, we accomplish the transformation from x{ to x" by operating on x{ with the 
(fiA) matrix. The combined transformation will then be shown to be orthogonal 
if (fiA)* = (fiA) -1 . The transpose of a product matrix is the product of the 
transposed matrices taken in reverse order (see Problem 1-4); that is, (AB)* = 
B' A'. Therefore 

(gixy = x y (i.38) 
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But, because A and ft are orthogonal, A* = A 1 and fx1 = fi l. Multiplying the 
above equation by fiA from the right, we obtain 

(/AA) FFJL\ = A'P'JTA 
- A'LA 
= A'A 
= 1 

Hence 

( M ao - ( f i x y (1.39) 

and the fxA matrix is orthogonal. 
The determinants of all the rotation matrices in the preceding examples can 

be calculated according to the standard rule for the evaluation of determinants 
of second or third order: 

An a12 

A2i a22 

An a12 

A2I a22 

3̂1 3̂2 

= A n 

AHA22 AI9A 12/v21 

^13 
^23 
^33 

A 2 2 

^32 
^23 
^33 

- A 12 
A2i 
^31 

^23 
^33 

+ A 13 
A2i 
A31 

A22 

^32 

(1.40) 

(1.41) 

where the third-order determinant has been expanded in minors of the first 
row. Therefore, we find, for the rotation matrices used in this section, 

A! 1 

but 

Aa = - 1 

Thus, all those transformations resulting from rotations starting from the original set 
of axes have determinants equal to +1. But an inversion cannot be generated by 
any series of rotations, and the determinant of an inversion matrix is equal to — 1. 
Orthogonal transformations, the determinant of whose matrices is +1, are 
called proper rotations; those with determinants equal to —1 are called im-
proper rotations. All orthogonal matrices must have a determinant equal to either 
+ 1 or —1. Here, we confine our attention to the effect of proper rotations and do 
not concern ourselves with the special properties of vectors manifest in improper 
rotations. 
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EXAMPLE 1.1 

Show that | A21 — 1 and | A61 = — 1. 

Solution. 

l 0 0 
1 0 1 

A2| = 0 0 1 = +1 
- 1 0 

= 0 - ( - 1 ) = 1 
0 - 1 0 

- 1 0 0 
Ael = 0 - 1 0 

0 0 - 1 
= - 1 

0 

- 1 
= - 1 ( 1 - 0 ) 

1.8 Definitions of a Scalar and a Vector in Terms 
of Transformation Properties 

Consider a coordinate transformation of the type 

Xi = 2A, VXj 
with 

2 A „ A i v — 

(1.42) 

(1.43) 

If, under such a transformation, a quantity <f> is unaffected, then <f> is called a 
scalar (or scalar invariant). 

If a set of quantities (Al9 A2, A3) is transformed from the x{ system to the x\ 
system by a transformation matrix A with the result 

(1.44) 

then the quantities At transform as the coordinates of a point (i.e., according to 
Equation 1.42), and the quantity A = (A1? A2, A3) is termed a vector. 

1.9 Elementary Scalar and Vector Operations 
In the following, A and B are vectors (with components A{ and B{) and </>, if/, and 
£ are scalars. 

Addition 

Ai + B{ = B{ + A{ Commutative law (1.45) 

Ai + (Bi + Q) = (A, + Bt) + Q Associative law (1.46) 
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(f> + if; — ijj + </> Commutative law (1-47) 

<f> + (<A + f ) = (4> + <A) + £ Associative law (1.48) 

Multiplication by a scalar f 

£A = B is a vector (1.49) 

£<f> = ft is a scalar (1.50) 

Equation 1.49 can be proved as follows: 

B[ = 2a ijBj = EA ̂ Aj 
j J 

= (1.51) 
J 

and £A transforms as a vector Similarly, £</> transforms as a scalar. 

1.10 Scalar Product of Two Vectors 

The multiplication of two vectors A and B to form the scalar product is defined 
to be 

A B = (1.52) 

where the dot between A and B denotes scalar multiplication; this operation is 
sometimes called the dot product. 

The vector A has components A1? A2, A3, and the magnitude (or length) of A 
is given by 

|A| = + VA? + A\ + Al = A (1.53) 

where the magnitude is indicated by |A| or, if there is no possibility of confu-
sion, simply by A. Dividing both sides of Equation 1.52 by AB, we have 

A-B = 

AB i A B 
(1.54) 

Aj/A is the cosine of the angle a between the vector A and the tfj-axis (see 
Figure 1-12). In general, AJA and B{/B are the direction cosines Af and Af of 
the vectors A and B: 

A-B 
AB 

= 2 a m ? (1.55) 

The sum 2 fA^Af is just the cosine of the angle between A and B (see Equation 
1.11): 

cos (A, B) = 2 a m ? 
i 

or 
1 1 (1.56) A- B = AB cos (A, B) 
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*s 

FIGURE 1-12 A vector A is shown in coordinate system jcj , x 2 , % with its vector 
components A u A2, and A3. The vector A is or iented at an angle a 
with the x r a x i s . 

That the product A • B is indeed a scalar may be shown as follows. A and B 
transform as vectors: 

A; = 2A^A7, B; - 2 AlkBk (i.57) j h 
Therefore the product A' • B' becomes 

A'-B' = 2A;^; 
i 

= 2 f 2 A , , a | ( • i i I x i J I / v i h i J k j / \ & , 

Rearranging the summations, we can write 

But according to the orthogonality condition, the term in parentheses is just 8jk. 
Thus, 

A' • B' = 2 ^ 2 Sjk Aj Bk 

= 2 A;Bi 
3 ^ 

- A - B (1.58) 

Because the value of the product is unaltered by the coordinate transformation, 
the product must be a scalar. 

Notice that the distance from the origin to the point (xly x )̂ defined by 
the vector A, called the position vector, is given by 

|A| = VaTa = Vxf + x\ + x\ = V2*? 



x3 

FIGURE 1-13 The vector A is the position vector of point (xu x2, x3), and vector B is 
the position vector of point x2, x3) The vector A — B is the 
position vector from (x^ x2, x3) to x2, 

Similarly, the distance from the point (a^, x3) to another point (xl9 x2, x3) de-
fined by the vector B is 

- X,)2 - V ( A - B)- (A - B) = |A - B| i 

That is, we can define the vector connecting any point with any other point as 
the difference of the position vectors that define the individual -points, as in 
Figure 1-13. The distance between the points is then the magnitude of the dif-
ference vector. And because this magnitude is the square root of a scalar prod-
uct, it is invariant to a coordinate transformation. This is an important fact and 
can be summarized by the statement that orthogonal transformations are distance-
preserving transformations. Also, the angle between two vectors is preserved under 
an orthogonal transformation. These two results are essential if we are to suc-
cessfully apply transformation theory to physical situations. 

The scalar product obeys the commutative and distributive laws: 

A-B = lLAiBi = A, = B-A (1.59) i i 
A- (B + C) = 2 A i ( B + C)i = 2 ( B , + Q i i 

= X(ABi + AiQ = ( A ' B ) + (A'C) (1.60) 

1.11 Unit Vectors 
Sometimes we want to describe a vector in terms of the components along the 
three coordinate axes together with a convenient specification of these axes. For 
this purpose, we introduce unit vectors, which are vectors having a length equal 
to the unit of length used along the particular coordinate axes. For example, the 
unit vector along the radial direction described by the vector R is eK = R / ( |R|). 
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There are several variants of the symbols for unit vectors; examples of the most 
common sets are (i, j, k), (e1? e2, e3), (er, e0, e^), and (?, 0,(f>). The following 
ways of expressing the vector A are equivalent: 

A = (Ax, A2, A3) or A = e2 Ax + e2 A2 + e3 As 

or A = Ax i + A2 j + A3 k 
2e ,A, } (1.61) 

^ ~ ? Although the unit vectors (i, j, k) and (r, 6, <f>) are somewhat easier to use, we 
tend to use unit vectors such as (e2, e2, e3), because of the ease of summation no-
tation. We obtain the components of the vector A by projection onto the axes: 

At = e,-A (1.62) 

We have seen (Equation 1.56) that the scalar product of two vectors has a 
magnitude equal to the product of the individual magnitudes multiplied by the 
cosine of the angle between the vectors: 

A-B = AB cos (A, B̂  

If any two unit vectors are orthogonal, we have 

(1.63) 

(1.64) 

EXAMPLE 1.5 

Two position vectors are expressed in Cartesian coordinates as A = i + 2j — 2k 
and B = 4i + 2j — 3k. Find the magnitude of the vector from point A to point 
Bf the angle 0 between A and B, and the component of B in the direction of A. 

Solution. The vector from point A to point B is B — A (see Figure 1-13). 

B - A = 4i + 2j - 3k - (i + 2j ~ 2k) = 3i - k 
|B — A| = V 9 + I = V i o 

From Equation 1.56 

A-B (i + 2j - 2k) • (4i + 2j - 3k) 
cos 6 = AB V9V29 

4 + 4 + 6 
cos 8 = = 0.867 

3( V 29) 
0 = 30 

The component of B in the direction of A is B cos 6 and, from Equation 
1.56, 

A-B 14 
B cos 6 = = — = 4.67 

A 3 
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1.12 Vector Product of Two Vectors 
We next consider another method of combining two vectors—the vector prod-
uct (sometimes called the cross product). In most respects, the vector product of 
two vectors behaves like a vector, and we shall treat it as such.* The vector prod-
uct of A and B is denoted by a bold cross X, 

C = A x B (1.65) 
where C is the vector resulting from this operation. The components of C are 
defined by the relation 

^ (1.66) 

where the symbol is the permutation symbol or (Levi-Civita density) and has 
the following properties: 

0, if any index is equal to any other index 
eijk = +1, if fcform an even permutation of 1, 2, 3 (1«67) 

— 1, if z, j, k form an odd permutation of 1, 2, 3 
An even permutation has an even number of exchanges of position of two sym-
bols. Cyclic permutations (for example, 123 —> 231 —> 312) are always even. 
Thus 

e122 = e313 = e211 — 0, etc. 
e123 = e231 = e312

 = + 1 
e132 = e 213 = e321 = — 1 

Using the preceding notation, the components of C can be explicitly evaluated. 
For the first subscript equal to 1, the only nonvanishing e ^ are e123 and e132— 
that is, for j, k = 2, 3 in either order. Therefore 

Q = ^BijkAjBk = e123A2£3 + e132A352 

= A2J33 - AsB2 (1.68a) 

Similarly, 
C2 = AsBl ~ AyBs (1.68b) 
C3 = A\B2 - A2Bx (1.68c) 

Consider now the expansion of the quantity [Ai? sin(A, B)]2 = (AB sin0)2: 

A2i$2 sin 2 0 = A2£2 - A2£2cos20 

- N H - (r 
= (A2J53 - A3£2)2 + (AsBl ~ AXB^ + (AXB2 - A2Bl)2 (1.69) 

*The product actually produces an axial vector, but the term vector product is used to be consistent 
with popular usage. 
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A 
FIGURE 1-14 The magnitude of the vector C determined by C = A X B has a 

magnitude given by the area of the parallelogram AB sin 0, where 6 
is the angle between the vectors A and B. 

where the last equality requires some algebra. Identifying the components of C 
in the last expression, we can write 

(AB sin 0)2 = C\ + C\ + C\ = |C2 | = C2 (1.70) 

If we take the positive square root of both sides of this equation, 

C — AB sin 0 (1.71) 

This equation states that if C = A X B, the magnitude of C is equal to the prod-
uct of the magnitudes of A and B multiplied by the sine of the angle between 
them. Geometrically, AB sin 0 is the area of the parallelogram defined by the 
vectors A and B and the angle between them, as in Figure 1-14. 

EXAMPLE 1.6 

Show by using Equations 1.52 and 1.66 that 

A • (B x D) = D • (A x B) (1.72) 

Solution. Using Equation 1.66, we have 

(BXD )t = ^ZsljkBJDk 
j,k J J 

Using Equation 1.52, we have 

A - ( B X D ) = L ^ A (1-73) 
l,J,k J J 

Similarly, for the right-hand side of Equation 1.72, we have 

D • (A X B) = S e ^ A - A ^ 
i,j,k J J 

From the definition (Equation 1.67) of e^, we can interchange two adjacent in-
dices of which changes the sign. 

D • (A x B) = 2 - s^D.AjB, 
i,j,k J J 

- (1-74) 
t,J,k J 

Because the indices i, j, k are dummy and can be renamed, the right-hand sides 
of Equations 1.73 and 1.74 are identical, and Equation 1.72 is proved. Equation 
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1.72 can also be written as A • (B X D) = (A X B) • D, indicating that the scalar 
and vector products can be interchanged as long as the vectors stay in the order 
A, B, D. Notice that, if we let B = A, we have 

A • (A X D) = D • (A x A) = 0 

showing that A X D must be perpendicular to A. 

A X B (i.e., C) is perpendicular to the plane defined by A and B because 
A • (A X B) = 0 and B • (A X B) = 0. Because a plane area can be represented 
by a vector normal to the plane and of magnitude equal to the area, C is evi-
dently such a vector. The positive direction of C is chosen to be the direction of 
advance of a right-hand screw when rotated from A to B. 

The definition of the vector product is now complete; components, magni-
tude, and geometrical interpretation have been given. We may therefore reason-
ably expect that C is indeed a vector. The ultimate test, however, is to examine 
the transformation properties of C, and C does, in fact, transform as a vector 
under a proper rotation. 

We should note the following properties of the vector product that result 
from the definitions: 

(a) A X B = - B X A 

but, in general, 

(b) A x (B x C) t̂  (A x B) x C 

Another important result (see Problem 1-22) is 

A x (B x C) — (A * C)B — (A • B)C (1.77) 

EXAMPLE 1.7 

Find the product of (A X B) • (C X D). 

Solution. 

( A x B l r l f i ^ 
j,k J 

(C X D),- = 2 eamCtDm 
l,m 

The scalar product is then computed according to Equation 1.52: 

(A x B) • (C X D) = 

Rearranging the summations, we have 

(A X B) • (C X D) = ^ ( ^ s j k l e l m l ) A J B i C l D m 

where the indices of the e's have been permuted (twice each so that no sign 
change occurs) to place in the third position the index over which the sum is 

(1.75) 

(1-76) 
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carried out. We can now use an important property of the eiik (see Problem 1-22): 

2eijkslmk - 8u8jm - 8im8ji (1.78) 

We therefore have 

(A x B) • (C X D) = 2 " S j M A j B & D , 
Um 

Carrying out the summations overhand k, the Kronecker deltas reduce the ex-
pression to 

(A x B) • (C x D) = 2 ( A ^ C ^ - A ^ Q D J 
l,m 

This equation can be rearranged to obtain 

(A X B) • (C X D) = ^ C ^ S ^ Z ) ^ -

Because each term in parentheses on the right-hand side is just a scalar product, 
we have, finally, 

(A X B) - (C x D) = (A* C)(B • D) - (B-C)(A-D) 

The orthogonality of the unit vectors e* requires the vector product to be 
ê  X e7 = ek k in cyclic order (1.79a) 

We can now use the permutation symbol to express this result as 

e, x e, eb e k ° ijk (1.79b) 

The vector product C = A X B, for example, can now be expressed as 

C - ^ e i j k e i A j B k (1.80a) 

By direct expansion and comparison with Equation 1.80a, we can verify a de-
terminantal expression for the vector product: 

(1.80b) 
e i e 2 e3 

C = A X B = Aj A2 A3 

Bi BS 
We state the following identities without proof: 

A- (B X C) 
A X (B X C) 

(A x B) • (C X D) 

B • (C x A) = C • (A X B) • ABC 
(A • C)B - (A-B)C 
A- [B x (C X D)] 

= A- [(B-D)C - (B-C)D] 
= (A-C)(B-D) - (A-D)(B-C)J 

(A X B) X (C X D) = [(A X B) D]C - [(A X B) • C]D 
= (ABD)C - (ABC)D = (ACD)B - (BCD)A } 

(1.81) 
(1.82) 

(1.83) 

(1.84) 
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1.13 Differentiation of a Vector 
with Respect to a Scalar 

If a scalar function <£ = <£($) is differentiated with respect to the scalar variable s, 
then, because neither part of the derivative can change under a coordinate 
transformation, the derivative itself cannot change and must therefore be a 
scalar; that is, in the x{ and x\ coordinate systems, <f> = </>' and 5 = sso d<f> = 
and ds = ds'. Hence 

Similarly, we can formally define the differentiation of a vector A with re-
spect to a scalar s. The components of A transform according to 

= (1.85) 

Therefore, on differentiation, we obtain (because the Â  are independent of s') 

. A _ y . d A j 

ds' ~ ds'f W - l ^ d s ' 

Because s and sf are identical, we have 
dA\ _ fdAX _ 
ds' ~\ds) 

Thus the quantities dAj/ds transform as do the components of a vector and 
hence are the components of a vector, which we can write as dA/ ds. 

We can give a geometrical interpretation to the vector dA/dsas follows. First, 
for dA/ds to exist, A must be a continuous function of the variable s: A = A(s). 
Suppose this function is represented by the continuous curve T in Figure 1-15; at 
the point P, the variable has the value 5, and at Qit has the value s + As. The de-
rivative of A with respect to s is then given in standard fashion by 

^ = lim M = lim A(5 + As) - A(.) 
ds o As As 
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The derivatives of vector sums and products obey the rules of ordinary vec-
tor calculus. For example, 

d dA dB 
( A + B ) = — + — (1.86b) 

as as as 

d dB dA 
—(A-B) = A — + — B (1.86c) 
as ds ds 

d dB dA 
—(A x B) = A x — H—~ x B (1.86d) 
ds ds ds 

d dA d<b 
-(</>A) = 4 > - + -Z-A (1.86e) 
as ds ds 

and similarly for total differentials and for partial derivatives. 

1.14 Examples of Derivatives— 
Velocity and Acceleration 

Of particular importance in the development of the dynamics of point particles 
(and of systems of particles) is the representation of the motion of these parti-
cles by vectors. For such an approach, we require vectors to represent the posi-
tion, velocity, and acceleration of a given particle. It is customary to specify the 
position of a particle with respect to a certain reference frame by a vector r, which 
is in general a function of time: r — r(t). The velocity vector v and the acceleration 
vector a are defined according to 

dr 
= * (1.87) 

d\ d2 r 
= = ' ( L 8 8 ) 

where a single dot above a symbol denotes the first time derivative, and two dots 
denote the second time derivative. In rectangular coordinates, the expressions 
for r, v, and a are 

r = x̂ e-i + x2e2 + x3e3 = S ^ e , - Position 

v ' " ' x d x Y y ax
 i 

= r = 2ukie,i = 2a — ê  Velocity 
* * dt 

Y Y d^Xi 
a = v = r = 2dX{ et = 2j —— ê  Acceleration 

i i dr 

(1.89) 

Calculating these quantities in rectangular coordinates is straightforward because 
the unit vectors et- are constant in time. In nonrectangular coordinate systems, 
however, the unit vectors at the position of the particle as it moves in space are 
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not necessarily constant in time, and the components of the time derivatives of r 
are no longer simple relations, as in Equation 1.89. We do not discuss general 
curvilinear coordinate systems here, but plane polar coordinates, spherical coordi-
nates, and cylindrical coordinates are of sufficient importance to warrant a discus-
sion of velocity and acceleration in these coordinate systems.* 

To express v and a in plane polar coordinates, consider the situation in 
Figure 1-16. A point moves along the curve s{t) and in the time interval 
t2 ~ tx = dt moves from P(1) to P (2). The unit vectors, er and e0, which are or-
thogonal, change from e£!) to e£2) and from to e<2) . The change in er is 

e
(2) - e(i) = der (1.90) 

which is a vector normal to er (and, therefore, in the direction of e0). Similarly, 
the change in ee is 

e<2) - = dee (1.91) 
which is a vector normal to ee. We can then write 

der = d0ee (1.92) 

and 
dee = -d8er (1.93) 

where the minus sign enters the second relation because dee is directed opposite 
to er (see Figure 1-16). 

s(t) 

* Refer to the figures in Appendix F for the geometry of these coordinate systems. 
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Equations 1.92 and 1.93 are perhaps easier to see by referring to Figure 1-16. 
In this case, der subtends an angle dd with unit sides, so it has a magnitude of dd. 
It also points in the direction of ee, so we have der — ddee. Similarly, ded subtends 
an angle dd with unit sides, so it also has a magnitude of dd, but from Figure 1-16 
we see that dee points in the direction of —er so we have dee = — d6er. 

Dividing each side of Equations 1.92 and 1.93 by dt, we have 

(1-94) 

| | (1.95) 

If we express v as 

dr d 
Y = Jt = dt(re;> 

= fer 4- re r 

we have immediately, using Equation 1.94, 

v = r = fe*. + rdef 

(1.96) 

(1.97) 

so that the velocity is resolved into a radial component r and an angular (or 
transverse) component rd. 

A second differentiation yields the acceleration: 

a = — (rer + rdee) at 
= rer + fer + rdee + rO ee + r6ee 

= (r - r02)er + (rd + 2rO)ee (1.98) 

so that the acceleration is resolved into a radial component (r — rO2) and an . . . 
angular (or transverse) component (rd + 2rd). 

The expressions for ds, ds2, v2, and v in the three most important coordi-
nate systems (see also Appendix F) are 

Rectangular coordinates (x, y, z) 

ds = dx^i + dx2e2 dx$e% 
ds2 = dxi + dx | + dx\ 
V2 X2 x2 X2 

v — x^ej 4 x2c2 4* Xgê  

Spherical coordinates (r, 6, <f>) 

ds — drer + rddee + r sin 8 d^e^ 
ds2 = dr2 + r2d02 + r2 sin2 6 dcp2 

v2 = f2 + r2^2 + r2 s i n2 0 <^2 

v = fer + r0e# + r sin 0 <j>es 

(1.99) 

(1.100) 
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(The expressions for plane polar coordinates result from Equation 1.100 by set-
ting dcf> = 0.) 

Cylindrical coordinates (r, (j), z) 

ds = drer + rd<f>e$ + dze 
ds2 = dr2 + r2d<f>2 + dz2

 v 

„ 2 = r 2 + r 2 f + z2 > ( L 1 0 1 ) 

v = fer + + zez 

EXAMPLE 1.8 

Find the components of the acceleration vector a in cylindrical coordinates. 

Solution. The velocity components in cylindrical coordinates were given in 
Equation 1.101. The acceleration is determined by taking the time derivative of v. 

a = 4 v = 4(*er + r<f>e<t> + dt dt 
- rer + fer + f ^ + r$e<f> + + zez + zez 

We need to find the time derivative of the unit vectors er, e^, and e2. The 
cylindrical coordinate system is shown in Figure 1-17, and in terms .of the (x, y, z) 
components, the unit vectors er, e^, and ez are 

er = (cos </>, sin <j>, 0) 
e<f> = ( ~ s i n c o s 0) 
e z = (0,0,1) 

FIGURE 1-17 The cylindrical coordinate system (r, <j), z) are shown with respect to the 
Cartesian system (x, y, z). 
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The time derivatives of the unit vectors are found by taking the derivatives of 
the components. 

e r = (—4> sin </>, <j> cos </>, 0) = —(frê  
e^ ~ (—<j> cos cf),—<j) sin 0) — — <f>er 

ez = 0 

We substitute the unit vector dme derivatives into the above expression for a. 
• • • • • 

a — rer + f(/>ê  + rfie^ + — r<f>zer + zez 
• • • • 

= (r — r<f>2)er + (r<j> + 2 r<f))e^ + zez 

1.15 Angular Velocity 
A point or a particle moving arbitrarily in space may always be considered, at a 
given instant, to be moving in a plane, circular path about a certain axis; that is, 
the path a particle describes during an infinitesimal time interval St may be rep-
resented as an infinitesimal arc of a circle. The line passing through the center 
of the circle and perpendicular to the instantaneous direction of motion is 
called the instantaneous axis of rotation. As the particle moves in the circular 
path, the rate of change of the angular position is called the angular velocity: 

dO 
a) = — = 0 (1 .102) 

dt 

Consider a particle that moves instantaneously in a circle of radius R about 
an axis perpendicular to the plane of motion, as in Figure 1-18. Let the position 
vector r of the particle be drawn from an origin located at an arbitrary point O 
on the axis of rotation. The time rate of change of the position vector is the 
linear velocity vector of the particle, r = v. For motion in a circle of radius R, the 
instantaneous magnitude of the linear velocity is given by 

d9 
v = R— = R(o (1.103) 

dt 

The direction of the linear velocity v is perpendicular to r and in the plane of the 
circle. 

It would be very convenient if we could devise a vector representation of 
the angular velocity (say, <*>) so that all the quantities of interest in the motion 
of the particle could be described on a common basis. We can define a direction 
for the angular velocity in the following manner. If the particle moves instanta-
neously in a plane, the normal to that plane defines a precise direction in 
space—or, rather—two directions. We may choose as positive that direction correspon-
ding to the direction of advance of a right-hand screw when turned in the same 
sense as the rotation of the particle (see Figure 1-18). We can also write the mag-
nitude of the linear velocity by noting that R = rs ina. Thus 

v = rco sin a (1.104) 
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FIGURE 1-18 A particle moving ccw about an axis according to the right-hand rule 
has an angular velocity to = v X r about that axis. 

Having defined a direction and a magnitude for the angular velocity, we note 
that if we write 

to X r (1.105) 

then both of these definitions are satisfied, and we have the desired vector rep-
resentation of the angular velocity. 

We should note at this point an important distinction between finite and in-
finitesimal rotations. An infinitesimal rotation can be represented by a vector 
(actually, an axial vector), but a finite rotation cannot. The impossibility of de-
scribing a finite rotation by a vector results from the fact that such rotations do 
not commute (see the example of Figure 1-9), and therefore, in general, differ-
ent results will be obtained depending on the order in which the rotations are 
made. To illustrate this statement, consider the successive application of two fi-
nite rotations described by the rotation matrices Aj and A2. Let us associate the 
vectors A and B in a one-to-one manner with these rotations. The vector sum is C = 
A + B , which is equivalent to the matrix A 3 = A 2 AJ . But because vector addition 
is commutative, we also have C = B + A , with A 4 = AJA 2 . But we know that 
matrix operations are not commutative, so that in general A3 A4. Hence, the 
vector C is not unique, and therefore we cannot associate a vector with a finite 
rotation. 

Infinitesimal rotations do not suffer from this defect of noncommutation. We 
are therefore led to expect that an infinitesimal rotation can be represented by a 
vector. Although this expectation is, in fact, fulfilled, the ultimate test of the vec-
tor nature of a quantity is contained in its transformation properties. We give 
only a qualitative argument here. 

Refer to Figure 1-19. If the position vector of a point changes from r t o r + 
5r, the geometrical situation is correctly represented if we write 

8r = <50 X r (1.106) 
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where 56 is a quantity whose magnitude is equal to the infinitesimal rotation 
angle and that has a direction along the instantaneous axis of rotation. The 
mere fact that Equation 1.106 correctly describes the situation illustrated in 
Figure 1-19 is not sufficient to establish that 58 is a vector. (We reiterate that the 
true test must be based on the transformation properties of 56.) But if we show 
that two infinitesimal rotation "vectors"—56! and 562—actually commute, the sole 
objection to representing a finite rotation by a vector will have been removed. 

Let us consider that a rotation 56x takes r into r + 5rj, where 5rx = 56! X r. 
If this is followed by a second rotation 562 around a different axis, the initial po-
sition vector for this rotation r + 5rj. Thus 

5r2 = 562 X (r + Srx) 

and the final position vector for 56 x followed by 562 is 

r + 5r12 = r + [56! X r + 562 X (r + 5rx)] 

Neglecting second-order infinitesimals, then, 

5r12 = 56! X r + 562 X r (1.107) 

Similarly, if 562 is followed by 56x, we have 

r + 5r21 = r + [562 X r + 56x X (r + 5r2)] 

or 

5r21 = 562 X r + 56j X r (1.108) 

Rotation vectors 5r12 and 5r21 are equal, so the rotation "vectors" 56! and 562 do 
commute. It therefore seems reasonable that 50 in Equation 1.106 is indeed a 
vector. 
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It is the fact that 56 is a vector that allows angular velocity to be represented 
by a vector, because angular velocity is the ratio of an infinitesimal rotation angle 
to an infinitesimal time: 

or, in passing to the limit, 8t —> 0, 

v = co X r 

as before. 

1.16 Gradient Operator 
We now turn to the most important member of a class called vector differential 
operators—the gradient operator. 

Consider a scalar (j) that is an explicit function of the coordinates xt and, 
moreover, is a continuous, single-valued function of these coordinates through-
out a certain region of space. Under a coordinate transformation that carries the 
Xi into the x'i9 <f>'(x[9 x 2 y # 3 ) — <f>(x x 2 ) x s ) , and by the chain rule of differentia-
tion, we can write 

Therefore, dividing Equation 1.106 by 519 we have 

5r 56 
— = — X r 
8 t 8 t 

^ JL ' nJL v. 

d x [ j d x j d x [ 
(1.109) 

The case is similar for d ( f > f / d x 2 and d<f)r/dx3, so in general we have 

d(f>' _ ^ 

d x j j d x j d x l 

(1.110) 

(1 .111) 

(1.112) 

But the term in the last parentheses is just 5^, so 
ri V. 

(1.113) 
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Substituting Equation 1.113 into Equation 1.110, we obtain 

dx\ = 2 A „ 
d<t> 

dX: 
(1.114) 

Because it follows the correct transformation equation of a vector (Equation 
1.44), the function d<f>/dxj is the j th component of a vector termed the gradient 
of the function (f>. Note that even though </> is a scalar, the gradient of <f> is a vector 
The gradient of <f> is written either as grad or as V<^("del" <£)• 

Because the function (f> is an arbitrary scalar function, it is convenient to de-
fine the differential operator described in the preceding in terms of the gradient 
operator: 

(grad) i = V, = 
dXi 

(1.115) 

We can express the complete vector gradient operator as 

Gradient (1.116) 

The gradient operator can (a) operate direcdy on a scalar function, as in 
V</>; (b) be used in a scalar product with a vector function, as in V • A (the diver-
gence (div) of A); or (c) be used in a vector product with a vector function, as in 
V X A (the curl of A). We present the grad, divergence, and curl: 

grad <f> = V<p = 2 e5 
3<f> 
dXi 

(1.117a) 

div A = V • A ~ JL —-
i bXi 

(1.117b) 

curl A = V X A = 2 Mk £ et J dx 
(1.117c) 

To see a physical interpretation of the gradient of a scalar function, consider 
the three-dimensional and topographical maps of Figure 1-20. The closed loops 
of part b represent lines of constant height. Let <f> denote the height at any point 
4> = (f>(xl9 X2, x3). Then 

i OXj i 

The components of the displacement vector ds are the incremental displace-
ments in the direction of the three orthogonal axes: 

ds = (dxlf dx2, dx3) 

Therefore 

d<f> = (V</>) • ds 

(1.118) 

(1.119) 
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(a) 

FIGURE 1-20 
(b) 

(a) A three-dimensional contour map can be represented by (b) a 
topographical m a p of lines (f) represent ing constant height. The 
gradient V<f> represents the direction perpendicular to the constant 
4> lines. 

Let ds be directed tangentially along one of the isolatitude lines (i.e., along 
a line for which (f> = const.), as indicated in Figure 1-20. Because <f> — const, for 
this case, d<f> = 0. But, because neither V0 nor ds is in general zero, they must there-
fore be perpendicular to each other. Thus V<£ is normal to the line (or in three 
dimensions, to the surface) for which (f> = const. 
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The maximum value of d(j> results when V</> and ds are in the same direc-
tion; then, 

W ) m a x = for V<f>\\ds 
or 

\ d s / m a x 

Therefore, V<f> is in the direction of the greatest change in (j). 
We can summarize these results as follows: 

(1.120) 

1. The vector V</> is, at any point, normal to the lines or surfaces for which <f) = 
const. 

2. The vector V<f> has the direction of the maximum change in </>. 
3. Because any direction in space can be specified in terms of the unit vector n 

in that direction, the rate of change of </> in the direction of n (the directional 
derivative of </>) can be found from n • V<f> = dcf)/dn. 

The successive operation of the gradient operator produces 

* dXjdXj * dxf 
This important product operator, called the Laplacian,* is also written 

a2 

(1.121) 

(1.122) 

When the Laplacian operates on a scalar, we have, for example, 

^ i dx? 
(1 .123) 

1.17 Integration of Vectors 
The vector resulting from the volume integration of a vector function A = A( x() 
throughout a volume V is given by+ 

j Adv = Q a ^ v , J Agrfi/, ^A5dvj (1.124) 

*After Pierre Simon Laplace (1749-1827); the notation V2 is ascribed to Sir William Rowan 
Hamilton. 
^The symbol fv actually represents a triple integral over a certain volume V. Similarly, the symbol / s 
stands for a double integral over a certain surface S. 
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FIGURE 1-21 The differential da is an element of area of the surface. Its direction is 
normal to the surface. 

Thus, we integrate the vector A throughout V simply by performing three sepa-
rate, ordinary integrations. 

The integral over a surface S of the projection of a vector function A = A(x )̂ 
onto the normal to that surface is defined to be 

i A - da. 

where da is an element of area of the surface (Figure 1-21). We write d a as a vec-
tor quantity because we may attribute to it not only a magnitude da but also a di-
rection corresponding to the normal to the surface at the point in question. If 
the unit normal vector is n, then 

da = n da (1.125) 
Thus, the components of da are the projections of the element of area on the 
three mutually perpendicular planes defined by the rectangular axes: 

dax = dx2 dx3, etc. (1.126) 

Therefore, we have 

A • da = A • n da (1.127) 

or 

A* da = 2 a , da, (1.128) 

Equation 1.127 states that the integral of A over the surface S is the integral of 
the normal component of A over this surface. 

The normal to a surface may be taken to lie in either of two possible direc-
tions ("up" or "down"); thus the sign of n is ambiguous. If the surface is closed, we 
adopt the convention that the outward normal is positive. 

The line integral of a vector function A = A(x () along a given path extend-
ing from the point B to the point C is given by the integral of the component of 
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C 

ds 

B 

F I G U R E 1-22 T h e e l e m e n t ds is a n e l e m e n t of l eng th a long t he given p a t h f r o m B to 
C. Its d i rec t ion is a l ong t he p a t h at a given po in t . 

A along the path 

The quantity ds is an element of length along the given path (Figure 1-22). The 
direction of ds is taken to be positive along the direction the path is traversed. In 
Figure 1-22 at point P, the angle between ds and A is less than tt/2, so A • ds is 
positive at this point. At point Q, the angle is greater than 7t/2, and the contri-
bution to the integral at this point is negative. 

It is often useful to relate certain surface integrals to either volume integrals 
(Gauss's theorem) or line integrals (Stokes's theorem). Consider Figure 1-23, 
which shows a closed volume Venclosed by the surface S. Let the vector A and its 
first derivatives be continuous throughout the volume. Gauss's theorem states 
that the surface integral of A over the closed surface S is equal to the volume in-
tegral of the divergence of A (V * A) throughout the volume V enclosed by the 
surface We write this mathematically as 

Gauss's theorem is sometimes also called the divergence theorem. The theorem is 
particularly useful in dealing with the mechanics of continuous media. 

See Figure 1-24 for the physical description needed for Stokes's theorem, 
which applies to an open surface S and the contour path C that defines the sur-
face. The curl of the vector A (V X A) must exist and be integrable over the en-
tire surface S. Stokes's theorem states that the line integral of the vector A 
around the contour path C is equal to the surface integral of the curl of A over 
the surface defined by C. We write it mathematically as 

(1.129) 

Js 
A • da = V * A dv 

J v 
(1.130) 

A-ds = (V X A) - da (1.131) 
c s 

where the line integral is around the closed contour path C. Stokes's theorem is 
particularly useful in reducing certain surface integrals (two dimensional) to, it 
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FIGURE 1-23 T h e differential da is an e l emen t of area on a surface S that su r rounds 
a closed volume V, 

FIGURE 1-24 A con tour pa th C def ines an o p e n surface S. A line integral a r o u n d the 
pa th C a n d a surface integral over the surface S is requ i red for Stokes's 
t heo rem. 

is hoped, a simpler line integral (one dimensional). Both Gauss's and Stokes's 
theorems have wide application in vector calculus. In addition to mechanics, 
they are also useful in electromagnetic applications and in potential theory. 

P R O B L E M S 

1-1. Find the t ransformat ion matr ix that rotates the axis x3 of a rec tangular coordinate 
system 45° toward a r o u n d the a^-axis. 

1-2. Prove Equat ions 1.10 and 1.11 f r o m t r igonometr ic considerat ions. 

1-3. F ind the t ransformat ion matr ix that rotates a rec tangular coordinate system 
th rough an angle of 120° about an axis mak ing equal angles with the original three 
coordinate axes. 

1-4. Show 
(a) (AB)* = B'A< (b) (AB)"1 = B _ 1 A _ 1 

1-5. Show by direct expansion that |A | 2 = 1. For simplicity, take A to be a two-
dimensional o r thogona l t ransformat ion matrix. 
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1-6. Show that Equation 1.15 can be obtained by using the requirement that the trans-
formation leaves unchanged the length of a line segment. 

1-7. Consider a unit cube with one corner at the origin and three adjacent sides lying 
along the three axes of a rectangular coordinate system. Find the vectors describ-
ing the diagonals of the cube. What is the angle between any pair of diagonals? 

1-8. Let A be a vector from the origin to a point P fixed in space. Let r be a vector from 
the origin to a variable point x2, x3). Show that 

A t = A2 

is the equation of a plane perpendicular to A and passing through the point P. 

1-9. For the two vectors 
A - i + 2j - k, B = - 2 i + 3j + k 

find 
(a) A — B and | A — B | (b) component of B along A (c) angle between A and B 
(d) A X B (e) (A - B) X (A + B) 

1-10. A particle moves in a plane elliptical orbit described by the position vector 

r — 2b sin wti + b cos cotj 

(a) Find v, a, and the particle speed. 
(b) What is the angle between v and a at time t = rr/2(o} 

1-11. Show that the triple scalar product (A X B) * C can be written as 

(A x B) - C 
A\ A2 A3 

Bx B, 

Ci Q Q 
Show also that the product is unaffected by an interchange of the scalar and vector 
product operations or by a change in the order of A, B, C, as long as they are in 
cyclic order; that is, 

(A x B) • C = A • (B X C) = B • (C X A) = (C x A) -B, etc. 

We may therefore use the notation ABC to denote the triple scalar product. Finally, 
give a geometric interpretation of ABC by computing the volume of the paral-
lelepiped defined by the three vectors A, B, C. 

1-12. Let a, b, c be three constant vectors drawn from the origin to the points A, B, C. 
What is the distance from the origin to the plane defined by the points A, B, C? 
What is the area of the triangle ABC? 

1-13. X is an unknown vector satisfying the following relations involving the known vec-
tors A and B and the scalar </>, 

A X X = B, A X = 

Express X in terms of A, B, <f), and the magnitude of A. 
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1-14. Consider the following matrices: 

B 
( 2 

0 
U 

Find the following 

(a) | AB | (b) AC (c) ABC (d) AB - B A 

1-15. Find the values of a needed to make the following transformation orthogonal. 

(1 0 0 
0 a —a 

a a 

1-16. What surface is represented by r • a = const, that is described if a is a vector of con-
stant magnitude and direction from the origin and r is the position vector to the 
point P(xj, x2, xs) on the surface? 

1-17. Obtain the cosine law of plane trigonometry by interpreting the product (A — B) • 
(A — B) and the expansion of the product. 

1-18. Obtain the sine law of plane trigonometry by interpreting the product A X B and 
the alternate representation (A ~ B) X B. 

1-19. Derive the following expressions by using vector algebra: 
(a) cos (a — /3) = cos a cos /3 + sin a sin (3 
(b) sin (a — fi) = sin a cos — cos a sin fi 

1-20. Show that 

(a) 8¥ = 0 (b) S e p ep = 28U (c) e^ = 6 

l,J J J J,k J J ly],k J J 

1-21. Show (see also Problem 1-11) that 

ABC = S e p A ^ Q 
t ,j,k J J 

1-22. Evaluate the sum (which contains 3 terms) by considering the result for 
all possible combinations of i, j, Z, m\ that is, 
(a) i = j (b) i = I (c) i — m (d) j — I (e) j = m ( f ) 1= m 
(g) i Ior m (h) j lor m 

Show that 

2 Etjkelmk = 8il8jm - SimSjl 

and then use this result to prove 

A x (B X C) — (A • C)B - (A • B)C 
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1-23. Use the eljk notation and derive the identity 

(A x B) X (C x D) = (ABD)C (ABC)D 

1-24. Let A be an arbitrary vector, and let e be a unit vector in some fixed direction. Show 
that 

A = e(A • e) + e X (A X e) 

What is the geometrical significance of each of the two terms of the expansion? 

1-25. Find the components of the acceleration vector a in spherical coordinates. 

1-26. A particle moves with v = const, along the curve r= k(l + cos 0) (a cardioid). Find 
r • er = a - e r , |a | , and 6. 

1-27. If r and r = v are both explicit functions of time, show that 

~[r X (v X r)] = r2a + (r*v)v - (v2 + r-a)r 
dt 

1-28. Show that 

V( ln | r | ) 

1-29. Find the angle between the surfaces defined by r 2 = 9 and x + y + z2 — 1 at the 
point (2, - 2 , 1). 

1-30. Show that V ( ^ ) = cf>Vtp + ftVcf). 

1-31. Show that 

r df 1 
(a) Vrn = r (b) V/(r) = - -p (c) V2(ln r) = — 

r dr rl 

1-32. Show that 

j(2ar-r 4- 2br-r)dt= ar2 + br2 + const. 
where r is the vector from the origin to the point x2, x3). The quantities r a n d r 
are the magnitudes of the vectors r and r, respectively, and a and b are constants. 

1-33. Show that 

[(r r r\ r k~7r = - r + C 

where C is a constant vector. 
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1-34. Evaluate the integral 

| a X A dt 

1-35. Show that the volume common to the intersecting cylinders defined by x2 + y2 = a2 

and x2 + z2 = a2 is V= 16as/3. 

1-36. Find the value of the integral j"s A • da, where A = xi — 3J + zk and 5 is the closed 
surface defined by the cylinder c2 ~ x2 + y2. The top and bottom of the cylinder 
are at z = d and 0, respectively. 

1-37. Find the value of the integral /SA* da, where A = (x2 + y2 + z2) (xi + 3J + zk) and 
the surface S is defined by the sphere R2 = x2 + y2 4- z2. Do the integral direcdy 
and also by using Gauss's theorem. 

1-38. Find the value of the integral (V X A) * da if the vector A = yi + zj + xk and S is 
the surface defined by the paraboloid z = 1 — x2 — y2, where z > 0. 

1-39. A plane passes through the three points (x, y, z) == (1, 0, 0), (0, 2, 0), (0, 0, 3). 
(a) Find a unit vector perpendicular to the plane, (b) Find the distance from the 
point (1, 1, 1) to the closest point of the plane and the coordinates of the closest 
point. 

M0. The height of a hill in meters is given by z ~ 2xy — Sx1 - 4 / - 18x + 28y +12, 
where x is the distance east and y is the distance north of the origin, (a) Where is 
the top of the hill and how high is it? (b) How steep is the hill at x = y = 1, that is, 
what is the angle between a vector perpendicular to the hill and the z axis? (c) In 
which compass direction is the slope at x = y — 1 steepest? 

1-41. For what values of a are the vectors A = 2ai ~ 2j + ak and B = ai + 2aj + 2k 
perpendicular? 



CHAPTER 

Newtonian Mechanics— 
Single Particle 

2.1 Introduction 
The science of mechanics seeks to provide a precise and consistent descrip-
tion of the dynamics of particles and systems of particles, that is, a set of phys-
ical laws mathematically describing the motions of bodies and aggregates of 
bodies. For this, we need certain fundamental concepts such as distance and 
time. The combination of the concepts of distance and time allows us to 
define the velocity and acceleration of a particle. The third fundamental 
concept, mass, requires some elaboration, which we give when we discuss 
Newton's laws. 

Physical laws must be based on experimental fact. We cannot expect a pri-
ori that the gravitational attraction between two bodies must vary exactly as 
the inverse square of the distance between them. But experiment indicates 
that this is so. Once a set of experimental data has been correlated and a pos-
tulate has been formulated regarding the phenomena to which the data refer, 
then various implications can be worked out. If these implications are all veri-
fied by experiment, we may believe that the postulate is generally true. The 
postulate then assumes the status of a physical law. If some experiments dis-
agree with the predictions of the law, the theory must be modified to be con-
sistent with the facts. 

Newton provided us with the fundamental laws of mechanics. We state these 
laws here in modern terms, discuss their meaning, and then derive the implications 

48 
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of the laws in various situations.* But the logical structure of the science of me-
chanics is not straightforward. Our line of reasoning in interpreting Newton's laws 
is not the only one possible.^ We do not pursue in any detail the philosophy of me-
chanics but rather give only sufficient elaboration of Newton's laws to allow us to 
continue with the discussion of classical dynamics. We devote our attention in this 
chapter to the motion of a single particle, leaving systems of particles to be dis-
cussed in Chapters 9 and 11-13. 

2.2 Newton's Laws 
We begin by simply stating in conventional form Newton's laws of mechanics*: 

I. A body remains at rest or in uniform motion unless acted upon by a force. 

II. A body acted upon by a force moves in such a manner that the time rate of change of 
momentum equals the force. 

III. If two bodies exert forces on each other, these forces are equal in magnitude and oppo-
site in direction. 

These laws are so familiar that we sometimes tend to lose sight of their true 
significance (or lack of it) as physical laws. The First Law, for example, is mean-
ingless without the concept of "force," a word Newton used in all three laws. In 
fact, standing alone, the First Law conveys a precise meaning only for zero force; 
that is, a body remaining at rest or in uniform (i.e., unaccelerated, rectilinear) 
motion is subject to no force whatsoever. A body moving in this manner is 
termed a free body (or free particle). The question of the frame of reference 
with respect to which the "uniform motion" is to be measured is discussed in the 
following section. 

In pointing out the lack of content in Newton's First Law, Sir Arthur 
Eddington§ observed, somewhat facetiously, that all the law actually says is that 
"every particle continues in its state of rest or uniform motion in a straight line 

*Truesdell (Tr68) points out that Leonhard Euler (1707-1783) clarified and developed the 
Newtonian concepts. Euler "put most of mechanics into its modern form" and "made mechanics 
simple and easy" (p. 106). 
fErnst Mach (1838-1916) expressed his view in his famous book first published in 1883; E. Mach, Die 
Mechanic in ihrer Entwicklung historisch-kritisch dargestellt [The science of mechanics] (Prague, 1883). 
A translation of a later edition is available (Ma60). Interest ing discussions are also given by 
R. B. Lindsay and H. Margeneau (Li36) and N. Feather (Fe59). 
^Enunciated in 1687 by Sir Isaac Newton (1642-1727) in his Philosophiae naturalis principia mathemat-
ica [Mathematical principles of natural philosophy, normally called Principia] (London, 1687). Previously, 
Galileo (1564—1642) generalized the results of his own mathematical experiments with statements 
equivalent to Newton's First and Second Laws. But Galileo was unable to complete the description of 
dynamics because he did not appreciate the significance of what would become Newton's Third 
Law—and therefore lacked a precise meaning of force. 
§Sir Arthur Eddington (Ed30, p. 124). 
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except insofar as it doesn't." This is hardly fair to Newton, who meant something 
very definite by his statement. But it does emphasize that the First Law by itself 
provides us with only a qualitative notion regarding "force." 

The Second Law provides an explicit statement: Force is related to the time 
rate of change of momentum. Newton appropriately defined momentum (al-
though he used the term quantity of motion) to be the product of mass and veloc-
ity, such that 

p - mv (2.1) 

Therefore, Newton's Second Law can be expressed as 

dp d 
F = = -T<mv> ( 2 ' 2 ) 

at at 

The definition of force becomes complete and precise only when "mass" is de-
fined. Thus the First and Second Laws are not really "laws" in the usual sense; 
rather, they may be considered definitions. Because length, time, and mass are 
concepts normally already understood, we use Newton's First and Second Laws 
as the operational definition of force. Newton's Third Law, however, is indeed a 
law. It is a statement concerning the real physical world and contains all of the 
physics in Newton's laws of motion.* 

We must hasten to add, however, that the Third Law is not a general law of 
nature. The law does apply when the force exerted by one (point) object on an-
other (point) object is directed along the line connecting the objects. Such 
forces are called central forces; the Third Law applies whether a central force is 
attractive or repulsive. Gravitational and electrostatic forces are central forces, 
so Newton's laws can be used in problems involving these types of forces. 
Sometimes, elastic forces (which are actually macroscopic manifestations of mi-
croscopic electrostatic forces) are central. For example, two point objects con-
nected by a straight spring or elastic string are subject to forces that obey the 
Third Law. Any force that depends on the velocities of the interacting bodies is 
noncentral, and the Third Law may not apply. Velocity-dependent forces are 
characteristic of interactions that propagate with finite velocity. Thus the force 
between moving electric charges does not obey the Third Law, because the force 
propagates with the velocity of light. Even the gravitational force between mov-
ing bodies is velocity dependent, but the effect is small and difficult to detect. 
The only observable effect is the precession of the perihelia of the inner planets 
(see Section 8.9). We will return to a discussion of Newton's Third Law in 
Chapter 9. 

To demonstrate the significance of Newton's Third Law, let us paraphrase it 
in the following way, which incorporates the appropriate definition of mass: 

*The reasoning presented here, viz., that the First and Second Laws are actually definitions and that 
the Third Law contains the physics, is not the only possible interpretation. Lindsay and Margenau 
(Li36), for example, present the first two Laws as physical laws and then derive the Third Law as a 
consequence. 
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III'. If two bodies constitute an ideal, isolated system, then the accelerations of these bodies 
are always in opposite directions, and the ratio of the magnitudes of the accelerations 
is constant. This constant ratio is the inverse ratio of the masses of the bodies. 

With this statement, we can give a practical definition of mass and therefore give 
precise meaning to the equations summarizing Newtonian dynamics. For two 
isolated bodies, 1 and 2, the Third Law states that 

Fx = - F 2 (2.3) 
Using the definition of force as given by the Second Law, we have 

dpi dp2 
dt dt 

or, with constant masses, 

(2.4a) 

(2.4b) 

and, because acceleration is the time derivative of velocity, 

m1(al) = m%(~a2) (2.4c) 
Hence, 

m2 ax 

mx a2 
(2.5) 

where the negative sign indicates only that the two acceleration vectors are op-
positely directed. Mass is taken to be a positive quantity. 

We can always select, say, mx as the unit mass. Then, by comparing the ratio 
of accelerations when mx is allowed to interact with any other body, we can de-
termine the mass of the other body. To measure the accelerations, we must have 
appropriate clocks and measuring rods; also, we must choose a suitable coordi-
nate system or reference frame. The question of a "suitable reference frame" is 
discussed in the next section. 

One of the more common methods of determining the mass of an object is 
by weighing—for example, by comparing its weight to that of a standard by 
means of a beam balance. This procedure makes use of the fact that in a gravita-
tional field the weight of a body is just the gravitational force acting on the body; 
that is, Newton's equation F = ma becomes W = mg, where g is the acceleration 
due to gravity. The validity of using this procedure rests on a fundamental as-
sumption: that the mass m appearing in Newton's equation and defined accord-
ing to Statement III' is equal to the mass m that appears in the gravitational force 
equation. These two masses are called the inertial mass and gravitational mass, 
respectively. The definitions may be stated as follows: 

Inertial Mass: That mass determining the acceleration of a body under the action of a 
given force. 

Gravitational Mass: That mass determining the gravitational forces between a body 
and other bodies. 
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Galileo was the first to test the equivalence of inertial and gravitational mass 
in his (perhaps apocryphal) experiment with falling weights at the Tower of Pisa. 
Newton also considered the problem and measured the periods of pendula of 
equal lengths but with bobs of different materials. Neither Newton nor Galileo 
found any difference, but the methods were quite crude.* In 1890 Eotvos* de-
vised an ingenious method to test the equivalence of inertial and gravitational 
masses. Using two objects made of different materials, he compared the effect of 
the Earth's gravitational force (i.e., the weight) with the effect of the inertial 
force caused by the Earth's rotation. The experiment involved a null method 
using a sensitive torsion balance and was therefore highly accurate. More recent 
experiments (notably those of Dicke*), using essentially the same method, have 
improved the accuracy, and we know now that inertial and gravitational mass are 
identical to within a few parts in 1012. This result is considerably important in the 
general theory of relativity.§ The assertion of the exact equality of inertial and 
gravitational mass is termed the principle of equivalence. 

Newton's Third Law is stated in terms of two bodies that constitute an iso-
lated system. It is impossible to achieve such an ideal condition; every body in the 
universe interacts with every other body, although the force of interaction may be 
far too weak to be of any practical importance if great distances are involved. 
Newton avoided the question of how to disentangle the desired effects from all 
the extraneous effects. But this practical difficulty only emphasizes the enormity 
of Newton's assertion made in the Third Law. It is a tribute to the depth of his 
perception and physical insight that the conclusion, based on limited observa-
tions, has successfully borne the test of experiment for 300 years. Only within the 
20th century did measurements of sufficient detail reveal certain discrepancies 
with the predictions of Newtonian theory. The pursuit of these details led to the 
development of relativity theory and quantum mechanics." 

Another interpretation of Newton's Third Law is based on the concept of 
momentum. Rearranging Equation 2.4a gives 

~ (Pi + p2) = 0 

or 

P! + p2 - constant (2.6) 
The statement that momentum is conserved in the isolated interaction of two 
particles is a special case of the more general conservation of linear momen-
tum. Physicists cherish general conservation laws, and the conservation of lin-
ear momentum is believed always to be obeyed. Later we shall modify our defi-

*In Newton's experiment, he could have detected a difference of only one part in 103. 
fRoland von Eotvos (1848-1919), a Hungarian baron; his research in gravitational problems led to 
the development of a gravimeter, which was used in geological studies. 
JP. G. Roll, R. Krotkov, and R H. Dicke, Ann. Phys. (N.Y.) 26, 442 (1964). See also Braginsky and 
Pavov, Sov. Phys.-JETP 34, 463 (1972). 
§See, for example, the discussions by P. G. Bergmann (Be46) and J. Weber (We61). Weber's book 
also provides an analysis of the Eotvos experiment. 
llSee also Section 2.8. 
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nition of momentum from Equation 2.1 for high velocities approaching the 
speed of light. 

2.3 Frames of Reference 
Newton realized that, for the laws of motion to have meaning, the motion of 
bodies must be measured relative to some reference frame. A reference frame is 
called an inertial frame if Newton's laws are indeed valid in that frame; that is, if 
a body subject to no external force moves in a straight line with constant velocity 
(or remains at rest), then the coordinate system establishing this fact is an iner-
tial reference frame. This is a clear-cut operational definition and one that also 
follows from the general theory of relativity. 

If Newton's laws are valid in one reference frame, then they are also valid in 
any reference frame in uniform motion (i.e., not accelerated) with respect to 
the first system.* This is a result of the fact that the equation F = mr involves the 
second time derivative of r: A change of coordinates involving a constant velocity 
does not influence the equation. This result is called Galilean invariance or the 
principle of Newtonian relativity. 

Relativity theory has shown us that the concepts of absolute rest and an ab-
solute inertial reference frame are meaningless. Therefore, even though we con-
ventionally adopt a reference frame described with respect to the "fixed" stars— 
and, indeed, in such a frame the Newtonian equations are valid to a high degree 
of accuracy—such a frame is, in fact, not an absolute inertial frame. We may, 
however, consider the "fixed" stars to define a reference frame that approxi-
mates an "absolute" inertial frame to an extent quite sufficient for our present 
purposes. 

Although the fixed-star reference frame is a conveniently definable system 
and one suitable for many purposes, we must emphasize that the fundamental 
definition of an inertial frame makes no mention of stars, fixed or otherwise. If a 
body subject to no force moves with constant velocity in a certain coordinate sys-
tem, that system is, by definition, an inertial frame. Because precisely describing 
the motion of a real physical object in the real physical world is normally diffi-
cult, we usually resort to idealizations and approximations of varying degree; 
that is, we ordinarily neglect the lesser forces on a body if these forces do not sig-
nificantly affect the body's motion. 

If we wish to describe the motion of, say, a free particle and if we choose for 
this purpose some coordinate system in an inertial frame, then we require that 
the (vector) equation of motion of the particle be independent of the position of 
the origin of the coordinate system and independent of its orientation in space. 
We further require that time be homogeneous; that is, a free particle moving 
with a certain constant velocity in the coordinate system during a certain time 

*In Chapter 10, we discuss the modification of Newton's equations that must be made if it is desired 
to describe the motion of a body with respect to a noninertial frame of reference, that is, a frame that 
is accelerated with respect to an inertial frame. 
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FIGURE 2-1 We choose to describe the path of a free particle moving along the path 
AC in a rectangular coordinate system whose origin moves in a circle. 
Such a system is not an inertial reference frame. 

interval must not, during a later time interval, be found to move with a different 
velocity. 

We can illustrate the importance of these properties by the following exam-
ple. Consider, as in Figure 2-1, a free particle moving along a certain path AC. To 
describe the particle's motion, let us choose a rectangular coordinate system 
whose origin moves in a circle, as shown. For simplicity, we let the orientation of 
the axes be fixed in space. The particle moves with a velocity \p relative to an in-
ertial reference frame. If the coordinate system moves with a linear velocity \ c 
when at the point B, and if vc = vp, then to an observer in the moving coordinate 
system the particle (at A) will appear to be at rest. At some later time, however, 
when the particle is at C and the coordinate system is at D, the particle will ap-
pear to accelerate with respect to the observer. We must, therefore, conclude 
that the rotating coordinate system does not qualify as an inertial reference 
frame. 

These observations are not sufficient to decide whether time is homoge-
neous. To reach such a conclusion, repeated measurements must be made in 
identical situations at various times; identical results would indicate the homo-
geneity of time. 

Newton's equations do not describe the motion of bodies in noninertial sys-
tems. We can devise a method to describe the motion of a particle by a rotating 
coordinate system, but, as we shall see in Chapter 10, the resulting equations con-
tain several terms that do not appear in the simple Newtonian equation F = ma. 
For the moment, then, we restrict our attention to inertial reference frames to 
describe the dynamics of particles. 
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2.4 The Equation of Motion for a Particle 
Newton's equation F = dp/dt can be expressed alternatively as 

F = —(my) — m— = mr 
dt dt 
_d 
dt 

(2.7) 

if we assume that the mass m does not vary with time. This is a second-order dif-
ferential equation that may be integrated to find r = r(£) if the function F is 
known. Specifying the initial values of r and r = v then allows us to evaluate the 
two arbitrary constants of integration. We then determine the motion of a parti-
cle by the force function F and the initial values of position r and velocity v. 

The force F may be a function of any combination of position, velocity, and 
time and is generally denoted as F(r, v, t). For a given dynamic system, we nor-
mally want to know r and v as a function of time. Solving Equation 2.7 will help 
us do this by solving for r. Applying Equation 2.7 to physical situations is an im-
portant part of mechanics. 

In this chapter, we examine several examples in which the force function is 
known. We begin by looking at simple force functions (either constant or de-
pendent on only one of r, v, and t) in only one spatial dimension as a refresher 
of earlier physics courses. It is important to form good habits in problem solving. 
Here are some useful problem-solving techniques. 

1. Make a sketch of the problem, indicating forces, velocities, and so forth. 
2. Write down the given quantities. 
3. Write down useful equations and what is to be determined. 
4. Strategy and the principles of physics must be used to manipulate the equa-

tions to find the quantity sought. Algebraic manipulations as well as differ-
entiation or integration is usually required. Sometimes numerical calcula-
tions using a computer are the easiest, if not the only, method of solution. 

5. Finally, put in the actual values for the assumed variable names to determine 
the quantity sought. 
Let us first consider the problem of a block sliding on an inclined plane. Let 

the angle of the inclined plane be 6 and the mass of the block be 100 g. The 
sketch of the problem is shown in Figure 2-2a. 

(a) (b) 

FIGURE 2-2 Examples 2.1 and 2.2. 
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EXAMPLE 2.1 

If a block slides without friction down a fixed, inclined plane with 0 = 30°, what 
is the block's acceleration? 

Solution. Two forces act on the block (see Figure 2-2a): the gravitational force Fg. 
and the plane's normal force N pushing upward on the block (no friction in this 
example). The block is constrained to be on the plane, and the only direction the 
block can move is the ^-direction, up and down the plane. We take the + x-direc-
tion to be down the plane. The total force Fnet is constant; Equation 2.7 becomes 

F = F + N r ne t g 

and because Fnet is the net resultant force acting on the block, 
Fnet = mr 

or 
Fg + N = mf (2.8) 

This vector must be applied in two directions: x and y (perpendicular to x). 
The component of force in the ^-direction is zero, because no acceleration oc-
curs in this direction. The force F^ is divided vectorially into its x- and ^-compo-
nents (dashed lines in Figure 2-2a). Equation 2.8 becomes 

y-direction 

-Fg cos 6 + N = 0 (2.9) 

x-direction 

with the required result 

Fg sin 0 = mx (2.10) 

F~ me: sin 6 •• ° • n /i x = — sin 6 — = £ sin 6 m m 

x = g sin(30°) = | = 4.9 m/s2 (2.11) 

Therefore the acceleration of the block is a constant. 
We can find the velocity of the block after it moves from rest a distance x0 

down the plane by multiplying Equation 2.11 by 2x and integrating 

2xx = 2xg sin 0 
d 0 dx 

- ( * * ) = 2s s i n * -

rvl rxo 
d(x2) = 2gs in0 dx 

Jo Jo 
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At t = 0, both x = x = 0, and, at t = Jfmal, x = x0, and the velocity x = t/0. 

vl = 2g sin 6 x0 

v0 — V2g sin 6 x0 

EXAMPLE 2.2 

If the coefficient of static friction between the block and plane in the previous 
example is fxs = 0.4, at what angle 0 will the block start sliding if it is initially at 
rest? 

Solution. We need a new sketch to indicate the additional frictional force / (see 
Figure 2-2b). The static frictional force has the approximate maximum value 

/max = HsN (2.12) 

and Equation 2.7 becomes, in component form, 

y-direction 
—i^cos Q + N = 0 (2.13) 

x-direction 
- f 5 + FgSin 6 - mx (2.14) 

The static frictional force fs will be some value fs ^ fmax required to keep x = 0 
—that is, to keep the block at rest. However, as the angle 0 of the plane in-
creases, eventually the static frictional force will be unable to keep the block at 
rest. At that angle 0', fs becomes 

fs(0 = 0') = /max - psN - fisFg cos 0 
and 

mx = Fg sin 6 - fmax 

mx = Fg sin 6 — /JLsFg cos d (2.15) 

x = g(sin 6 — fxs cos 0) 
Just before the block starts to slide, the acceleration x = 0, so 

sin 6 — /jls cos 0 = 0 
tan 6 = f i s = 0.4 

6 = t an - 1 (0.4) = 22° 

EXAMPLE 2.3 

After the block in the previous example begins to slide, the coefficient of ki-
netic (sliding) friction becomes fJLk = 0.3. Find the acceleration for the angle 
0 = 30°. 



58 2 / NEWTONIAN MECHANICS—SINGLE PARTICLE 

Solution. Similarly to Example 2.2, the kinetic friction becomes (approxi-
mately) 

fk = p,kN= tikFgcos0 (2.16) 
and 

mx = Fgs'm 9 — fk = mg (sin 9 — /jik cos 9) (2.17) 

x = g (sin 6 - fik cos 9) = 0.24 g (2.18) 

Generally, the force of static friction (fmax = /^JV) is greater than that of 
kinetic friction (fk = ^ iV) . This can be observed in a simple experiment. If we 
lower the angle 0 below 16.7°, we find that x < 0, and the block eventually 
stops. If we raise the block back up above 0 = 16.7°, we find that the block does 
not start sliding again until 9 > 22° (Example 2.2). The static friction deter-
mines when it starts moving again. There is not a discontinuous acceleration as 
the block starts moving, because of the difference between jxs and fxk. For small 
speeds, the coefficient of friction changes rather quickly from fis to /JLk. 

The subject of friction is still an interesting and important area of research. 
There are still surprises. For example, even though we calculate the absolute 
value of the frictional force as / = /jlN, research has shown that the frictional 
force is directly proportional, not to the load, but to the microscopic area of 
contact between the two objects (as opposed to the apparent contact area). We 
use fiNas an approximation because, as iVincreases, so does the actual contact 
area on a microscopic level. For hundreds of years before the 1940s, it was ac-
cepted that the load—and not the area—was directly responsible. We also be-
lieve that the static frictional force is larger than that of kinetic friction because 
the bonding of atoms between the two objects does not have as much time to 
develop in kinetic motion. 

Effects of Retarding Forces 
We should emphasize that the force F in Equation 2.7 is not necessarily constant, 
and indeed, it may consist of several distinct parts, as seen in the previous exam-
ples. For example, if a particle falls in a constant gravitational field, the gravita-
tional force is Fg. = mg, where g is the acceleration of gravity. If, in addition, a 
retarding force Fr exists that is some function of the instantaneous speed, then 
the total force is 

F = F, + ¥ r 
(2.19) 

= mg 4- Fr( v) 

It is frequently sufficient to consider that Fr(t/) is simply proportional to some 
power of the speed. In general, real retarding forces are more complicated, but 
the power-law approximation is useful in many instances in which the speed 
does not vary greatly. Even more to the point, if Fr oc vn

y then the equation of 
motion can usually be integrated directly, whereas, if the true velocity depend-
ence were used, numerical integration would probably be necessary. With the 
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power-law approximation, we can then write 

(2.20) 

where k is a positive constant that specifies the strength of the retarding force 
and where \ / v is a unit vector in the direction of v. Experimentally, we find 
that, for a relatively small object moving in air, n = 1 for velocities less than 
about 24 m/s (~ 80 ft /s) . For higher velocities but below the velocity of sound 
(~ 330 m / s or 1,100 f t /s) , the retarding force is approximately proportional to 
the square of the velocity.* For simplicity, the v2 dependence is usually taken 
for speeds up to the speed of sound. 

The effect of air resistance is important for a ping-pong ball smashed to an 
opponent, a high-flying softball hit deep to the outfield, a golfer's chip shot, and 
a mortar shell lofted against an enemy. Extensive tabulations have been made 
for military ballistics of projectiles of various sorts for the velocity as a function of 
flight time. There are several forces on an actual projectile in flight. The air re-
sistance force is called the drag W and is opposite to the projectile's velocity as 
shown in Figure 2-3a. The velocity v is normally not along the symmetry axis of 
the shell. The component of force acting perpendicular to the drag is called the 
lift ha. There may also be various other forces due to the projectile's spin and os-
cillation, and a calculation of a projectile's ballistic trajectory is quite complex. 
The Prandtl expression for the air resistance* is 

where cw is the dimensionless drag coefficient, p is the air density, v is the veloc-
ity, and A is the cross-sectional area of the object (projectile) measured perpen-
dicularly to the velocity. In Figure 2-3b, we plot some typical values for cw, and in 
Figures 2-3c and d we display the calculated air resistance Wusing Equation 2.21 
for a projectile diameter of 10 cm and using the values of cw shown. The air re-
sistance increases dramatically near the speed of sound (Mach number M = 
speed/speed of sound). Below speeds of about 400 m/s it is evident that an 
equation of at least second degree is necessary to describe the resistive force. For 
higher speeds, the retarding force varies approximately linearly with speed. 

Several examples of the motion of a particle subjected to various forces are 
given below. These examples are particularly good to begin computer calcula-
tions using any of the available commercial math programs and spreadsheets or 
for the students to write their own programs. The computer results, especially 
the plots, can often be compared with the analytical results presented here. 
Some of the figures shown in this section were produced using a computer, and 

*The motion of a particle in a medium in which there is a resisting force proportional to the speed 
or to the square of the speed (or to a linear combination of the two) was examined by Newton in his 
Principia (1687). The extension to any power of the speed was made byjohann Bernoulli in 1711. 
The term Stokes' law of resistance is sometimes applied to a resisting force proportional to the speed; 
Newton's law of resistance is a retarding force proportional to the square of the speed. 
fSee the article by E. Melchior and M. Reuschel in Handbook on Weaponry (Rh82, p. 137). 

W = ~cwpAv , 2 (2.21) 
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FIGURE 2-3 (a) Aerodynamic forces acting on projectile. W is the drag (air resistive 
force) and is opposite the velocity of the projectile v. Notice that v may 
be at an angle a from the symmetry axis of projectile. The component 
of force acting perpendicular to the drag is called the lift Lfl. The point 
Dis the center of pressure. Finally, the gravitational force Fg acts down. 
If the center of pressure is not at the projectile's center of mass, there is 
also a torque about the center of mass, (b) The drag coefficient cw, 
from the Rheinmetall resistance law (Rh82), is plotted versus the Mach 
number M. Notice the large change near the speed of sound where 
M = 1. (c) The air resistive force W(drag) is shown as a function of 
velocity for a projectile diameter of 10 cm. Notice the inflection near 
the speed of sound, (d) Same as (c) for higher velocities. 

several end-of-chapter problems are meant to develop the student's computer 
experience if so desired by the instructor or student. 

EXAMPLE 2.4 

As the simplest example of the resisted motion of a particle, find the displace-
ment and velocity of horizontal motion in a medium in which the retarding 
force is proportional to the velocity. 

Solution. A sketch of the problem is shown in Figure 2-4. The Newtonian equa-
tion F ~ ma provides us with the equation of motion: 



2.4 THE EQUATION OF MOTION FOR A PARTICLE 61 

VO 

• < Resisting force F = kmv 

FIGURE 2-4 Example 2.4. 

x-direction 

dv 
ma = m— = ~ kmv (2.22) 

dt 

where kmv is the magnitude of the resisting force (k = constant). We are not 
implying by this form that the retarding force depends on the mass m; this form 
simply makes the math easier. Then 

dt (2.23) £ - 1 
\nv = -hi + Q 

The integration constant in Equation 2.23 can be evaluated if we prescribe the 
initial condition v(t = 0) = v0. The Q = In v0, and 

v = vQe~kt ' (2.24) 

We can integrate this equation to obtain the displacement x as a function of 
time: 

d x -kt v = — = v0e Rt 

dt 

x = v0^e~ktdt = + C2 (2.25a) 

The initial condition = 0) = 0 implies C2 = vQ/k, Therefore 

x = —(1 - e~kt) (2.25b) 
k 

This result shows that x asymptotically approaches the value v0/k as t—> oo. 
We can also obtain the velocity as a function of displacement by writing 

dv _ dv dt _ dv 1 
dx dt dx dt v 

so that 
dv dv 

v— = — = -kv 
dx dt 

or 
dv 
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from which we find, by using the same initial conditions, 

v0- kx (2.26) 

Therefore, the velocity decreases linearly with displacement. 

EXAMPLE 2.5 

Find the displacement and velocity of a particle undergoing vertical motion in a 
medium having a retarding force proportional to the velocity. 

Solution. Let us consider that the particle is falling downward with an initial 
velocity v0 from a height h in a constant gravitational field (Figure 2-5). The 
equation of motion is 

i-direction 

F = ra — = —mg-— kmv 
dt 5 (2.27) 

where — kmv represents a positive upward force since we take z and v = z to be 
positive upward, and the motion is downward—that is, v < 0, so that —kmv > 0. 
From Equation 2.27, we have 

dv 
T ^ = - d t (2-28) kv + g 

Integrating Equation 2.28 and setting v(t — 0) = v0, we have (noting that v0 < 0) 

1 -\n(kv + g) = -t + c 
n 

— „-kt + kc kv + g = € 

dz 
V dt k + 

g , K + g kt (2.29) 

V0 

Gravitational force = mg 

Resisting force = kmv 

FIGURE 2-5 Example 2.5. 
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Terminal speed, \ t 

Time 

FIGURE 2-6 Results for Example 2.5 indicating the downward speeds for various 
initial speeds v0 as they approach the terminal velocity. 

Integrating once more and evaluating the constant by setting z(t — 0) = hy we 
find 

gt kv o + 
z= h- ,2 - e~ ) • (2.30) k k* 

Equation 2.29 shows that as the time becomes very long, the velocity ap-
proaches the limiting value —g/k; this is called the terminal velocity, vt. 
Equation 2.27 yields the same result, because the force will vanish—and hence 
no further acceleration will occur—when v = —g/k. If the initial velocity ex-
ceeds the terminal velocity in magnitude, then the body immediately begins to 
slow down and v approaches the terminal speed from the opposite direction. 
Figure 2-6 illustrates these results for the downward speeds (positive values). 

EXAMPLE 2.6 

Next, we treat projectile motion in two dimensions, first without considering air 
resistance. Let the muzzle velocity of the projectile be v0 and the angle of eleva-
tion be 6 (Figure 2-7). Calculate the projectile's displacement, velocity, and range. 

Solution, Using F = mg, the force components become 

x-direction 

0 = mx (2.31a) 

y-direction 

— mg = my (2.31b) 



64 2 / NEWTONIAN MECHANICS—SINGLE PARTICLE 

FIGURE 2-7 Example 2.6. 

Neglect the height of the gun, and assume x = )? = 0 a t £ = 0 . Then 

3c — 0 

x = v0 COS 6 

x = v0t cos 6 

and 

(2.32) 

y = -g 

y = —gt + v0 sin 6 
-gt2 

y = + v0t sin 0 

The speed and total displacement as functions of time are found to be 

v = Vx2 + y2 = (wjj + g2t2 - 2v0gt sin 0)l/2 

and 
2,2 

r = V x 2 + y2 = ivlt2 + - v0gt3 sin fl) 
\l/2 

(2.33) 

(2.34) 

(2.35) 

We can find the range by determining the value of x when the projectile falls 
back to ground, that is, when y = 0. 

y = { ( - f + *>osin0j = 0 

One value of )' = 0 occurs for t= 0 and the other one for t= T. 

-gT 

(2.36) 

+ v0 sin 9 = 0 

T = 
2v0 sin 6 

g (2.37) 
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The range R is found from 

2v2 

x(t= T) = range = —2 sin 0 cos 0 (2.38) 
S 

vl R = range = — sin 20 (2.39) 
s 

Notice that the maximum range occurs for 0 = 45°. 
Let us use some actual numbers in these calculations. The Germans used a 

long-range gun named Big Bertha in World War I to bombard Paris. Its muzzle 
velocity was 1,450 m/s. Find its predicted range, maximum projectile height, 
and projectile time of flight if 0 = 55°. We have u0 = 1450 m/s and 0 = 55°, so 
the range (from Equation 2.39) becomes 

(1450 m/s)2 
R = q q / 2 [sin(110°)] = 202 km 

9.8 m/s* 

Big Bertha's actual range was 120 km. The difference is a result of the real 
effect of air resistance. 

To find the maximum predicted height, we need to calculated y for the 
time 7/2 where Tis the projectile time of flight: 

(2) (1450 m/s) (sin55°) 
9.8 m/s2 ^ S 

( T\ ~gT2 v0T . 
Vax^ = g ) = — + -J- sm 6 

_ - (9 .8 m/s)(242 s)2 (1450 m/s)(242 s) sin(55°) 
8 + 2 

= 72 km 

EXAMPLE 2.7 

Next, we add the effect of air resistance to the motion of the projectile in the 
previous example. Calculate the decrease in range under the assumption that 
the force caused by air resistance is directly proportional to the projectile's 
velocity. 

Solution. The initial conditions are the same as in the previous example. 

x(t = 0) = 0 = y(t = 0)
 > 

x(t - 0) - v0 cos 0 = U > (2.40) 
y(t = 0) = v0 sin 0 = V j 

However, the equations of motion, Equation 2.31, become 

mx = —kmx (2.41) 
my — —kmy ~ mg (2.42) 
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Equation 2.41 is exactly that used in Example 2.4. The solution is therefore 

*= - ( 1 - e~kt) (2.43) 
k 

Similarly, Equation 2.42 is the same as the equation of the motion in Example 
2.5. We can use the solution found in that example by letting h = 0. (The fact 
that we considered the particle to be projected downward in Example 2.5 is of no 
consequence. The sign of the initial velocity automatically takes this into ac-
count.) Therefore 

gt kV+g 
y = * 0 ( 2 , 4 4 ) 

The trajectory is shown in Figure 2-8 for several values of the retarding force 
constant k for a given projectile flight. 

The range R', which is the range including air resistance, can be found as 
previously by calculating the time T required for the entire trajectory and then 
substituting this value into Equation 2.43 for x. The time T is found as previ-
ously by finding t — Twhen y = 0. From Equation 2.44, we find 

kV+S T= — - e~kT) (2.45) 
gk 

This is a transcendental equation, and therefore we cannot obtain an analytic 
expression for T. Nonetheless, we still have powerful methods to use to solve 

1.5 
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FIGURE 2-8 T h e calculated trajectories of a particle in air resistance (Fres = —kmv) 
for various values of k (in units of s"1) . T h e calculations were p e r f o r m e d 
for values of 6 = 60° a n d v 0 = 600 m / s . T h e values of y (Equat ion 2.44) 
are p lot ted versus x (Equat ion 2.43). 
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such problems. We present two of them here: (1) a perturbation method to find an 
approximate solution, and (2) a numerical method, which can normally be as ac-
curate as desired. We will compare the results. 

Perturbation Method To use the perturbation method, we find an expansion pa-
rameter or coupling constant that is normally small. In the present case, this param-
eter is the retarding force constant k, because we have already solved the present 
problem with k = 0, and now we would like to turn on the retarding force, but 
let k be small. We therefore expand the exponential term of Equation 2.45 (see 
Equation D.34 of Appendix D) in a power series with the intention of keeping 
only the lowest terms of kn, where k is our expansion parameter. 

kV+ g( 1 1 \ 
T= —kT k2T2 + -k5T$ — ••• (2.46) 

gk V 2 6 J 

If we keep only terms in the expansion through fc3, this equation can be re-
arranged to yield 

2Wg 1 0 

We now have the expansion parameter k in the denominator of the first term on 
the right-hand side of this equation. We need to expand this term in a power se-
ries (Taylor series, see Equation D.8 of Appendix D): 

1 = 1 " (kV/g) + (kV/g)2 - ••• (2.48) 1 + kV/g 

where we have kept only terms through k2, because we only have terms through 
k in Equation 2.47. If we insert this expansion of Equation 2.48 into the first 
term on the right-hand side of Equation 2.47 and keep only the terms in k to first 
order, we have 

2V2\ — J k + 0(k2) (2.49) 

where we choose to neglect 0(&2), the terms of order k2 and higher. In the limit 
k —> 0 (no air resistance), Equation 2.49 gives us the same result as in the previ-
ous example: 

2V 2v0 sin 6 
T(k = 0) = r0 = — = ~ 

Therefore, if k is small (but nonvanishing), the flight time will be approximately 
equal to T0. If we then use this approximate value for T — T0 in the right-hand 
side of Equation 2.49, we have 

which is the desired approximate expression for the flight time. 
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Next, we write the equation for x (Equation 2.43) in expanded form: 

x = - | k2t2 + ^ khs - •• • ^ (2.51) 

Because x(t = 7") = we have approximately for the range 

Rf = ui^T-^kT2^ (2.52) 

where again we keep terms only through the first order of k. We can now evalu-
ate this expression by using the value of Tfrom Equation 2.50. If we retain only 
terms linear in k, we find 

The quantity 2 UV/gcan now be written (using Equations 2.40) as 

2UV 2 v2
0 vl 

= — sin 0 cos 0 = — sin 20 = R (2.54) 
g g g 

which will be recognized as the range R of the projectile when air resistance is 
neglected. Therefore 

( 4kV\ 

Over what range of values for k would we expect our perturbation method to be 
correct? If we look at the expansion in Equation 2.48, we see that the expansion 
will not converge unless kV/g < 1 or k < g/V, and in fact, we would like k 
g/V= g/(vo sin 0). 

Numerical Method Equation 2.45 can be solved numerically using a computer 
by a variety of methods. We set up a loop to solve the equation for T for many 
values of k up to 0.08 s - 1 : Ti(kt). These values of T{ and k{ are inserted into 
Equation 2.43 to find the range R[, which is displayed in Figure 2-9. The range 
drops rapidly for increased air resistance, just as one would expect, but it does 
not display the linear dependence suggested by the perturbation method solu-
tion of Equation 2.55. 

For the projectile motion described in Figures 2-8 and 2-9, the linear ap-
proximation is inaccurate for k values as low as 0.01 s _ 1 and incorrectly shows 
the range is zero for all values of k larger than 0.014 s"1. This disagreement with 
the perturbation method is not surprising because the linear result for the range 
Rf was dependent on k g/(v0 sin 0) = 0.02 s~ \ which is hardly true for even 
k = 0.01 s"1. The agreement should be adequate for k = 0.005 s - 1 . The results 
shown in Figure 2-8 indicate that for values of k > 0.005 s"1, the drag can hardly 
be considered a perturbation. In fact, for k > 0.01 s _ 1 the drag becomes the 
dominant factor in the projectile motion. 



2.4 THE EQUATION OF MOTION FOR A PARTICLE 69 

Retarding force constant, k (s 
FIGURE 2-9 The range values calculated approximately and numerically for the 

projectile data given in Figure 2-8 are plotted as a funct ion of the 
retarding force constant k. 

The previous example indicates how complicated the real world can be. In that 
example, we still had to make assumptions that were nonphysical—in assuming, 
for example, that the retarding force is always linearly proportional to the veloc-
ity. Even our numerical calculation is not accurate, because Figure 2-3 shows us 
that a better assumption would be to include a v2 retarding term as well. 
Adding such a term would not be difficult with the numerical calculation, and 
we shall do a similar calculation in the next example. We have included the au-
thor's Mathcad file that produced Figures 2-8 and 2-9 in Appendix H for those 
students who might want to reproduce the calculation. We emphasize that there 
are many ways to perform numerical calculations with computers, and the stu-
dent will probably want to become proficient with several. 

EXAMPLE 2.8 

Use the data shown in Figure 2-3 to calculate the trajectory for an actual pro-
jectile. Assume a muzzle velocity of 600 m/s, gun elevation of 45°, and a pro-
jectile mass of 30 kg. Plot the height y versus the horizontal distance x and 
plot y, x, and y versus time both with and without air resistance. Include only 
the air resistance and gravity, and ignore other possible forces such as the 
lift. 

Solution. First, we make a table of retarding force versus velocity by reading 
Figure 2-3. Read the force every 50 m/s for Figure 2-3c and every 100 m/s for 
Figure 2-3d. We can then use a straight line interpolation between the tabular 
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values. We use the coordinate system shown in Figure 2-7. The equations of 
motion become 

Fx x = — 5 (2.56) m 

y = - F i - g (2.57) 

where Fx and Fy are the retarding forces. Assume g is constant. Fx will always be a 
positive number, but Fy > 0 for the projectile going up, and Fy < 0 for the pro-
jectile coming back down. Let 6 be the projectile's elevation angle from the hor-
izontal at any instant. 

v - V x 2 + f (2.58) 

tan 6 = ~ (2.59) 
x 

Fx = F cos 6 (2.60) 

Fy — F sin 6 (2.61) 

We can calculate Fx and Fy at any instant by knowing x and y. Over a small time 
interval, the next x and y can be calculated. 

dt + v0 cos 6 (2.62) 

(2.63) 

(2.64) 

(2.65) 

We wrote a short computer program to contain our table for the retarding 
forces and to perform the calculations for x, y, x, and y as a function of time. We 
must perform the integrals by summations over small time intervals, because 
the forces are time dependent. Figure 2-10 shows the results. 

Notice the large difference that the air resistance makes. In Figure 2-10a, 
the horizontal distance (range) that the projectile travels is about 16 km com-
pared to almost 37 km with no air resistance. Our calculation ignored the fact 
that the air density depends on the altitude. If we take account of the decrease 
in the air density with altitude, we obtain the third curve with a range of 18 km 
shown in Figure 2-10a. If we also included the lift, the range would be still 
greater. Notice that the change in velocities in Figures 2-10c and 2-1 Od mirror 
the air resistive force of Figure 2-3. The speeds decrease rapidly until the speed 
reaches the speed of sound, and then the rate of change of the speeds levels off 
somewhat. 
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The results of Example 2.8. The solid lines are the results if no air resis-
tance is included, whereas the dashed lines include the results of adding 
the air resistive force. In (a) we also include the effect of the air density 
dependence, which becomes smaller as the projectile rises higher. 

This concludes our subsection on the effects of retarding forces. Much more 
could be done to include realistic effects, but the method is clear. Normally, one ef-
fect is added at a time, and the results are analyzed before another effect is added. 

Other Examples of Dynamics 
We conclude this section with two additional standard examples of dynamical 
particle-like behavior. 

EXAMPLE 2.9 

Atwood's machine consists of a smooth pulley with two masses suspended from 
a light string at each end (Figure 2-11). Find the acceleration of the masses and 
the tension of the string (a) when the pulley center is at rest and (b) when the 
pulley is descending in an elevator with constant acceleration a. 
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Solution. We neglect the mass of the string and assume that the pulley is 
smooth—that is, no friction on the string. The tension Tmust be the same 
throughout the string. The equations of motion become, for each mass, for 
case (a), 

mxxx — m}g — T (2.66) 
m2x — m2g ~ T (2.67) 

Notice again the advantage of the force concept: We need only identify the 
forces acting on each mass. The tension Tis the same in both equations. If 
the string is inextensible, then and Equations 2.66 and 2.67 may be 
combined 

m^ — mig— (m2g — m2x2) 
= mxg - {m2g + m2xx) 

Rearranging, 
g{m] — m2) x} = = — x2 (2.68) 

m1 + m2 

If m1 > m2, then x} > 0, and < 0. The tension can be obtained from 
Equations 2.68 and 2.66: 

T = mxg — m{xx 

(wii — m2) T= mxg~ mxg 
mx + m2 

T = (2.69) 
mx 4- m 2 
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For case (b), in which the pulley is in an elevator, the coordinate system 
with origins at the pulley center is no longer an inertial system. We need an in-
ertial system with the origin at the top of the elevator shaft (Figure 2-1 lb). The 
equations of motion in the inertial system (x'[ = x[ + x^ x\ = x^ + x2) are 

miXi — mx(x{ + 3cx) = m\g — T 
m2x 2 = + x2) = m2g — T 

so 

miXi = rriig — T — mxx[ = m{(g — a) — 
m2x2 = m2g — T — m2x 2 = m2(g 

- a ) - T l 
- a) - T) , _ , , „ , (2.70) 

where .V'! = x-, = a. We have x2 = x,, so we solve for x, as before by eliminat-
ing T: 

(m | — ot2) 

Xi = -*=(g- «) ' (2-71) m{ + m2 

and 

2m]m2(g — a) 
T= ^ (2.72) 

mi + m2 

Notice that the results for the acceleration and tension are just as if the acceler-
ation of gravity were reduced by the amount of the elevator acceleration a. 
The change for an ascending elevator should be obvious. 

EXAMPLE 2.10 

In our last example in this lengthy review of the equations of motion for a parti-
cle, let us examine particle motion in an electromagnetic field. Consider a 
charged particle entering a region of uniform magnetic field B—for example, 
the earth's field—as shown in Figure 2-12. Determine its subsequent motion. 

Solution. Choose a Cartesian coordinate system with its y-axis parallel to the 
magnetic field. If </is the charge on the particle, v its velocity, a its acceleration, 
and B the earth's magnetic field, then 

v = xi + j>j + zk 
a = xi + yj + zk 

B = £ 0 j 

The magnetic force F = qy X B = raa, so 

m(xi + jfj + zk) = q(xi + j j + zk) X 5 0 j = qB0(xk — zi) 



74 2 / NEWTONIAN MECHANICS—SINGLE PARTICLE 
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Subsequent 
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B 

FIGURE 2-12 Example 2.10; a moving particle enters a region of magnet ic field. 

Equating like vector components gives 

mx = — qB{}z 
my = 0 
mz = qB0x 

(2.73) 

Integrating the second of these equations, my = 0, yields 

y = h 

where y0 is a constant and is the initial value of y. Integrating a second time gives 

y = yot + yo 

where y0 is also a constant. 
To integrate the first and last equations of Equation 2.73, let a = qBJm, so 

that 

x — —ai 1 
z = ax J (2.74) 

These coupled, simultaneous differential equations can be easily uncoupled by 
differentiating one and substituting it into the other, giving 

so that 

z = ax = — a*z 
x — ~az = —a*x 

z = —a2z 1 
»•« 9 > I x = ~a4x J 

(2.75) 
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Both of these differential equations have the same form of solution. Using the 
technique of Example C.2 of Appendix C, we have 

x = A cos at + B sin at + x0 

z — A' cos at + B' sin at + z0 

where A, A\ By B\ x0, and z0 are constants of integration that are determined by 
the particle's initial position and velocity and by the equations of motion, 
Equation 2.74. These solutions can be rewritten 

\ 

(x — x0) = A cos at + B sin at 
(y ~ y0) = V (2.76) 
(z — z0) = A' cos at + Br sin at4 

The x- and z-coordinates are connected by Equation 2.74, so substituting 
Equations 2.76 into the first equation of Equation 2.74 gives 

-a2A cos at — a2B sin at = sin at + aB' cos at) (2.77) 

Because Equation 2.77 is valid for all t, in particular t = 0 and t — ir/2a, 
Equation 2.77 yields 

so that 

and 

gives 

We now have 

—a2A - ~a2B' 

A = Bf 

~a2B = a2A' 

B = —A' 

(x — x0) = A cos at + B sin at 
(y ~ yo) = % t 
(z — z0) = —B cos at + A sin at j 

(2.78) 

If at t = 0, z = z0 and x ~ 0, then from Equation 2.78, differentiating and set-
ting t = 0 gives 

aB = 0 

and 

aA = z0 
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SO 

(x — x0) = — cos at a 

(y yo) = yo* 
z0 (z — z0) = — sin a£ a 

Finally, 

X Xq 

(y - yo) = yot 

(z ~ z0) = 

> (2.79) 

These are the parametric equations of a circular helix of radius z0m/qB0. Thus, 
the faster the particle enters the field or the greater its mass, the larger the 
radius of the helix. And the greater the charge on the particle or the stronger 
the magnetic field, the tighter the helix. Nodce also how the charged particle is 
captured by the magnetic field—just drifting along the field direction. In this 
example, the particle had no initial component of its velocity along the x-axis, 
but even if it had it would not drift along this axis (see Problem 2-31). Finally, 
notice that the magnetic force on the particle always acts perpendicular to its 
velocity and hence cannot speed it up. Equation 2.79 verifies this fact 

The earth's magnetic field is not as simple as the uniform field of this exam-
ple. Nevertheless, this example gives some insight into one of the mechanisms by 
which the earth's magnetic field traps low-energy cosmic rays and the solar wind to 
create the Van Allen belts. 

2.5 Conservation Theorems 
We now turn to a detailed discussion of the Newtonian mechanics of a single 
particle and derive the important theorems regarding conserved quantities. We 
must emphasize that we are not proving the conservation of the various quanti-
ties. We are merely deriving the consequences of Newton's laws of dynamics. 
These implications must be put to the test of experiment, and their verification 
then supplies a measure of confirmation of the original dynamical laws. The fact 
that these conservation theorems have indeed been found to be valid in many 
instances furnishes an important part of the proof for the correctness of 
Newton's laws, at least in classical physics. 

The first of the conservation theorems concerns the linear momentum of a 
particle. If the particle is free, that is, if the particle encounters no force, then 
Equation 2.2 becomes simply p = 0. Therefore, p is a vector constant in time, 
and the first conservation theorem becomes 
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I. The total linear momentum p of a particle is conserved when the total force on it is 
zero. 

Note that this result is derived from a vector equation, p = 0, and therefore 
applies for each component of the linear momentum. To state the result in 
other terms, we let s be some constant vector such that F • s = 0, independent of 
time. Then 

p • s = F • s = 0 

or, integrating with respect to time, 

p • s = constant (2.80) 

which states that the component of linear momentum in a direction in which the force 
vanishes is constant in time. 

The angular momentum L of a particle with respect to an origin from which 
the position vector r is measured is defined to be 

r X p (2.81) 

The torque or moment of force N with respect to the same origin is defined 
to be 

N = r X F (2.82) 

where r is the position vector from the origin to the point where the force F is 
applied. Because F = m\ for the particle, the torque becomes 

N = r X my — r X p 

Now 

d 

but 

so 

L = - ( r X p) - (r X p) + (r X p) 
at 

r X p = r X m\ = m(r X r) = 0 

r X p = N (2.83) 

If no torques act on a particle (i.e., if N = 0), then L = 0 and L is a vector con-
stant in time. The second important conservation theorem is 

II. The angular momentum of a particle subject to no torque is conserved. 

We remind the student that a judicious choice of the origin of a coordinate 
system will often allow a problem to be solved much more easily than a poor 
choice. For example, the torque will be zero in coordinate systems centered 
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along the resultant line of force. The angular momentum will be conserved in 
this case. 

If work is done on a particle by a force F in transforming the particle from 
Condition 1 to Condition 2, then this work is defined to be 

"2 III CM F • dr 
i 

If F is the net resultant force acting on the particle, 

^ d\ dr d\ 
F • dr — m — • — dt — m — • xdt 

dt dt dt 

(2.84) 

m d s J wd (\ 
2 J t i y - X ) d t = 2 l t i v ) d t = d 2 ™ 

(2.85) 

The integrand in Equation 2.84 is thus an exact differential, and the work done 
by the total force F acting on a particle is equal to its change in kinetic energy: 

2 1 , _ . 
Tj (2.86) W12 — I ~mv = - v\) = T2 

is the kinetic energy of the particle. If Tx > T2 then Wn < 0, where T = |mv2 

and the particle has done work with a resulting decrease in kinetic energy. It is 
important to realize that the force F leading to Equation 2.85 is the total (i.e., 
net resultant) force on the particle. 

Let us now examine the integral appearing in Equation 2.84 from a differ-
ent standpoint. In many physical problems, the force F has the property that the 
work required to move a particle from one position to another without any 
change in kinetic energy depends only on the original and final positions and 
not on the exact path taken by the particle. For example, assume the work done 
to move the particle from point 1 in Figure 2-13 to point 2 is independent of the 
actual paths a, b, or c taken. This property is exhibited, for example, by a con-
stant gravitational force field. Thus, if a particle of mass m is raised through a 
height h (by any path), then an amount of work mgh has been done on the parti-
cle, and the particle can do an equal amount of work in returning to its original 
position. This capacity to do work is called the potential energy of the particle. 

We may define the potential energy of a particle in terms of the work (done 
by the force F) required to transport the particle from a point 1 to a point 2 
(with no net change in kinetic energy): 

r2 
F-dr - - U2 (2.87) 

The work done in moving the particle is thus simply the difference in the poten-
tial energy U at the two points. For example, if we lift a suitcase from position 1 
on the ground to position 2 in a car trunk, we as the external agent are doing 
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t* o 

Origin 

FIGURE 2-13 For some forces (identified later as conservative), the work done by the 
force to move a particle f rom one position 1 to ano ther position 2 is 
i ndependen t of the path (a, b, or c). 

work against the force of gravity. Let the force F in Equation 2.87 be the gravita-
tional force, and in raising the suitcase, F • dr becomes negative. The result of 
the integration in Equation 2.87 is that Ux — U2 is negative, so that the potential 
energy at position 2 in the car's trunk is greater than that at position 1 on the 
ground. The change in potential energy U2 ~ Ul is the negative of the work 
done by the gravitational force, as can be seen by multiplying both sides of 
Equation 2.87 by — 1, As the external agent, we do positive work (against gravity) 
to raise the potential energy of the suitcase. 

Equation 2.87 can be reproduced* if we write F as the gradient of the scalar 
function U: 

F = -grad U= ~VU (2.88) 

Then 

r2 
F • dr = - (VLO -dr = -

r2 
dU= U\ — U2 (2.89) 

In most systems of interest, the potential energy is a function of position 
and, possibly, time: U = £/(r) or U = U(r, t). We do not consider cases in which 
the potential energy is a function of the velocity. + 

It is important to realize that the potential energy is defined only to within an 
additive constant; that is, the force defined by — Vf/is no different from that de-
fined by — V(£/+ constant). Potential energy therefore has no absolute meaning; 
only differences of potential energy are physically meaningful (as in Equation 2.87). 

*The necessary and sufficient condition that permits a vector function to be represented by the gra-
dient of a scalar function is that the curl of the vector function vanishes identically, 
t Velocity-dependent potentials are neccessary in certain situations, e.g., in electromagnetism (the 
so-called Lienard-Wiechert potentials). 
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If we choose a certain inertial frame of reference to describe a mechanical 
process, the laws of motion are the same as in any other reference frame in uni-
form motion relative to the original frame. The velocity of a particle is in general 
different depending on which inertial reference frame we chose as the basis for 
describing the motion. We therefore find that it is impossible to ascribe an ab-
solute kinetic energy to a particle in much the same way that it is impossible to 
assign any absolute meaning to potential energy. Both of these limitations are 
the result of the fact that selecting an origin of the coordinate system used to 
describe physical processes is always arbitrary. The nineteenth-century 
Scottish physicist James Clerk Maxwell (1831-1879) summarized the situation 
as follows.* 

We must, therefore , regard the energy of a material system as a quanti ty of 
which we may ascertain the increase or d iminu t ion as the system passes f r o m 
one defini te condi t ion to another . T h e absolute value of the energy in the stan-
da rd condi t ion is unknown to us, a n d it would be of n o value to us if we did 
know it, as all p h e n o m e n a d e p e n d o n the variations of energy and n o t on its ab-
solute value. 

Next, we define the total energy of a particle to be the sum of the kinetic 
and potential energies: 

T + U (2.90) 

The total time derivative of E is 

dE (IT dU 
— = — + — (2.91) 
dt dt dt 

To evaluate the time derivatives appearing on the right-hand side of this equa-
tion, we first note that Equation 2.85 can be written as 

r-dr= d(±mvA= dT (2.92) 

Dividing through by dt, 

i 

dt ' dt 
= (2.93) 

We have also 

dU _ ^ dUdXi + dU 
dt * dxs dt dt 

VdU dU 
= 2* — X: + 

dxi 1 dt 
5L 
dt 
dU 

= (VU) • r + — (2.94) 

*J. C. Maxwell, Matter and Motion (Cambridge, 1877), p. 91. 
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Substituting Equations 2.93 and 2.94 into 2.91, we find 

dE dU 
— = F r + (VU) -r + — 
dt dt 

= (F + Vt/) -f + — 
dt 

dU 
P = — (2.95) dt 

because the term F + VU vanishes in view of the definition of the potential en-
ergy (Equation 2.88) if the total force is the conservative force F = — VI7. 

If Uis not an explicit function of the time (i.e., if dU/dt = 0; recall that we do 
not consider velocity-dependent potentials), the force field represented by F is 
conservative. Under these conditions, we have the third important conservation 
theorem: 

III. The total energy E of a particle in a conservative force field is a constant in time. 

It must be reiterated that we have not proved the conservation laws of linear 
momentum, angular momentum, and energy. We have only derived various con-
sequences of Newton's laws; that is, if these laws are valid in a certain situation, 
then momentum and energy will be conserved. But we have become so enam-
ored with these conservation theorems that we have elevated them to the .status 
of laws and we have come to insist that they be valid in any physical theory, even 
those that apply to situations in which Newtonian mechanics is not valid, as, for 
example, in the interaction of moving charges or in quantum-mechanical sys-
tems. We do not actually have conservation laws in such situations, but rather 
conservation postulates that we force on the theory. For example, if we have two 
isolated moving electric charges, the electromagnetic forces between them are 
not conservative. We therefore endow the electromagnetic field with a certain 
amount of energy so that energy conservation will be valid. This procedure is sat-
isfactory only if the consequences do not contradict any experimental fact, and 
this is indeed the case for moving charges. We therefore extend the usual con-
cept of energy to include "electromagnetic energy" to satisfy our preconceived 
notion that energy must be conserved. This may seem an arbitrary and drastic 
step to take, but nothing, it is said, succeeds as does success, and these conserva-
tion "laws" have been the most successful set of principles in physics. The refusal 
to relinquish energy and momentum conservation led Wolfgang Pauli 
(1900-1958) to postulate in 1930 the existence of the neutrino to account for 
the "missing" energy and momentum in radioactive decay. This postulate al-
lowed Enrico Fermi (1901-1954) to construct a successful theory of [3 decay in 
1934, but direct observation of the neutrino was not made until 1953 when 
Reines and Cowan performed their famous experiment.* By adhering to the 
conviction that energy and momentum must be conserved, a new elementary 

*C. L. Cowan, F. Reines, F. B. Harrison, H. W. Kruse, and A. D. McGuire, Science 124, 103 (1956). 
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particle was discovered, one that is of great importance in modern theories of 
nuclear and particle physics. This discovery is only one of the many advances in 
the understanding of the properties of matter that have resulted directly from 
the application of the conservation laws. 

We shall apply these conservation theorems to several physical situations in 
the remainder of this book, among them Rutherford scattering and planetary 
motion. A simple example here indicates the usefulness of the conservation 
theorems. 

E X A M P L E 2 . i l 

A mouse of mass m jumps on the outside edge of a freely turning ceiling fan of 
rotational inertia I and radius R. By what ratio does the angular velocity 
change? 

Solution. Angular momentum must be conserved during the process. We are 
using the concept of rotational inertia learned in elementary physics to relate 
angular momentum L to angular velocity (o: L = I(o. The initial angular momen-
tum L0 = Io)0 must be equal to the angular momentum L (fan plus mouse) 
after the mouse jumps on. The velocity of the outside edge is v = o)R. 

L= Ioj + mvR = -(/ + mR?) 
R } 

L= L0 = I(o0 

Vr 

iT ; R 
v 
v0 /+ mR2 

and 

_ I 
(D0 ~~ I + mR2 

2.6 Energy 
The concept of energy was not nearly as popular in Newton's time as it is today. 
Later we shall study two new formulations of dynamics, different from Newton's, 
based on energy—the Lagrangian and Hamiltonian methods. 

Early in the nineteenth century, it became clear that heat was another form 
of energy and not a form of fluid (called "caloric") that flowed between hot and 
cold bodies. Count Rumford* is generally given credit for realizing that the 

*Benjamin Thompson (1753-1814) was born in Massachusetts and emigrated to Europe in 1776 as a 
loyalist refugee. Among the activities of his distinguished military and, later, scientific career, he su-
pervised the boring of cannons as head of the Bavarian war department. 
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great amount of heat generated during the boring of a cannon was caused by 
friction and not the caloric. If frictional energy is just heat energy, interchange-
able with mechanical energy, then a total conservation of energy can occur. 

Throughout the nineteenth century, scientists performed experiments on 
the conservation of energy, resulting in the prominence given energy today. 
Hermann von Helmholtz (1821-1894) formulated the general law of conserva-
tion of energy in 1847. He based his conclusion largely on the calorimetric ex-
periments ofjames PrescottJoule (1818-1889) begun in 1840. 

Consider a point particle under the influence of a conservative force with 
potential U. The conservation of energy (actually, mechanical energy, to be pre-
cise in this case) is reflected in Equation 2.90. 

E = T + U= ~mv2 + U(x) (2.96) 

where we consider only the one-dimensional case. We can rewrite Equation 2.96 
as 

dx / 2 
v(t) =-= ±J^[E- U(x)] (2.97) 

dt V m 

and by integrating 

±dx 
t ~ to = , (2.98) 

k u(x)] 

where x — Xq at t — ̂ o* We have formally solved the one-dimensional case in 
Equation 2.98; that is, we have found x(t). All that remains is to insert the po-
tential U(x) into Equation 2.98 and integrate, using computer techniques if 
necessary. We shall study later in some detail the potentials U = | k x 2 for har-
monic oscillations and U = —k/x for the gravitational force. 

We can learn a good deal about the motion of a particle simply by examin-
ing a plot of an example of U(x) as shown in Figure 2-14. First, notice that, be-
cause ^mv2 = 0, E > U(x) for any real physical motion. We see in Figure 2-14 
that the motion is bounded for energies Ex and E2. For Ex> the motion is periodic 
between the turning points xa and xb. Similarly, for E2 the motion is periodic, but 
there are two possible regions: < x ^ xd and ^ < * < Xf. The particle cannot 
"jump" from one "pocket" to the other; once in a pocket, it must remain there 
forever if its energy remains at The motion for a particle with energy E0 has 
only one value, x = xQ. The particle is at rest with T = 0 [E0 — U(x0)]. 

The motion for a particle with energy E$ is simple: The particle comes in 
from infinity, stops and turns at x = xg, and returns to infinity—much like a ten-
nis ball bouncing against a practice wall. For the energy E4) the motion is un-
bounded and the particle may be at any position. Its speed will change because it 
depends on the difference between E4 and U(x). If it is moving to the right, it 
will speed up and slow down but continue to infinity. 
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U(x) 

FIGURE 2-14 Potential energy U(x) curve with various energies Vindicated. For 
certain energies, for example and E2, the motion is bounded. 

The motion of a particle of energy Ex is similar to that of a mass at the end 
of a spring. The potential in the region xa < x < xb can be approximated by 
U(x) =~k(x- Xq)2. A particle with energy barely above E0 will oscillate about the 
point x - x0. We refer to such a point as an equilibrium point, because if the par-
ticle is placed at x = x0 it remains there. Equilibrium may be stable, unstable, or 
neutral. The equilibrium just discussed is stable because if the particle were 
placed on either side of x ~ x0 it would eventually return there. We can use a 
hemispherical mixing bowl with a steel ball as an example. With the bowl right 
side up, the ball can roll around inside the bowl; but it will eventually settie to 
the bottom—in other words, there is a stable equilibrium. If we turn the bowl 
upside down and place the ball precisely outside at x = x0, the ball remains there 
in equilibrium. If we place the ball on either side of x = x0 on the rounded sur-
face, it rolls off; we call this unstable equilibrium. Neutral equilibrium would apply 
when the ball rolls on a flat, smooth, horizontal surface. 

In general, we can express the potential U(x) in a Taylor series about a 
certain equilibrium point. For mathematical simplicity, let us assume that the 
equilibrium point is at x = 0 rather than X Xq (if not, we can always redefine 
the coordinate system to make it so). Then we have 

(dU\ x2 (d2 u\ xs (ds u\ 
«"> - * + * U J . •+ a U ? ) . + 5 U ? J „ + ' ' ' < 2 ' 9 9 ) 

The zero subscript indicates that the quantity is to be evaluated at x = 0. The po-
tential energy U0 at x = 0 is simply a constant that we can define to be zero without 
any loss of generality. If x = 0 is an equilibrium point, then 
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dU\ 

1—1 = 0 Equilibrium point (2.100) 

and Equation 2.99 becomes x2 (d2U\ xs fdsU\ 

Near the equilibrium point x = 0, the value of x is small, and each term in 
Equation 2.101 is considerably smaller than the previous one. Therefore, we 
keep only the first term in Equation 2.101: 

x2 (d2U\ 

We can determine whether the equilibrium at x — 0 is stable or unstable by 
examining (d2U/dx2)$. If x = 0 is a stable equilibrium, U(x) must be greater 
(more positive) on either side of x = 0. Because x2 is always positive, the con-
ditions for the equilibrium are 

( ~ ~ ) > 0 Stable equilibrium 
\dx J0 (2.103) 

(d2u\ 
I J < 0 Unstable equilibrium 

If (d2U/dx2)o is zero, higher-order terms must be examined (see Problems 2-45 
and 2-46). 

EXAMPLE 2.12 

Consider the system of pulleys, masses, and string shown in Figure 2-15. A light 
string of length b is attached at point A, passes over a pulley at point B located a 
distance 2 d away, and finally attaches to mass m1. Another pulley with mass w2 
attached passes over the string, pulling it down between A and B. Calculate the 
distance xx when the system is in equilibrium, and determine whether the equi-
librium is stable or unstable. The pulleys are massless. 

Solution. We can solve this example by either using forces (i.e., when xx = 0 = 
Xi) or energy. We choose the energy method, because in equilibrium the ki-
netic energy is zero and we need to deal only with the potential energy when 
Equation 2.100 applies. 

We let U= 0 along the line AB. 

U ~ —migxi - m2g(x2 + c) (2.104) 
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B 2d A 

We assume that the pulley holding mass m2 is small, so we can neglect the 
pulley radius. The distance c in Figure 2-15 is constant. 

x 2 = V[(b - x{)2/4} - d2 

U= —migXi — mc2gv[(b — xx)2/4] — d2 — m2gc 

By setting dU/dxx = 0, we can determine the equilibrium position (xx)0 = x0: 

(dU\ , rn2g(b - x0) — = —mxg + j - ~ 0 
\dxJ0 4 V [(ft - x0)2/4] - d2 

4wi V[(6 - x0)2/4] - d2 = m2(b - xQ) 

(b — x0)2(4ml — mf) = 16mfd2 

4mid 

V4m{ — 

Notice that a real solution exists only when 4wf > raf. 
Under what circumstances will the mass m^ pull the mass mx up to the pul-

ley B(i.e., xx — 0)? We can use Equation 2.103 to determine whether the equi-
librium is stable or unstable: 

d2U ~ m2g ^ m2g(b - xx)2 

4{[ (b - xx)2/4] - d2}m 16{[ (b - Xl)2/4] - d2}3/2 

Now insert xx = 

(d*lA _ g(4«? - m j ) ^ 
\dxiJo 4m§d 

The condition for the equilibrium (real motion) previously was for 4mf > m% 
so the equilibrium, when it exists, will be stable, because (d2U/dx2)0 > 0. 
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EXAMPLE 2.13 

Consider the one-dimensional potential 

~Wd2(x2 4- d2) 
^ = ^ + 8d4 (2-106) 

Sketch the potential and discuss the motion at various values of x. Is the motion 
bounded or unbounded? Where are the equilibrium values? Are they stable or 
unstable? Find the turning points for E = — W/8. The value of Wis a positive 
constant 

Solution. Rewrite the potential as 

U{x) " ( / + ! ) 
= -ST = y» + 8

 WhCre >= ~d (2J07) 

First, find the equilibrium points, which will help guide us in sketching the 
potential. 

dZ -2y t 4y V + 1) _ 

This is reduced to 

so 

dy y4 + 8 ( / + 8): 

y(y4 + 2y2 - 8) = 0 
y(y2 4- 4) (y2 - 2) = 0 

yi = 2, o 

x02 = V2 d 
x0$= - V 2 d 

(2.108) 

There are three equilibrium points. We sketch U(x)/W'versus x/d in Figure 2-16. 
The equilibrium is stable at x02 and x03 but unstable at x0l. The motion is 
bounded for all energies E < 0. We can determine turning points for any en-
ergy E by setting E= U{x). 

W ~W(y2 + l) 
E = - - = U(y) = — r r ^ (2.109) 

f + 8 = 8 / + 8 

/ = 8y* 

y = ± 2V2, 0 (2.110) 

The turning points for E = - W/8 are x = —2 V ^ a n d + 2 V 2 d, as well as x — 0 — 
which is the unstable equilibrium point. 
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U(x)/W 

2.7 Limitations of Newtonian Mechanics 
In this chapter, we have introduced such concepts as position, time, momentum, 
and energy. We have implied that these are all measurable quantities and that 
they can be specified with any desired accuracy, depending only on the degree 
of sophistication of our measuring instruments. Indeed, this implication appears 
to be verified by our experience with all macroscopic objects. At any given in-
stant of time, for example, we can measure with great precision the position of, 
say, a planet in its orbit about the sun. A series of such measurements allows us to 
determine (also with great precision) the planet's velocity at any given position. 

When we attempt to make precise measurements on microscopic objects, 
however, we find a fundamental limitation in the accuracy of the results. For 
example, we can conceivably measure the position of an electron by scattering a 
light photon from the electron. The wave character of the photon precludes an 
exact measurement, and we can determine the position of the electron only 
within some uncertainty Ax related to the extent (i.e., the wavelength) of the 
photon. By the very act of measurement, however, we have induced a change in 
the state of the electron, because the scattering of the photon imparts momen-
tum to the electron. This momentum is uncertain by an amount Ajb. The product 
A x Ap is a measure of the precision with which we can simultaneously determine 
the electron's position and momentum; Ax—• 0, Ap —• 0 implies a measurement 
with all imaginable precision. It was shown by the German physicist Werner 
Heisenberg (1901-1976) in 1927 that this product must always be larger than a 
certain minimum value.* We cannot, then, simultaneously specify both the position 

*This result also applies to the measurement of energy at a particular time, in which case the prod-
uct of the uncertainties is AE At (which has the same dimensions as Ax Ap). 
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and momentum of the electron with infinite precision, for if Ax—>0, then we 
must have A p ^ o o for Heisenberg's uncertainty principle to be satisfied. 

The minimum value of Ax Ap is of the order of 10~34J • s. This is extremely 
small by macroscopic standards, so for laboratory-scale objects there is no practi-
cal difficulty in performing simultaneous measurements of position and momen-
tum. Newton's laws can therefore be applied as if position and momentum were 
precisely definable. But because of the uncertainty principle, Newtonian mechan-
ics cannot be applied to microscopic systems. To overcome these fundamental 
difficulties in the Newtonian system, a new method of dealing with microscopic 
phenomena was developed, beginning in 1926. The work of Erwin Schrodinger 
(1887-1961), Heisenberg, Max Born (1872-1970), Paul Dirac (1902-1984), and 
others subsequently placed this new discipline on a firm foundation. Newtonian 
mechanics, then, is perfectly adequate for describing large-scale phenomena. But 
we need the new mechanics (quantum mechanics) to analyze processes in the 
atomic domain. As the size of the system increases, quantum mechanics goes over 
into the limiting form of Newtonian mechanics. 

In addition to the fundamental limitations of Newtonian mechanics as ap-
plied to microscopic objects, there is another inherent difficulty in the 
Newtonian scheme—one that rests on the concept of time. In the Newtonian 
view, time is absolute, that is, it is supposed that it is always possible to determine 
unambiguously whether two events have occurred simultaneously or whether 
one has preceded the other. To decide on the time sequence of events, the two 
observers of the events must be in instantaneous communication,- either 
through some system of signals or by establishing two exactly synchronous clocks 
at the points of observation. But the setting of two clocks into exact synchronism 
requires the knowledge of the time of transit of a signal in one direction from one 
observer to the other. (We could accomplish this if we already had two synchro-
nous clocks, but this is a circular argument.) When we actually measure signal 
velocities, however, we always obtain an average velocity for propagation in oppo-
site directions. And to devise an experiment to measure the velocity in only one 
direction inevitably leads to the introduction of some new assumption that we 
cannot verify before the experiment. 

We know that instantaneous communication by signaling is impossible: 
Interactions between material bodies propagate with finite velocity, and an inter-
action of some sort must occur for a signal to be transmitted. The maximum ve-
locity with which any signal can be propagated is that of light in free space: 
c = 3 x 108 m/s.* 

The difficulties in establishing a time scale between separate points lead us 
to believe that time is, after all, not absolute and that space and time are some-
how intimately related. The solution to the dilemma was found during the pe-
riod 1904-1905 by Hendrik Lorenz (1853-1928), Henri Poincare (1854-1912), 
and Albert Einstein (1879-1955) and is embodied in the special theory of rela-
tivity (see Chapter 14). 

*The speed of light has now been defined to be 299,792,458.0 m/s to make comparisons of other 
measurements more standard. The meter is now defined as the distance traveled by light in a vac-
uum during a time interval of 1/299,792,458 of a second. 
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Newtonian mechanics is therefore subject to fundamental limitations when 
small distances or high velocities are encountered. Difficulties with Newtonian me-
chanics may also occur when massive objects or enormous distances are involved. 
A practical limitation also occurs when the number of bodies constituting the sys-
tem is large. In Chapter 8, we see that we cannot obtain a general solution in 
closed form for the motion of a system of more than two interacting bodies even 
for the relatively simple case of gravitational interaction. To calculate the motion in 
a three-body system, we must resort to a numerical approximation procedure. 
Although such a method is in principle capable of any desired accuracy, the labor 
involved is considerable. The motion in even more complex systems (for exam-
ple, the system composed of all the major objects in the solar system) can like-
wise be computed, but the procedure rapidly becomes too unwieldy to be of 
much use for any larger system. To calculate the motion of the individual mole-
cules in, say, a cubic centimeter of gas containing 1019 molecules is clearly out 
of the question. A successful method of calculating the average properties of such 
systems was developed in the latter part of the nineteenth century by Boltzmann, 
Maxwell, Gibbs, Liouville, and others. These procedures allowed the dynamics 
of systems to be calculated from probability theory, and a statistical mechanics was 
evolved. Some comments regarding the formulation of statistical concepts in 
mechanics are found in Section 7.13. 

PROBLEMS 

2-1. Suppose that the force acting o n a particle is factorable into o n e of the following 
forms: 
(a) F(x{, t) = /(xdgU) (b) FiXi, t) = f(xt)g(t) (c) F(xh xt) = /(*,)£(*,) 
For which cases are the equat ions of mot ion integrable? 

2-2. A particle of mass m is const ra ined to move o n the surface of a sphe re of radius R 
by an applied force F (0 , <f>). Write the equat ion of mot ion . 

2-3. If a projectile is f i red f r o m the origin of the coord ina te system with an initial veloc-
ity v0 and in a direct ion making an angle a with the horizontal , calculate the t ime 
requi red for the projecti le to cross a line passing th rough the origin a n d making an 
angle /3 < a with the horizontal . 

2-4. A clown is juggl ing f o u r balls simultaneously. Students use a video tape to deter-
mine that it takes the clown 0.9 s to cycle each ball t h rough his h a n d s ( including 
catching, t ransferr ing, and throwing) and to be ready to catch the nex t ball. What 
is the m i n i m u m vertical speed the clown must throw u p each ball? 

2-5. A j e t f ighter pilot knows he is able to withstand an accelerat ion of 9 g be fo re black-
ing out. T h e pilot points his p lane vertically down while traveling at Mach 3 speed 
and in tends to pull u p in a circular maneuver be fore crashing into the g round , 
(a) W h e r e does the m a x i m u m accelerat ion occur in the maneuver? (b) What is the 
m i n i m u m radius the pilot can take? 
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2-6. In the blizzard of '88, a rancher was forced to drop hay bales f rom an airplane to 
feed her cattle. The plane flew horizontally at 160 k m / h r and d ropped the bales 
f rom a height of 80 m above the flat range, (a) She wanted the bales of hay to land 
30 m behind the cattle so as to not hit them. Where should she push the bales out 
of the airplane? (b) To not hit the catde, what is the largest time error she could 
make while pushing the bales out of the airplane? Ignore air resistance. 

2-7. Include air resistance for the bales of hay in the previous problem. A bale of hay 
has a mass of about 30 kg and an average area of about 0.2 m2. Let the resistance be 
proport ional to the square of the speed and let cw = 0.8. Plot the trajectories with a 
computer if the hay bales land 30 m behind the cattle for both including air resis-
tance and not . If the bales of hay were released at the same time in the two cases, 
what is the distance between landing positions of the bales? 

2-8. A projectile is fired with a velocity f 0 such that it passes through two points both a 
distance h above the horizontal. Show that if the gun is adjusted for maximum 
range, the separation of the points is 

d = — Vv§ - 4gh 
S 

2-9. Consider a projectile fired vertically in a constant gravitational field. For the same 
initial velocities, compare the times required for the projectile to reach its maxi-
m u m height (a) for zero resisting force, (b) for a resisting force proport ional to the 
instantaneous velocity of the projectile. 

2-10. Repeat Example 2.4 by per fo rming a calculation using a computer to solve 
Equation 2.22. Use the following values: m — 1 kg, v0 = 10 m/s , x0 = 0, and k = 
0.1 s"1 . Make plots of v versus t, xversus t, and vversus x. Compare with the results 
of Example 2.4 to see if your results are reasonable. 

2-11. Consider a particle of mass m whose motion starts f rom rest in a constant gravita-
tional field. If a resisting force proport ional to the square of the velocity (i.e., kmv2) 
is encountered, show that the distance s the particle falls in accelerating f rom v0 to 
f j is given by 

s(v0-+vj) = — In 
_g~ kv?_ 

2-12. A particle is projected vertically upward in a constant gravitational field with an 
initial speed vQ. Show that if there is a re tarding force proport ional to the square 
of the instantaneous speed, the speed of the particle when it re turns to the initial 
position is 

Vr>1 + v\ 

where vt is the terminal speed. 

2-13. A particle moves in a med ium u n d e r the influence of a retarding force equal to 
mk(vs + a2v), where k and a are constants. Show that for any value of the initial 
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speed the particle will never move a distance greater than ir/2ka and that the parti-
cle comes to rest only for t —> oo. 

2-14. A projectile is fired with initial speed v0 at an elevation angle of a up a hill of slope 
P(<*>P). 
(a) How far up the hill will the projectile land? 
(b) At what angle a will the range be a maximum? 
(c) What is the maximum range? 

2-15. A particle of mass m slides down an inclined plane under the influence of gravity. If 
the motion is resisted by a force / = kmv2, show that the time required to move a 
distance d after starting from rest is 

_ cosh_1(^rf) 
VkgsinO 

where 0 is the angle of inclination of the plane. 

2-16. A particle is projected with an initial velocity vQ up a slope that makes an angle a 
with the horizontal. Assume frictionless motion and find the time required for the 
particle to return to its starting position. Find the time for v0 = 2.4 m/s and a = 26°. 

2-17. A strong softball player smacks the ball at a height of 0.7 m above home plate. The 
ball leaves the player's bat at an elevation angle of 35° and travels toward a fence 2 
m high and 60 m away in center field. What must the initial speed of the softball be 
to clear the center field fence? Ignore air resistance. 

2-18. Include air resistance proportional to the square of the ball's speed in the previous 
problem. Let the drag coefficient be cw = 0.5, the softball radius be 5 cm and the 
mass be 200 g. (a) Find the initial speed of the softball needed now to clear the 
fence, (b) For this speed, find the initial elevation angle that allows the ball to most 
easily clear the fence. By how much does the ball now vertically clear the fence? 

2-19. If a projectile moves such that its distance from the pbint of projection is always in-
creasing, find the maximum angle above the horizontal with which the particle 
could have been projected. (Assume no air resistance.) 

2-20. A gun fires a projectile of mass 10 kg of the type to which the curves of Figure 2-3 
apply. The muzzle velocity is 140 m/s. Through what angle must the barrel be ele-
vated to hit a target on the same horizontal plane as the gun and 1000 m away? 
Compare the results with those for the case of no retardation. 

2-21. Show direcdy that the time rate of change of the angular momentum about the ori-
gin for a projectile fired from the origin (constant g) is equal to the moment of 
force (or torque) about the origin. 

2-22. The motion of a charged particle in an electromagnetic field can be obtained from 
the Lorentz equation* for the force on a particle in such a field. If the electric field 
vector is E and the magnetic field vector is B, the force on a particle of mass m that 

*See, for example, Heald and Marion, Classical Electromagnetic Radiation (95, Section 1.7). 
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carries a charge q and has a velocity v is given by 

F = qE + qx X B 

where we assume that v c(speed of light). 
(a) If there is n o electric field and if the particle enters the magnetic field in a di-

rection perpendicular to the lines of magnetic flux, show that the trajectory is a 
circle with radius 

_ mv v 
qB coc 

where cor = qB/m is the cyclotron frequency. 
(b) Choose the z-axis to lie in the direction of B and let the plane containing E and 

B be the yz-plane. Thus 

B = Bk, E = Eyi + Ez k 

Show that the z componen t of the mot ion is given by 

qEz 
z(t) = z0 + zQt 4- — t* 

where 

z(0) ss z0 and z(0) = z0 

(c) Cont inue the calculation and obtain expressions for x(t) and y(t). Show that the 
time averages of these velocity components are 

Ey 
<*)=g> <*> = 0 

(Show that the motion is periodic and then average over one complete period.) 
(d) Integrate the velocity equations found in (c) and show (with the initial condi-

tions x(0) = -A/<oc, x(0) = Ey/B, y(0) = 0, y{0) = A) that 

A. j? 
x(t) — cos o>ct 4- ~ ty y(t) ~ — sin a),t 

a)c B o)c 

These are the parametr ic equat ions of a t rochoid. Sketch the project ion of the 
trajectory on the xy — plane for the cases (i) A > \Ey/B\, (ii) A < \Ey/B\, and 
(iii) A = \Ey/B\. (The last case yields a cycloid.) 

2-23. A particle of mass m = 1 kg is subjected to a one-dimensional force F(t) = kte~at, 
where k = 1 N / s and a = 0.5 s If the particle is initially at rest, calculate and plot 
with the aid of a compute r the position, speed, and acceleration of the particle as a 
funct ion of time. 

2-24. A skier weighing 90 kg starts f rom rest down a hill inclined at 17°. He skis 100 m 
down the hill and then coasts for 70 m along level snow until he stops. Find the coef-
ficient of kinetic friction between the skis and the snow. What velocity does the skier 
have at the bot tom of the hill? 
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2-25. A block of mass m = 1.62 kg slides down a frictionless incline (Figure 2-A). T h e 
block is released a he ight h = 3.91 m above the bo t tom of the loop. 
(a) What is the force of the incl ined track o n the block at the bo t t om (point A)? 
(b) What is the force of the track on the block at po in t B? 
(c) At what speed does the block leave the track? 
(d) How far away f r o m po in t A does the block land on level g round? 
(e) Sketch the potential energy U(x) of the block. Indicate the total energy o n the 

sketch. 

2-26. A child slides a block of mass 2 kg a long a slick ki tchen floor. If the initial speed is 4 
m / s and the block hits a spr ing with spring constant 6 N / m , what is the m a x i m u m 
compression of the spring? Wha t is the result if the block slides across 2 m of a 
rough f loor that has fxk = 0.2? 

2-27. A rope having a total mass of 0.4 kg a n d total length 4 m has 0.6 m of the rope 
hanging vertically down off a work bench . How m u c h work must be d o n e to place 
all the rope on the bench? 

2-28. A superball of mass M and a marb le of mass m are d r o p p e d f r o m a he igh t h with the 
marble jus t on top of the superball . A superball has a coefficient of rest i tution of 
nearly 1 (i.e., its collision is essentially elastic). Ignore the sizes of the superball a n d 
marble . T h e superball collides with the floor, r ebounds , a n d smacks the marble , 
which moves back up. How h igh does the marb le go if all the mo t ion is vertical? 
How high does the superball go? 

2-29. An automobi le driver traveling down an 8% g rade slams on his brakes and skids 30 
m before hi t t ing a parked car. A lawyer hires an exper t who measures the coeffi-
cient of kinetic fr ict ion between the tires a n d road to be jxk = 0.45. Is the lawyer 
correct to accuse the driver of exceeding the 25-MPH speed limit? Explain. 

2-30. A s tudent drops a water-filled balloon f r o m the roof of the tallest bui lding in town 
trying to hit h e r r o o m m a t e o n the g r o u n d (who is too quick). T h e first s tudent 
ducks back bu t hears the water splash 4.021 s af ter d ropp ing the balloon. If the 
speed of sound is 331 m / s , f ind the height of the building, neglect ing air resistance. 
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2-31. In Example 2.10, the initial velocity of the incoming charged particle had n o com-
p o n e n t a long the *-axis. Show that , even if it h a d an x componen t , the subsequent 
mot ion of the particle would b e the same—that only the radius of the helix would 
be altered. 

2-32. Two blocks of unequa l mass are connec t ed by a string over a smooth pulley (Figure 
2-B). If the coefficient of kinetic fr ict ion is fxk, what angle 0 of the incline allows the 
masses to move at a constant speed? 

2-33. Pe r fo rm a c o m p u t e r calculation for an object moving vertically in air u n d e r gravity 
and exper iencing a re tard ing force p ropor t iona l to the square of the object 's speed 
(see Equat ion 2.21). Use variables w f o r mass a n d r f o r the object 's radius; All the 
objects are d r o p p e d f rom rest f r o m the top of a 100-m-tall building. Use a value of 
cw — 0.5 a n d make compute r plots of he igh t y, speed v, and accelerat ion a versus t 
for the following condit ions a n d answer the questions: 
(a) A baseball of m - 0.145 kg a n d r = 0.0366 m. 
(b) A ping-pong ball of m = 0.0024 kg and r = 0.019 m. 
(c) A r a ind rop of r = 0.003 m. 
(d) Do all the objects reach their terminal speeds? Discuss the values of the termi-

nal velocities and explain their differences. 
(e) Why can a baseball be thrown fa r the r than a p ing-pong ball even though the 

baseball is so m u c h m o r e massive? 
(f) Discuss the terminal speeds of big a n d small ra indrops . What are the terminal 

speeds of ra indrops having radii 0.002 m and 0.004 m? 

2-34. A particle is released f r o m rest {y = 0) a n d falls u n d e r the inf luence of gravity a n d 
air resistance. Find the relat ionship between v and the distance of falling y when 
the air resistance is equal to (a) av a n d (b) /3t/2. 

2-35. P e r f o r m the numer ica l calculations of Example 2,7 f o r the values given in Figure 
2-8. Plot b o t h Figures 2-8 a n d 2-9. Do n o t dupl icate t he solution in Append ix H; 
compose your own solution. 

2-36. A gun is located on a bluff of he igh t h overlooking a river valley. If the muzzle ve-
locity is v0t f ind the expression fo r the range as a func t ion of the elevation angle of 
the gun. Solve numerically for the m a x i m u m range ou t in to the valley for a given h 
a n d v0. 
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2-37. A particle of mass m has speed v — a/x, where x is its displacement. Find the force 
F(x) responsible. 

2-38. T h e speed of a part icle of mass m varies with the distance x as = ax~n. Assume 
v(x = 0) = 0 at t = 0. (a) Find the force F{x) responsible, (b) De t e rmine x{t) a n d 
(c) m-

2-39. A boat with initial speed v0 is l aunched on a lake. T h e boa t is slowed by the water by 
a force F= -ae&v. (a) Find an expression fo r the speed i/(£). (b) Find the t ime and 
(c) distance for the boa t to stop. 

2-40. A particle moves in a two-dimensional orbi t de f ined by 

x(t) = A(2at — sin at) 
y(t) = A(1 — cos at) 

(a) Find the tangential accelerat ion at a n d normal accelerat ion an as a func t ion of 
t ime where the tangential a n d no rma l componen t s are taken with respect to the 
velocity. 

(b) De te rmine at what times in the orbi t an has a max imum. 

2-41. A train moves a long the tracks at a constant speed w. A woman on the train throws 
a ball of mass m straight ahead with a speed v with respect to herself, (a) Wha t is the 
kinetic energy gain of the ball as measured by a pe r son on the train? (b) by a per-
son s tanding by the rai l road track? (c) How m u c h work is d o n e by the woman 
throwing he ball a n d (d) by the train? 

2-42. A solid cube of un i fo rm density and sides of b is in equi l ibr ium on top of a cylinder 
of radius R (Figure 2-C). T h e planes of f o u r sides of the cube are parallel to the axis 
of the cylinder. T h e contact between cube and sphere is per fecdy rough . U n d e r 
what condit ions is the equi l ibr ium stable or no t stable? 

2-43. A particle is u n d e r the inf luence of a force F= — kx + kx^/a2, where k and a are 
constants and k is positive. De te rmine U(x) and discuss the mot ion . Wha t h a p p e n s 
when E ~ ( 1 / 4 ) k a 2 } 

2-44. Solve Example 2.12 by using forces ra ther than energy. How can you de t e rmine 
whether the system equil ibr ium is stable or unstable? 
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2-45. Describe how to de te rmine whether an equilibrium is stable or unstable when 

2-46. Write the criteria for de termining whether an equilibrium is stable or unstable 
when all derivatives u p through order n, (dnU/dxn) 0 = 0. 

2-47. Consider a particle moving in the region x > 0 u n d e r the inf luence of the potential 

where U0 = 1 J and a = 2 m. Plot the potential, f ind the equilibrium points, and 
determine whether they are maxima or minima. 

2-48. Two gravitationally b o u n d stars with equal masses m, separated by a distance d, re-
volve about their center of mass in circular orbits. Show that the period t is propor-
tional to d 3 / 2 (Kepler's Thi rd Law) and f ind the proportionali ty constant. 

2 ^ 9 . Two gravitationally b o u n d stars with unequal masses and w2, separated by a dis-
tance d, revolve about their center of mass in circular orbits. Show that the per iod r 
is proport ional to d3/2 (Kepler's Third Law) and f ind the proportionality constant. 

2-50. According to special relativity, a particle of rest mass m0 accelerated in one dimen-
sion by a force F obeys the equat ion of mot ion dp/dt = F. Here p = w 0 f / ( l — 
v2/c2)1/2 is the relativistic m o m e n t u m , which reduces to m0v for v2/c2 1. (a) For 
the case of constant Fand initial conditions x(0) = 0 = u(0), f ind x(t) and v(t). 
(b) Sketch your result for v{t). (c) Suppose that F/m0 = 10 m/s 2 ( g on Earth) . 
How much time is required for the particle to reach half the speed of light and of 
99% the speed of light? 

2-51. Let us make the (unrealistic) assumption that a boat of mass m gliding with initial 
velocity v0 in water is slowed by a viscous retarding force of magni tude bv2, where b 
is a constant, (a) Find and sketch v(t). How long does it take the boat to reach a 
speed of t^/1000? (b) Find x(t). How far does the boat travel in this time? Let m = 
200 kg, vq = 2 m / s , and b = 0.2 Nm"2s2 . 

2-52. A particle of mass m moving in one dimension has potential energy U(x) — 
U0[2(x/a)2 — (x/«) 4 ] , where UQ and a are positive constants, (a) Find the force 
F(x), which acts on the particle, (b) Sketch U(x). Find the positions of stable and 
unstable equilibrium, (c) What is the angular f requency at of oscillations about the 
point of stable equilibrium? (d) What is the min imum speed the particle must have 
at the origin to escape to infinity? (e) At t — 0 the particle is at the origin and its ve-
locity is positive and equal in magni tude to the escape speed of par t (d). Find x(t) 
and sketch the result. 

2-53. Which of the following forces are conservative? If conservative, f ind the potential 
energy U(r). (a) Fx = ayz + bx + c, Fy = axz + bz, Fz = axy + by. (b) Fx ~ 
— ze~x, Fy = lnz, Fz = e~x + y/z. (c) F = eTa/r(ay b, care constants). 

2-54. A potato of mass 0.5 kg moves u n d e r Earth's gravity with an air resistive force of 
— kmv. (a) Find the terminal velocity if the pota to is released f rom rest and k = 
0.01 s _ I . (b) Find the maximum height of the potato if it has the same value of k, 

(d2U/dx2) o = 0. 
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bu t it is initially shot directly upward with a s tudent -made pota to g u n with an initial 
velocity of 120 m / s . 

2-55. A p u m p k i n of mass 5 kg shot out of a s tudent -made c a n n o n u n d e r air pressure at 
an elevation angle of 45° fell at a distance of 142 m f r o m the cannon . T h e students 
used light beams a n d photocells to measure the initial velocity of 54 m / s . If the air 
resistive force was F= —kmv, what was the value of k? 



CHAPTER 

Oscillations 

3.1 Introduction 
We begin by considering the oscillatory motion of a particle constrained to 
move in one dimension. We assume that a position of stable equilibrium exists 
for the particle, and we designate this point as the origin (see Section 2.6). If the 
particle is displaced from the origin (in either direction), a certain force tends 
to restore the particle to its original position. An example is an atom in a long 
molecular chain. The restoring force is, in general, some complicated function 
of the displacement and perhaps of the particle's velocity or even of some 
higher time derivative of the position coordinate. We consider here only cases 
in which the restoring force F is a function only of the displacement: F = F(x). 

We assume that the function F(x) that describes the restoring force possesses 
continuous derivatives of all orders so that the function can be expanded in a 
Taylor series: 

where F0 is the value of F(x) at the origin (x = 0), and (dnF/dxn)0 is the value of 
the nth derivative at the origin. Because the origin is defined to be the equilib-
rium point, F0 must vanish, because otherwise the particle would move away from 
the equilibrium point and not return. If, then, we confine our attention to dis-
placements of the particle that are sufficientiy small, we can normally neglect all 
terms involving x2 and higher powers of x. We have, therefore, the approximate 
relation 

d2F\ 1 
dx2 Jn + 3! * (3.1) 

Fix) = — kx (3.2) 

99 
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where we have substituted k = —(dF/dx)0. Because the restoring force is always 
directed toward the equilibrium position (the origin), the derivative (dF/dx)0 is 
negative, and therefore k is a positive constant. Only the first power of the displace-
ment occurs in F(x), so the restoring force in this approximation is a linear force. 

Physical systems described in terms of Equation 3.2 obey Hooke's Law.* One 
of the classes of physical processes that can be treated by applying Hooke's Law is 
that involving elastic deformations. As long as the displacements are small and the 
elastic limits are not exceeded, a linear restoring force can be used for problems 
of stretched springs, elastic springs, bending beams, and the like. But we must em-
phasize that such calculations are only approximate, because essentially every real 
restoring force in nature is more complicated than the simple Hooke's Law force. 
Linear forces are only useful approximations, and their validity is limited to cases in 
which the amplitudes of the oscillations are small (but see Problem 3-8). 

Damped oscillations, usually resulting from friction, are almost always the 
type of oscillations that occur in nature. We learn in this chapter how to design an 
efficiendy damped system. This damping of the oscillations may be counteracted 
if some mechanism supplies the system with energy from an external source at a 
rate equal to that absorbed by the damping medium. Motions of this type are 
called driven (or forced) oscillations. Normally sinusoidal, they have important 
applications in mechanical vibrations as well as in electrical systems. 

The extensive discussion of linear oscillatory systems is warranted by the 
great importance of oscillatory phenomena in many areas of physics and engi-
neering. It is frequentiy permissible to use the linear approximation in the analy-
sis of such systems. The usefulness of these analyses is due in large measure to 
the fact that we can usually use analytical methods. 

When we look more carefully at physical systems, we find that a large number 
of them are nonlinear in general. We will discuss nonlinear systems in Chapter 4. 

3.2 Simple Harmonic Oscillator 
The equation of motion for the simple harmonic oscillator may be obtained by 
substituting the Hooke's Law force into the Newtonian equation F= ma. Thus 

kx mx (3.3) 

If we define 

a> § = k/m (3.4) 

Equation 3.3 becomes 

x + a) Ix = 0 (3.5) 

*Robert Hooke (1635-1703). The equivalent of this force law was originally announced by Hooke in 
1676 in the form of a Latin cryptogram: CEIIINOSSSTTUV. Hooke later provided a translation: ut 
tensio sic vis [the stretch is proportional to the force]. 
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According to the results of Appendix C, the solution of this equation can be 
expressed in either of the forms 

x(t) = A sin(«0Z - 5) (3.6a) 

x(t) = A cos(w01 — <}>) (3.6b) 

where the phases* 5 and 4> differ by tt/2. (An alteration of the phase angle corre-
sponds to a change of the instant that we designate t = 0, the origin of the time 
scale.) Equations 3.6a and b exhibit the well-known sinusoidal behavior of the 
displacement of the simple harmonic oscillator. 

We can obtain the relationship between the total energy of the oscillator 
and the amplitude of its motion as follows. Using Equation 3.6a for x(t), we find 
for the kinetic energy, 

T = — mx2 = — ma>2A2 cos2(a)0t — 8) 

= ^&A2cos2(w0«- 8) (3.7) 

The potential energy may be obtained by calculating the work required to 
displace the particle a distance x. The incremental amount of work dW necessary 
to move the particle by an amount dx against the restoring force F is 

dW= -Fdx = kx dx . (3.8) 
Integrating from 0 to x and setting the work done on the particle equal to the 
potential energy, we have 

U=^kx2 (3.9) 

Then 

U= ^/sA2sin2(o>0*- 5) (3.10) 

Combining the expressions for Tand U to find the total energy E, we have 

E = T + U =^kA2[cos2{(o0t - 8) + sin2(&>0z — 8)] 

E= T + U=-kA2 

2 (3.11) 

so that the total energy is proportional to the square of the amplitude; this is a gen-
eral result for linear systems. Notice also that £ is independent of the time; that is, 

*The symbol S is often used to represent phase angle, and its value is either assigned or determined 
within the context of an application. Be careful when using equations within this chapter because S 
in one application may not be the same as the S in another. It might be prudent to assign subscripts, 
for example, 8] and when using different equations. 
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energy is conserved. (Energy conservation is guaranteed, because we have been 
considering a system without frictional losses or other external forces.) 

The period r 0 of the motion is defined to be the time interval between succes-
sive repetitions of the particle's position and direction of motion. Such an inter-
val occurs when the argument of the sine in Equation 3.6a increases by 2tt: 

W0T0 = 2it (3.12) 

or 

From this expression, as well as from Equation 3.6, it should be clear that co0 rep-
resents the angular frequency of the motion, which is related to the frequency v0 

by* 

(3.14) 

(3.15) 

Note that the period of the simple harmonic oscillator is independent of the 
amplitude (or total energy); a system exhibiting this property is said to be 
isochronous. 

For many problems, of which the simple pendulum is the best example, 
the equation of motion results in 8 + sin 8 = 0, where 0 is the displacement 
angle from equilibrium, and co0 = x/g/€, where € is the length of the pendu-
lum arm. We can make this differential equation describe simple harmonic 
motion by invoking the small oscillation assumption. If the oscillations about 
the equilibrium are small, we expand sin 9 and cos d in power series (see 
Appendix A) and keep only the lowest terms of importance. This often means 
sin 8 — 6 and cos 8 — 1 — 82/2, where 8 is measured in radians. If we use the 
small oscillation approximation for the simple pendulum, the equation of mo-
tion above becomes 8 + (Oq8 = 0, an equation that does represent simple har-
monic motion. We shall often invoke this assumption throughout this text and 
in its problems. 

"Henceforth we shall denote angular frequencies by to (units: radians per unit time) and frequencies 
by v (units: vibrations per unit time or Hertz, Hz). Sometimes ca will be referred to as a "frequency" 
for brevity, although "angular frequency" is to be understood. 
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Find the angular velocity and period of oscillation of a solid sphere of mass m 
and radius R about a point on its surface. See Figure 3-1. 

Solution. Let the rotational inertia of the sphere be /about the pivot point. In ele-
mentary physics we learn that the value of the rotational inertia about an axis 
through the sphere's center is 2 /5 mR2. If we use the parallel-axis theorem, the rota-
tional inertia about the pivot point on the surface is 2 /5 mR2 + mR'1 = 7/5 mR2. 
The equilibrium position of the sphere occurs when the center of mass (center of 
sphere) is hanging directly below the pivot point. The gravitational force F= mg 
pulls the sphere back towards the equilibrium position as the sphere swings back 
and forth with angle 8. The torque on the sphere is N = la, where a = 6 is the an-
gular acceleration. The torque is also N = R X F, with N= RF sin 6 = Rmg sin 8. 
For small oscillations, we have N = Rmg 6. We must have 18 = —Rmg 8 for the 
equation of motion in this case, because as 8 increases, 8 is negative. We need to 
solve the equation of motion for 6. 

This equation is similar to Equation 3.5 and has solutions for the angular fre-
quency and period from Equations 3.14 and 3.15, 

and 

Pivot 

i 0 
FIGURE 3-1 Example 3.1. The physical pendulum (sphere). 
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Note that the mass m, does not enter. Only the distance R to the center of 
mass determines the oscillation frequency. 

3.3 Harmonic Oscillations in Two Dimensions 
We next consider the motion of a particle that is allowed two degrees of freedom. 
We take the restoring force to be proportional to the distance of the particle from 
a force center located at the origin and to be directed toward the origin: 

F = -kr (3.16) 

which can be resolved in polar coordinates into the components 

Fx = —krcos 9 = —kx 
Fy= — kr sin 9 = — ky j 

The equations of motion are 

X + 0)qX • 
y + (»ly = 

where, as before, col = k/m. The solutions are 

(3.17) 

(3.18) 

x(t) = A cos(co0t — a) 
y(t) = Bcos(a>0t - /3) 

(3.19) 

Thus, the motion is one of simple harmonic oscillation in each of the two direc-
tions, both oscillations having the same frequency but possibly differing in am-
plitude and in phase. We can obtain the equation for the path of the particle by 
eliminating the time £ between the two equations (Equation 3.19). First we write 

y(t) = B cos[&V - a + (a - /3)] 

= B cos((o0t - a)cos(a - /3) - B sin(<u0^ ~ a)sin(a — /3) (3.20) 

Defining S = a — fi and noting that cos(co0t — a) = x/A, we have 

y = jxcos8 - B^Jl - ( j ^ ) sin 8 

or 

Ay - Bx cos 8 = ~bVA2 - x2 sin 8 (3.21) 

On squaring, this becomes 

A2y2 - 2ABxy cos 8 + B2x2 cos25 = A2B2 sin28 - B2x2 sin2S 

so that 

B2x2 - 2ABxy cos 8 + A2y2 = A2B2 sin2S (3.22) 



3.3 HARMONIC OSCILLATIONS IN TWO DIMENSIONS 105 

If 8 is set equal to ±ir/2, this equation reduces to the easily recognized equation 
for an ellipse: 

x2 y2 

\- — = I 
A2 B2 ' 

8 = ± 7 7 / 2 (3.23) 

If the amplitudes are equal, A = B, and if 8 = ±v/2, we have the special case of 
circular motion: 

x2 + y2 = A2, for A = B and 8 = ± t t / 2 

Another special case results if the phase 8 vanishes; then we have 

B2x2 - 2ABxy + A2y2 = 0, 8 = 0 

Factoring, 

(Bx - Ay)2 = 0 

which is the equation of a straight line: 

B 

(3.24) 

8 = 0 

Similarly, the phase 8 = ±tt yields the straight line of opposite slope: 

B 
y = x, y A 

8= ±TT 

(3.25) 

(3.26) 

The curves of Figure 3-2 illustrate Equation 3.22 for the case A = B; 8 = 90° 
or 270° yields a circle, and 8 = 180° or 360°(0°) yields a straight line. All other 
values of 8 yield ellipses. 

In the general case of two-dimensional oscillations, the angular frequencies 
for the motions in the x- and y- directions need not be equal, so that Equation 
3.19 becomes 

x(t) = A cos(a>xt — a) 
y(t) = B cos(coyt - /3) 

(3.27) 

5 = 90° 

\ 
\ 

^ — J 

\ 
V J 

8 = 120° S = 150° S = 180° 

S = 240° S = 270° 8 = 330° 

(5 = 210° 

S = 360° S = 300° 

FIGURE 3-2 Two-dimensional harmonic oscillation motion for various phase angles 
8 = a - p. 
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y 

FIGURE 3-3 Closed two-dimensional oscillatory motion (called Lissajous curves) 
occurs under certain conditions for the x and y coordinates. 

The path of the motion is no longer an ellipse but a Lissajous curve.* Such a 
curve will be closed if the motion repeats itself at regular intervals of time. This 
will be possible only if the angular frequencies iox and wy are commensurable, that 
is, \{ajx/ajy is a rational fraction. Such a case is shown in Figure 3-3, in which a>y = | 
(also a = /3). If the ratio of the angular frequencies is not a rational fraction, the 
curve will be open; that is, the moving particle will never pass twice through the 
same point with the same velocity. In such a case, after a sufficiently long time 
has elapsed, the curve will pass arbitrarily close to any given point lying within 
the rectangle 2A X 2B and will therefore "fill" the rectangle^ 

The two-dimensional oscillator is an example of a system in which an infini-
tesimal change can result in a qualitatively different type of motion. The motion 
will be along a closed path if the two angular frequencies are commensurable. 
But if the angular frequency ratio deviates from a rational fraction by even an in-
finitesimal amount, then the path will no longer be closed and it will "fill" the 
rectangle. For the path to be closed, the angular frequency ratio must be known to 
be a rational fraction with infinite precision. 

If the angular frequencies for the motions in the x- and y-directions are dif-
ferent, the shape of the resulting Lissajous curve strongly depends on the phase 
difference <5 = a — j3. Figure 3-4 shows the results for the case <ay = 2(ox for 
phase differences of 0, ir/3, and tt/2. 

3.4 Phase Diagrams 
The state of motion of a one-dimensional oscillator, such as that discussed in 
Section 3.2, will be completely specified as a function of time if two quantities 

*The French physicist Jules Lissajous (1822-1880) demonstrated this in 1857 and is generally given 
credit, although Nathaniel Bowditch seems to have reported in 1815 two mutually orthogonal oscil-
lations displaying the same motion (Cr81). 
fA proof is given, for example, by Haag (Ha62, p. 36). 
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a„ = 2cox ; S = 0 ft), = 2ft),.; 5 = 7T/3 ft), = 2cox; 5 = n/2 
FIGURE 3-4 Lissajous curves depend strongly on the phase differences of the angle S. 

are given at one instant of time, that is, the initial conditions x(t0) and x(t0). 
(Two quantities are needed because the differential equation for the motion is of 
second order.) We may consider the quantities x(t) and x{t) to be the coordinates of 
a point in a two-dimensional space, called phase space. (In two dimensions, the 
phase space is a phase plane. But for a general oscillator with n degrees of freedom, 
the phase space is a 2w-dimensional space.) As the time varies, the point P(x, x) 
describing the state of the oscillating particle will move along a certain phase path in 
the phase plane. For different initial conditions of the oscillator, the motion will be 
described by different phase paths. Any given path represents the complete time his-
tory of the oscillator for a certain set of initial conditions. The totality of all possible 
phase paths constitutes the phase portrait or the phase diagram of the oscillator.* 

According to the results of the preceding section, we have, for the simple har-
monic oscillator, 

x(t) = A sin(a»0£ — 8) (3.28a) 

x(t) = A(o0 cos(«01 - 8) (3.28b) 

If we eliminate t from these equations, we find for the equation of the path 

x' 
+ 1 (3.29) 

This equation represents a family of ellipses,^ several of which are shown in Figure 3-5. 
We know that the total energy it of the oscillator is | M 2 (Equation 3.11), and be-
cause o>o = k/m, Equation 3.29 can be written as 

+ 
2E/k 2E/m 

= 1 (3.30) 

Each phase path, then, corresponds to a definite total energy of the oscillator. This 
result is expected because the system is conservative (i.e., E = const.). 

No two phase paths of the oscillator can cross. If they could cross, this would 
imply that for a given set of initial conditions x(t0), x(t0) (i.e., the coordinates of the 

*These considerations are not restricted to oscillating particles or oscillating systems. The concept of 
phase space is applied extensively in various fields of physics, particularly in statistical mechanics. 
fThe ordinate of the phase plane is sometimes chosen to be x/ai,, instead of x; the phase paths are 
then circles. 
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FIGURE 3-5 Phase diagram for a simple harmonic oscillator for a variety of total 
energies E. 

crossing point), the motion could proceed along different phase paths. But this is 
impossible because the solution of the differential equation is unique. 

If the coordinate axes of the phase plane are chosen as in Figure 3-5, the 
motion of the representative point P(x, x) will always be in a clockwise direction, 
because for x > 0 the velocity x is always decreasing and for x < 0 the velocity is 
always increasing. 

To obtain Equations 3.28 for x(t) and x(t), we must integrate Equation 3.5, a 
second-order differential equation: 

d2x 
— + 0)lx = 0 (3.31) 
at4 

We can obtain the equation for the phase path, however, by a simpler procedure, 
because Equation 3.31 can be replaced by the pair of equations 

dx , dx c, 
— = X, — = -wgx (3.32) 
dt dt 

If we divide the second of these equations by the first, we obtain 

dX X . 
- = - a > l ~ (3.33) 
ax X 

This is a first-order differential equation for x = x(x), the solution to which is just 
Equation 3.29. For the simple harmonic oscillator, there is no difficulty in obtaining 
the general solution for the motion by solving the second-order equation. But in more 
complicated situations, it is sometimes considerably easier to directly find the equation 
of the phase path x = x(x) without proceeding through the calculation of x(t). 

3.5 Damped Oscillations 
The motion represented by the simple harmonic oscillator is termed a free oscilla-
tion; once set into oscillation, the motion would never cease. This oversimplifies 
the actual physical case, in which dissipative or frictional forces would eventually 
damp the motion to the point that the oscillations would no longer occur. We can 
analyze the motion in such a case by incorporating into the differential equation a 
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term representing the damping force. It does not seem reasonable that the damping 
force should, in general, depend on the displacement, but it could be a function 
of the velocity or perhaps of some higher time derivative of the displacement. It is 
frequently assumed that the damping force is a linear function of the velocity,* 
Fd = av. We consider here only one-dimensional damped oscillations so that we 
can represent the damping term by — bx. The parameter b must be positive in order 
that the force indeed be resisting. (A force — bx with b < 0 would act to increase the 
speed instead of decreasing it as any resisting force must.) Thus, if a particle of 
mass m moves under the combined influence of a linear restoring force — kx and a 
resisting force — bx, the differential equation describing the motion is 

mx + bx + kx = 0 (3.34) 

which we can write as 

x + 2/3x + (o Ix = 0 (3.35) 

Here — 6/2 m is the damping parameter and (Oq — V k M is the characteristic 
angular frequency in the absence of damping. The roots of the auxiliary equation 
are (cf. Equation C.8, Appendix C) 

n = -i8+ V/32 - o>% 
wl 

The general solution of Equation 3.35 is therefore 

x(t) = e~P\Ai exp(V/3 2 - «§«) + / l 2 e x p ( - V / 3 2 - a>§f)] 

(3.36) 

(3.37) 

There are three general cases of interest: 

Underdamping: > /32 

Critical damping: a>l = /32 

Overdamping: w2 < P 2 

The motion of the three cases is shown schematically in Figure 3-6 for specific initial 
conditions. We shall see that only the case of underdamping results in oscillatory 
motion. These three cases are discussed separately. 

Underdamped Motion 
For the case of underdamped motion, it is convenient to define 

02 Wf S 0)1 (3.38) 

*See S e c t i o n 2 .4 f o r a d i s c u s s i o n o f t h e d e p e n d e n c e of r e s i s t i n g f o r c e s o n velocity. 
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x 

FIGURE 3-6 Damped oscillator motion for three cases of damping. 

where tof > 0; then the exponents in the brackets of Equation 3.37 are imaginary, 
and the solution becomes 

x(t) = e-t3t[A1eia>>t + A2e-i0,S] (3.39) 

Equation 3.39 can be rewritten as* 

x(t) = Ae'V c o s ^ i - 5) (3.40) 

We call the quantity w1 the angular frequency of the damped oscillator. Stricdy • 
speaking, we cannot define a frequency when damping is present, because the 
motion is not periodic—that is, the oscillator never passes twice through a given 
point with the same velocity. However, because w, = 2tt/(2TI), where 7\ is the 
time between adjacent zero x-axis crossings, the angular frequency co1 has meaning 
for a given time period. Note that 2TX would be the "period" in this case, no t 7\ . 
For simplicity, we refer to w] as the "angular frequency" of the damped oscillator, 
and we note that this quantity is less than the frequency of the oscillator in the ab-
sence of damping (i.e., ojt < w0). If the damping is small, then 

= va>l - p2 = w0 

so the term angular frequency may be used. But the mean ing is no t precise unless 
p = 0. 

The maximum amplitude of the motion of the damped oscillator decreases 
with time because of the factor exp(— fit), where f3 > 0, and the envelope of the 
displacement versus time curve is given by 

%en = ±Ae~<3t (3.41) 

This envelope and the displacement curve are shown in Figure 3-7 for the case 8 = 0. 
The sinusoidal curve for u n d a m p e d motion (J3 = 0) is also shown in this figure. A 
close comparison of the two curves indicates that the frequency for the damped 
case is less (i.e., that the period is longer) than that for the u n d a m p e d case. 

*See E x e r c i s e D-6, A p p e n d i x D . 
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FIGURE 3-7 The underdamped motion (solid line) is an oscillatory motion (short 
dashes) that decreases within the exponential envelope (long dashes). 

The ratio of the amplitudes of the oscillation at two successive maxima is 

= ^ ( 3 ' 4 2 ) 

where the first of any pair of maxima occurs at t = T a n d where r , = 277-/01The 
quantity e x p ^ T j ) is called the decrement of the motion; the logarithm of exp (/3r,)— 
that is, /3t,—is known as the logarithmic decrement of the motion. 

Unlike the simple harmonic oscillator discussed previously, the energy of the 
damped oscillator is not constant in time; rather, energy is continually given up to 
the damping medium and dissipated as heat (or, perhaps, as radiation in the form 
of fluid waves). The rate of energy loss is proportional to the square of the velocity 
(see Problem 3-11), so the decrease of energy does not take place uniformly. The 
loss rate will be a maximum when the particle attains its maximum velocity near 
(but not exactly at) the equilibrium position, and it will instantaneously vanish 
when the particle is at maximum amplitude and has zero velocity. Figure S-8 shows 
the total energy and the rate of energy loss for the damped oscillator. 

EXAMPLE 3.2 

Construct a general phase diagram analytically for the d a m p e d oscillator. Then , 
using a computer, make a plot for x and x versus t and a phase diagram for the 
following values: A = 1 cm, (o0 = 1 r ad / s , /3 = 0.2 s _ 1 , and 8 = 77/2 rad. 

Solution. First, we write the expressions for the displacement and the velocity: 

x(t) = Ae-V cos(w1« - 8) 

x(t) = -Ae'P*[/3 cos{wxt - 8) + co1 sin^t - 5)] 

These equations can be coverted into a more easily recognized form by introducing 
a change of variables according to the following linear transformations: 

u = a>ix, w = 13x + x 

Then 

u = ti>1Ae~'3( cos(&)1i — 8) 

w = —tOiAe^13' sin(to!i — 8) 



112 3 / OSClLLAl'lUNS 

w 

If we represent u and w in polar coordinates (Figure 3-9), then 

p = Vm2 + w2, 4> = 

Thus 

p = <alAe~WaM 

which is the equation of a logarithmic spiral. Because the transformation f rom x, 
x to u, w is linear, the phase path has basically the same shape in the u- w plane 
(Figure 3-1 Oa) and x-x plane (Figure 3-1 Ob). They both show a spiral phase path 
of the underdamped oscillator. The continually decreasing magnitude of the radius 
vector for a representative po in t in the phase plane always indicates d a m p e d 
motion of the oscillator. 
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* ( m / s ) 

u 0 

-0.5 

x ( m ) 

T i m e (s) 

(c) 
FIGURE 3-10 Results for Example 3.2. The phase path (a) of the w, u coordinates 

and (b) of the x, x coordinates, and (c) a numerical calculation of 
position and speed versus time. The spiral path is characteristic of the 
underdamped oscillator. 

The actual calculation using numbers can be done by various means with a 
computer. We chose to use one of the commercially available numerical pro-
grams that has good graphics output . We chose the values A = 1, /3 = 0.2, k = 1, 
m = 1, and S = tt/2 in the appropriate units to produce Figure 3-10. For the 
particular value of S chosen, the amplitude has x = 0 at t = 0, but x has a large 
positive value, which causes x to rise to a maximum value of about 0.7 m at 2 s 
(Figure 3-10c). The weak damping parameter fi allows the system to oscillate 
about zero several times (Figure 3-10c) before the system finally spirals down to 
zero. The system crosses the x = 0 line eleven times before x decreases finally to 
less than 10"3 of its maximum amplitude. The phase diagram of Figure 3-10b 
displays the actual path. 
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Critically Damped Motion 
If the damping force is sufficiently large (i.e., if jQ2 > ai?,), the system is prevented 
from undergoing oscillatory motion. If zero initial velocity occurs, the displace-
ment decreases monotonically from its initial value to the equilibrium position ( x = 0). 
The case of critical damping occurs when )32 is just equal to o)%. The roots of the 
auxiliary equation are then equal, and the function x must be written as (cf., 
Equation C . l l , Appendix C) 

x(t) = (A + Bt)e~& (3.43) 

This displacement curve for critical damping is shown in Figure 3-6 for the case in 
which the initial velocity is zero. For a given set of initial conditions, a critically 
damped oscillator will approach equilibrium at a rate more rapid than that for either 
an overdamped or an underdamped oscillator. This is important in designing certain 
practical oscillatory systems (e.g., galvanometers) when the system must return to 
equilibrium as rapidly as possible. A pneumatic-tube screen-door closure system is a 
good example of a device that should be critically damped. If the closure were under-
damped, the door would slam shut as other doors with springs always seem to do. If 
it were overdamped, it might take an unreasonably long time to close. 

Overdamped Motion 
If the damping parameter /3 is even larger than w0, then overdamping results. 
Because /32 > the exponents in the brackets of Equation 3.37 become real 
quantities: 

x(t) = e'^lA^1 + (3.44) 

where 

<o2 = V/3 2 - tug (3.45) 

Note that o»2 does not represent an angular frequency, because the motion is not 
periodic. The displacement asymptotically approaches the equilibrium position 
(Figure 3-6). 

Overdamping results in a decrease of the amplitude to zero that may have 
some strange behavior as shown in the phase space diagram of Figure 3-11. Notice 
that for all the phase paths of the initial positions shown, the asymptotic paths at 
longer times are along the dashed curve x = — ( f i — w2)x. Only a special case (see 
Problem 3-22) has a phase path along the other dashed curve. Depending on the 
initial values of the position and the velocity, a change in sign of both x and x may 
occur; for example, see the phase path labeled III in Figure 3-11. Figure 3-12 dis-
plays x and x as a function of time for the three phase paths labeled I, II, and III in 
Figure 3-11. All three cases have initial positive displacements, x(0) — Xq > 0. Each 
of the three phase paths has interesting behavior depending on the initial value, 
x(0) = x„, of the velocity: 

I. x0 > 0, so that x(t) reaches a maximum at some t > 0 before approaching 
zero. The velocity x decreases, becomes negative, and then approaches zero. 
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FIGURE 3-11 The phase paths for overdamped motion are shown for several initial 
values of (x, x). We examine more closely the paths labeled I, II, and III. 

II. x0 < 0, with x(l') and x(t) monotonically approaching zero. 

m . x0 < 0, but below the curve x — — (/3 + w2) x, so that x(t) goes negative before 
approaching zero, and x(t) goes positive before approaching zero. The motion 
in this case could be considered oscillatory. 

The initial points lying between the two dashed curves in Figure 3-11 seem to 
have phase paths decreasing monotonically to zero, whereas those lying outside 
those two lines do not. Critical damping has phase paths similar to the overdamp-
ing curves shown in Figure 3-11 (see Problem 3-21), rather than the spiral paths of 
Figure 3-1 Ob. 

EXAMPLE 3.3 

Consider a pendulum of length € and a bob of mass m at its end (Figure 3-13) 
moving through oil with 6 decreasing. The massive bob undergoes small oscilla-
tions, but the oil retards the bob's motion with a resistive force proportional to 
the speed with Fres = 2mVg/( ((d). The bob is initially pulled back at t = 0 with 6 = 
a and 0 = 0. Find the angular displacement 6 and velocity 6 as a function of time. 
Sketch the phase diagram if V ' g / i = 10 s _ 1 and a = 10 2 rad. 

Solution. Gravity produces the restoring force, and the componen t pulling the 
bob back to equilibrium is mg-sin 6. Newton's Second Law becomes 

Force = m(id) = Restoring force + Resistive force 

m(8 = -mg sind - 2mVg/i(t6) (3.46) 
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P o s i t i o n 

t 0 

Veloc i ty 

C a s e II 
i0<0 

Case I I I 
i«r0 < 0 

T i m e 

FIGURE 3-12 The position and velocity as functions of time for the three phase 
paths labeled I, II, and III shown in Figure 3-11. 

Check that the force direction is correct, depend ing on the signs of 8 and 8. For 
small oscillations sin 8 = 8, and Equation 3.46 becomes 

0 + 2 \fgj~t 0 + ^8 = 0 (3.47) 

Comparing this equation with Equation 3.35 reveals that tog = g/(, and j82 = g/t. 
Therefore , = /32 and the pendu lum is critically damped. After being initially 
pulled back and released, the pendu lum accelerates and then decelerates as 8 
goes to zero. The pendu lum moves only in one direction as it returns to its 
equilibrium position. 
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bob is moving with decreasing 0. 

The solution of Equation 3.47 is Equation 3.43. We can de termine the val-
ues of A and B by substituting Equation 3.43 into Equation 3.47 using the initial 
conditions. 

6(t) = (A + Bt)e~& 
6(t = 0) = a = A (3.43) 

6(t) = Be'V - P(A + Bt)e'^ 

0(t = 0) = 0 = B - PA 

B = /3A = /3a (3.48) 

0(t) = a ( l + V g / € t j e ' ^ 1 (3.49) 

6(t) = - ^ t e - ^ ' (3.50) 

If we calculate 6{t) and 6(1) for several values of time up to about 0.5 s, we can 
sketch the phase diagram of Figure 3-14. Notice that Figure 3-14 is consistent with 
the typical paths shown in Figure 3-11. The angular velocity is always negative after 
the bob starts until it returns to equilibrium. The bob speeds up quickly and then 
slows down. 

3.6 Sinusoidal Driving Forces 
The simplest case of driven oscillation is that in which an external driving force 
varying harmonically with time is applied to the oscillator. The total force on the 
particle is then 

F= —kx— bx+ F0 cos tot (3.51) 
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where we consider a linear restoring force and a viscous damping force in addition 
to the driving force. The equation of motion becomes 

mx + bx + kx = F0 cos cot 

or, using our previous notation, 

2/3% + cogX = A cos cot 

(3.52) 

(3.53) 

where A = F0/m and where a> is the angular frequency of the driving force. The 
solution of Equation 3.53 consists of two parts, a complementary function xc(t), 
which is the solution of Equation 3.53 with the right-hand side set equal to zero, 
and a particular solution xp(t), which reproduces the right-hand side. The comple-
mentary solution is the same as that given in Equation 3.37 (see Appendix C): 

xc(t) = ^ [ A ^ x p ( V / 3 2 - col t) + A 2 e x p ( - V / 3 2 - co2
0 f)] (3.54) 

For the particular solution, we try 

xJt) = D cos(o)t — S) (3.55) 

Substituting xp{t) in Equation 3.53 and expanding cos (cot — 8) and sin(&>£ — 8), we 
obtain 

{A — D[ (a;o — a)2)cos 8 + 2o>/3 sin 8 ]} cos cot 

— {Z)[(too — w2)sin 5 — 2w/8 cos 5]} sin cot = 0 (3.56) 

Because sin cot and cos cot are linearly independent functions, this equation can be 
satisfied in general only if the coefficient of each term vanishes identically. From 
the sin cot term, we have 

tan 8 = 2(of3 
col - a 

(3.57) 

so we can write 

sin 5 = 

cos 5 = 

2o>)3 

- w2)2 + 4(02/82 

col — 0 ) 2 

V(*>§ - ft)2)2 + 4ft)2/32J 

(3.58) 

And from the coefficient of the cos o)t term, we have 

A 
D = 

&>2)cos 8 + 2w/3 sin 8 

V(o>1 - w2)2 + 4o>2/32 (3.59) 
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Thus, the particular integral is 

xp(t) = A 

V(w§ - a>2)2 + 4a»2/32 
cos(&)t — 8) (3.60) 

with 

8 = tan J W 
— w2 (3.61) 

The quantity 8 represents the phase difference between the driving force and 
the resultant motion; a real delay occurs between the action of the driving force 
and the response of the system. For a fixed to0, as to increases f rom 0, the phase 
increases f rom 5 = 0 at &> = 0 to <5 = ir/2 at &> = co0 and to ir as w —> oo. The varia-
tion of 8 with a> is shown later in Figure 3-16. 

The general solution is 

x(t) = Xc(t) + Xp(t) (3.62) 

But xc(t) here represents transient effects (i.e., effects that die out), and the terms 
contained in this solution damp out with time because of the factor exp(— fit). The 
term xp(t) represents the steady-state effects and contains all the information for t 
large compared with 1//3. Thus, 

x ( * » VP) = xp(t) 
The steady-state solution is important in many applications and problems (see 
Section 3.7). 

The details of the motion during the period before the transient effects have 
disappeared (i.e., t ^ 1//3) strongly depend on the oscillator's conditions at the 
time that the driving force is first applied and also on the relative magnitudes of 
the driving frequency to and the damping frequency \/ft>2 — /32 in the case of un-
derdamped, undriven oscillations. This can be shown by numerically calculating 
Xp(t), x,( t), and the sum x( t) (see Equation 3.62) for different values of j8 and u> as 
we have done for Figure 3-15. The student may profit f rom solving Problems 3-24 
(underdamped) and 3-25 (critically damped) where such a procedure is suggested. 
Figure 3-15 illustrates the transient motion of an underdamped oscillator when 
driving frequencies less than and greater than tox = \/<w§ — /32 are applied. If 
to < tox (Figure 3-15a), the transient response of the oscillator gready distorts the 
sinusoidal shape of the forcing function during the time interval immediately after 
the application of the driving force, whereas if to > a> \ (Figure 3-15b), the effect 
is a modulat ion of the forcing funct ion with little distortion of the high-
frequency sinusoidal oscillations. 

The steady-state solution (xp) is widely studied in many applications and prob-
lems (see Section 3.7). The transient effects (xc), although perhaps not as impor-
tant overall, must be understood and accounted for in many cases, especially in 
certain types of electrical circuits. 
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(a) (b) 

FIGURE 3-15 Examples of sinusoidal driven oscillatory motion with damping. The 
steady-state solution xf„ transient solution xc, and sum x are shown in 
(a) for driving frequency co greater than the damping frequency 
a>1 (co > £t»!) and in (b) forw < oj1. 

Resonance Phenomena 
To find the angular frequency coR at which the amplitude D (Equation 3.59) is a 
maximum (i.e., the amplitude resonance frequency), we set 

dD 
dco 

= 0 
w = oiR 

Performing the differentiation, we find 

coR = Va>l ~ 2/32 (3.63) 

Thus, the resonance frequency coR is lowered as the damping coefficient [3 is in-
creased. No resonance occurs if > co0/2, for then coR is imaginary and D de-
creases monotonically with increasing co. 

We may now compare the oscillation frequencies for the various cases we have 
considered: 

1. Free oscillations, no damping (Equation 3.4): 

2
 k 

<0o = — m 
2. Free oscillations, damping (Equation 3.38): 

a>\ = a>l~P 
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3. Driven oscillations, damping (Equation 3.63): 

< o % = a > l - 2/32 

and we note that w0 > <w i > o)R. 

We customarily describe the degree of damping in an oscillating system in 
terms of the "quality factor" Q of the system: 

lOR 

(3-64) 

If little damping occurs, then Qis very large and the shape of the resonance curve 
approaches that for an undamped oscillator. But the resonance can be completely 
destroyed if the damping is large and Qis very small. Figure 3-16 shows the reso-
nance and phase curves for several different values of Q. These curves indicate the 
lowering of the resonance frequency with a decrease in Q (i.e., with an increase of 
the damping coefficient /3). The effect is not large, however; the frequency shift is 
less than 3% even for Q as small as 3 and is about 18% for <2=1. 

For a lightly damped oscillator, we can show (see Problem 3-19) that 

(3.65) 

where Aw represents the frequency interval between the points on the amplitude 
resonance curve that are 1 / V 2 = 0.707 of the maximum amplitude. 

FIGURE 3-16 (a) The amplitude D is displayed as a function of the driving frequency 
a) for various values of the quality factor Q. Also shown is (b) the phase 
angle 5, which is the phase angle between the driving force and the 
resultant motion. 
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The values of Q found in real physical situations vary greatly. In rather ordi-
nary mechanical systems (e.g., loudspeakers), the values may be in the range f rom 
a few to 100 or so. Quartz crystal oscillators or tuning forks may have Qs of 104. 
Highly tuned electrical circuits, including resonant cavities, may have values of 10 4 

to 105. We may also define Qs for some atomic systems. According to the classical 
picture, the oscillation of electrons within atoms leads to optical radiation. The 
sharpness of spectral lines is limited by the damping due to the loss of energy 
by radiation (radiation damping). The minimum width of a line can be calculated 
classically and is* Aa> = 2 X 10~8tt>. The Q of such an oscillator is therefore ap-
proximately 5 X 107. Resonances with the largest known Qs occur in the radia-
tion from gas lasers. Measurements with such devices have yielded Qs of approxi-
mately 1014. 

Equation 3.63 gives the frequency for amplitude resonance. We now calculate 
the frequency for kinetic energy resonance—that is, the value of co for which T is a 
maximum. The kinetic energy is given by T = ^mx2, and computing x f rom 
Equation 3.60, we have 

—Aw 
sin(cot - 8) (3.66) 

V W - w2)2 + 4o>2/32 

so that the kinetic energy becomes 

T = ^ ' 7 - i 2q2
 sin2(«" " <3-67) 2 (<ug - a)2)2 + 4w2/32 

To obtain a value of Tindependent of the time, we compute the average of T over 
one complete period of oscillation: 

mA2 co2 

The average value of the square of the sine function taken over one period is+ 

co f^/t0 1 
(sin2(w< - 8)) = — sin 2(cot-8)dt=- (3.69) 

ZTTJo 2 

Therefore, 

mA2 

w 4 {col - w2)2 + 4co2/62 

The value of co for { T ) a maximum is labeled coE and is obtained f rom 

d(T) 

(3.70) 

dco 
= 0 (3.71) 

oi = mE 

*See M a r i o n a n d H e a l d ( M a 8 0 ) . 
f T h e r e a d e r s h o u l d p r o v e t h e i m p o r t a n t r e s u l t t h a t t h e a v e r a g e o v e r a c o m p l e t e p e r i o d o f sin 2ojt o r 
cos2 <i>t is e q u a l t o (sin2w<> = (cos*a>t) = 
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Differentiating Equation 3.70 and equating the result to zero, we find 

wE = <a0 (3.72) 

so the kinetic energy resonance occurs at the natural frequency of the system for 
undamped oscillations. 

We see therefore that the amplitude resonance occurs at a frequency \Za>l — 2/32, 
whereas the kinetic energy resonance occurs at <v0. Because the potential energy is 
proportional to the square of the amplitude, the potential energy resonance must 
also occur at V w o — 2/32. That the kinetic and potential energies resonate at dif-
ferent frequencies is a result of the fact that the damped oscillator is not a conser-
vative system. Energy is continually exchanged with the driving mechanism, and 
energy is being transferred to the damping medium. 

3.7 Physical Systems 
We stated in the introduction to this chapter that linear oscillations apply to more 
systems than just the small oscillations of the mass-spring and the simple pendulum. 
The same mathematical formulation applies to a whole host of physical systems. 
Mechanical systems include the torsion pendulum, vibrating string or membrane, 
and elastic vibrations of bars or plates. These systems may have overtones, and 
each overtone can be treated much the same as we did in the previous discussion. 

We can apply our mechanical system analog to acoustic systems. In this case, 
the air molecules vibrate. We can have resonances that depend on the properties 
and dimensions of the medium. Several factors cause the damping, including fric-
tion and sound-wave radiation. The driving force can be a tuning fork or vibrating 
string, among many sources of sound. 

Atomic systems can also be represented classically as linear oscillators. When 
light (consisting of electromagnetic radiation of high frequency) falls on matter, it 
causes the atoms and molecules to vibrate. When light having one of the resonant 
frequencies of the atomic or molecular system falls on the material, electromag-
netic energy is absorbed, causing the atoms or molecules to oscillate with large 
amplitude. Large electromagnetic fields of the same frequency are produced by 
the oscillating electric charges. Wave mechanics (or quantum mechanics) uses lin-
ear oscillator theory to explain many of the phenomena associated with light ab-
sorption, dispersion, and radiation. 

Even to describe nuclei, linear oscillator theory is used. One of the modes of 
excitation of nuclei is collective excitation. Neutrons and protons vibrate in vari-
ous collective motions. Resonances occur, and damping exists. The classical me-
chanical analog is very useful in describing the motion. 

Electrical circuits are, however, the most noted examples of nonmechanical 
oscillations. Indeed, because of its great practical importance, the electrical example 
has been so thoroughly investigated that the situation is frequendy reversed, and 
mechanical vibrations are analyzed in terms of the "equivalent electrical circuit." 
We devote two examples to electrical circuits. 
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EXAMPLE 3.4 

Find the equivalent electrical circuit for the hanging mass-spring shown in Figure 
3-17a and determine the time dependence of the charge q in the system. 

Solution. Let us first consider the analogous quantities in mechanical and electri-
cal systems. The force F( = mgin the mechanical case) is analogous to the emf £. 
The damping parameter b has the electrical analog resistance R, which is not 
present in this case. The displacement x has the electrical analog charge q. We 
show other quantities in Table 3-1. If we examine Figure 3-17a, we have 
l/k —> C, wi —» L,F—± £, x —» q, and x—> I. Without the weight of the mass, the 
equilibrium position would be at x = 0; the addition of the gravitational force 
extends the spring by an amount h = mg/k and displaces the equilibrium position 
to x = h. The equation of motion becomes 

mx + k(x - h) = 0 (3.73) 

or 

mx + kx= kh 

with solution 

x(t) = h + A cos (o0t (3.74) 

where we have chosen the initial conditions x(t= 0) = h + A and x(t = 0) = 0 . 
We draw the equivalent electrical circuit in Figure 3-17b. KirchofFs equation 

around the circuit becomes 

Idt=£ = ^ (3.75) 

x = 0-

x= h-
-^smmis-

Hl 'h 

F= mg 

(a) (b) 

FIGURE 3-17 Example 3.4 (a) hanging mass-spring system; 
(b) equivalent electrical circuit. 
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TABLE 3-1 Analogous Mechanical and Electrical Quantities 

Mechanical Electrical 

X D i s p l a c e m e n t 1 C h a r g e 
X Veloc i ty q = I C u r r e n t 
m Mass L I n d u c t a n c e 
b D a m p i n g r e s i s t a n c e R R e s i s t a n c e 
1/k M e c h a n i c a l c o m p l i a n c e C C a p a c i t a n c e 
F A m p l i t u d e of i m p r e s s e d f o r c e £ A m p l i t u d e o f i m p r e s s e d e m f 

where qx represents the charge that must be applied to C to produce a voltage £. 
If we use I = q, we have 

If q = q0 and I = 0 at t = 0, the solution is 

qif) = qi+ (q0 ~ ?i) cos co0t (3.77) 

which is the exact electrical analog of Equation 3.74. 

EXAMPLE 3.5 

Consider the series RLC circuit shown in Figure 3-18 driven by an alternating 
emf of value E0 sin cot. Find the current , the voltage VL across the inductor, and 
the angular frequency co at which V, is a maximum. 

Solution. The voltage across each of the circuit elements in Figure 3-18 are 

dq 
v« = LI=LJt = Li 

Vr 
! 
c 

so the voltage drops around the circuit become 

Lq + Rq-1 = E0 sin cot 
C 

L R 

FIGURE 3-18 Example 3.5. RLC circuit with an alternating emf. 
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We identify this equation as similar to Equation 3.53, which we have already 
solved. In addition to the relationships in Table 3-1, we also have /3 = b/2m—> E/2L, 
a)0 = \/k/m —> VVLC, and A = F0/m—>E0/L. The solution for the charge <7is 
given by transcribing Equation 3.60, and the equation for the current I is given by 
transcribing Equation 3.66, which allows us to write 

- E n 
: sin(<o£ — S) 

where 8 can be found by transcribing Equation 3.61. 
The voltage across the inductor is found from the time derivative of the current. 

dl -0)LE0 
VL= L— = 1 cos (wt — 5) 

= V(&>) cos {cat — 8) 

To find the driving frequency a> ma„ which makes V, a maximum, we must take the 
derivative of VL with respect to a> and set the result equal to zero. We only need to 
consider the amplitude V((o) and not the time dependence. 

LEJ fl2 - — + 
dV(w) V c 0)2 & 

dw 
wL 

3/2 

We have skipped a few intermediate steps to arrive at this result. We determine 
the value &>max sought by setting the term in parentheses in the numerator equal 
to zero. By doing so and solving for o)max gives 

1 

L C - ^ 

which is the result we need. Note the difference between this frequency and those 
given by the natural frequency, <w0 = and the charge resonance frequency 
(given by transcribing Equation 3.63), o)R = y/l/LC - 2R2/L?. 

3.8 Principle of Superposition—Fourier Series 
The oscillations we have been discussing obey a differential equation of the form 

d \ 
— + a— + b)x{t) = A cos wt (3.78) 
rfr dt ) 
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The quantity in parentheses on the left-hand side is a linear operator, which we 
may represent by L. If we generalize the t ime-dependent forcing function on the 
right-hand side, we can write the equation of motion as 

L x(t) = F(t) (3.79) 

An important property of linear operators is that they obey the principle of super-
position. This property results f rom the fact that linear operators are distributive, 
that is, 

L(xj + x2) = L(*i) + L(x2) (3.80) 

Therefore, if we have two solutions, x1(t) and x2(t), for two different forcing func-
tions, (I) and F.,(t), 

Lxj = F^t), Lx
2
 = F2(t) (3.81) 

we can add these equations (multiplied by arbitrary constants a t and a 2 ) and obtain 

L(a1x1 + a2x2) = axFx(t) + a2F2(t) (3.82) 

We can extend this argument to a set of solutions xn(t), each of which is appropri-
ate for a given Fn(t): 

/ N \ N 

L 2 anxn(t) = 2 anFn(t) (3.83) l n=l J n=l 

This equation is just Equation 3.79 if we identify the linear combinations as 
N 

x(t) = 2 anxn(t) 
"7 (3.84) 

F(t) = S a / , ( 0 
n= 1 

If each of the individual functions Fnit) has a simple harmonic dependence on 
time, such as cos a>nt, we know that the corresponding solution xn(t) is given by 
Equation 3.60. Thus, if F\t) has the form 

Fit) = 2 a „ cos(oo J ~ <f>J (3.85) 
n 

the steady-state solution is 

1 "V a n x(t) = ~ 2j — j = cos(w„« - d>n - S„) (3.86) 
» - - a;2)2 + 4a>H3* 

where 

Sn = tan"1 ( ( 3 . 8 7 ) 
- <»nj 

We can write down similar solutions where Fit) is represented by a series of 
terms, sin i<i)nt — 4>n). We therefore arrive at the important conclusion that if some 
arbitrary forcing function F{t) can be expressed as a series (finite or infinite) of 
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harmonic terms, the complete solution can also be written as a similar series of 
harmonic terms. This is an extremely useful result, because, according to Fourier's 
theorem, any arbitrary periodic function (subject to certain conditions that are 
not very restrictive) can be represented by a series of harmonic terms. Thus, in the 
usual physical case in which F(t) is periodic with period r = 2n/(0, 

we then have 

where 

F(t + T ) = F(t) 

1 °° 
F(t) = -a0 + 2 (an cos mat + bn sin na>t) 2 n= 1 

(3.88) 

(3.89) 

in = l f F(f TJo 
)cos n<ot' dt' 

2 fT 

bn = - F(t')sin na)t'dt' 
TJo 

(3.90) 

or, because F(t) has a period r , we can replace the integral limits 0 and r by the 
limits — | T = —tt/u) and T = +tt/u>\ 

(O 
a n - ~ 7T 
h ~ ^ 7T 

Vir/oi 
— ir/(o 
+ ir/(o 

F(t')cos root' dt' 

— 7T/(0 
F(t')sin nwt'dt' 

(3.91) 

Before we discuss the response of damped systems to arbitrary forcing func-
tions (in the following section), we give an example of the Fourier representation 
of periodic functions. 

EXAMPLE .">.(. 

A sawtooth driving force funct ion is shown in Figure 3-19. Find the coefficients 
an and bn, and express F(t) as a Fourier series. 

Solution. In this case, Fit) is an odd function, F( — t) = ~F(t), and is expressed by 

F(t) = A-- = ^ t , — r /2 < t < T/2 (3.92) 
T 2-77" 

FIGURE 3-19 Example 3.6. A sawtooth driving force function. 
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Because F(t) is odd, the coefficients an all vanish identically. The bn are given by 
+ TT/ai fa)2 A 

277"2 j -Tr /a , 
£'sin no)t' dt' 

&)2 A 
2t t 2 

i 'cos na>t' sin no)t' 
nut n2a>2 

+ 7T/0J 

—ir/oi 

27t2 na>2 7177 
where the term ( — 1) n + x takes account of the fact that 

—cos rnr 
n odd 
n even 

Therefore we have 

F(t) sinw^ — — sin2w£ + — sin3&)£ 

(3.93) 

(3.94) 

(3.95) 

Figure 3-20 shows the results for two terms, five terms, and eight terms of 
this expansion. The convergence toward the sawtooth funct ion is none too 
rapid. 

We should note two features of the expansion. At the points of discontinu-
ity (t = ± T / 2 ) the series yields the mean value (zero), and in the region imme-
diately adjacent to the points of discontinuity, the expansion "overshoots" the 
original funct ion. This latter effect, known as the Gibbs phenomenon,* occurs 
in all orders of approximation. The Gibbs overshoot amounts to about 9% on 
each side of any discontinuity, even in the limit of an infinite series. 

3.9 The Response of Linear Oscillators to Impulsive 
Forcing Functions (Optional) 

In the previous discussions, we have mainly considered steady-state oscillations. 
For many types of physical problems (particularly those involving oscillating 
electrical circuits), the transient effects are quite important . Indeed, the tran-
sient solution may be of dominat ing interest in such cases. In this section, we in-
vestigate the transient behavior of a linear oscillator subjected to a driving force 
that acts discontinuously. Of course, a "discontinuous" force is an idealization, 
because it always takes a finite time to apply a force. But if the application time is 
small compared with the natural period of the oscillator, the result of the ideal 
case is a close approximation to the actual physical situation. 

* J o s i a h W i l l a r d G i b b s ( 1 8 3 9 - 1 9 0 3 ) d i s c o v e r e d t h i s e f f e c t e m p i r i c a l l y i n 1 8 9 8 . A d e t a i l e d d i s c u s s i o n is 
g i v e n , f o r e x a m p l e , b y Davis ( D a 6 3 , p p . 113—118) . T h e a m o u n t o f o v e r s h o o t is a c t u a l l y 8 . 9 4 9 0 •• • % . 
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1 
1 
1 
1 
] 2 terms 
i 
i 
i 
i i 

/1 

i i i i i i i i i i i 

5 terms 

FIGURE 3-20 Results of Example 3.6. Fourier series representation of sawtooth 
driving force function. 

The differential equat ion describing the mot ion of a damped oscillator is 

F(t) 
x + 2/3% + (OQX (3.96) 

The general solution is composed of the complementary and particular solutions: 

x(t) = Xc(t) + xp(t) (3.97) 

We can write the complementary solution as 

xc{t) = e~pt(A1 cos a)yt + A2 sin o)xt) (3.98) 

where 

at! = Vwg - P'2 (3.99) 

The particular solution xp(t) depends on the nature of the forcing funct ion F(t). 
Two types of idealized discontinuous forcing functions are of considerable in-

terest. These are the step function (or Heaviside function) and the impulse func-
tion, shown in Figures 3-21a and b, respectively. The step funct ion H is given by 

W0) = 0, t < f0 

a, t > t0 

(3.100) 
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Fit) F(t) 

H(t0) I(k,h) 

t(\ u 
(a) (b) 

FIGURE 3-21 (a) Step function; (b) impulse function. 

where a is a constant with the dimensions of acceleration and where the argu-
ment t0 indicates that the time of application of the force is t = I,,. 

The impulse funct ion / is a positive step funct ion applied at t = t0, followed 
by a negative step funct ion applied at some later time tx. Thus 

I(to, tx) = H(t0) - H(ti) 

I(t0, h) = 
t < t0 

t0 < t < tx 

t > tx 

(3.101) 

Although we write the Heaviside and impulse funct ions as H(t0) and I(t0, tx) for 
simplicity, these funct ions depend on the time t and are more properly written 
as H(t; t0) and I(t; t0, tx). 

Response to a Step Function 
For step functions, the differential equation that describes the motion for t > tn is 

x + 2/3x + w Ix = a, t > t0 (3.102) 

We consider the initial conditions to be x(t0) = 0 and x(t0) = 0. The particular 
solution is jus t a constant, and examination of Equation 3.102 shows that it must 
be a/ft)2. Thus, the general solution for t > t() is 

x(t) = e-M'^lAi cos h>x{t - 2q) + A2 sin o)1(t - i0)J + wl 
Applying the initial conditions yields 

«0 

13 a 

Therefore, for t > t0, we have 

n. 
x(t) = • 

i 

and x{t) = 0 for t < t0. 

Be-P(t-t0) 
1 - e-W-'^cos co1(t - t0) sin o)x(t — t0) 

(3.103) 

(3.104) 

(3.105) 
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x(t) 

2a/a>Q P = 0.2 (B0 P = 0 

a/a)0
2 

0 
FIGURE 3-22 Response function solution to the step force function. 

If, for simplicity, we take t0 = 0, the solution can be expressed as 

Pe'V 
1 — e cos en it si sin a> 11 (3.106) 

This response function is shown in Figure 3-22 for the case P = 0.2a>0. It should be 
clear that the ultimate condition of the oscillator (i.e., the steady-state condi-
tion) is simply a displacement by an amoun t a/o)\. 

If no damping occurs, )3 = 0 and w, = w0. Then , for t0 = 0, we have 

The oscillation is thus sinusoidal with ampli tude extremes x = 0 and x = 2a/a>\ 
(see Figure 3-22). 

Response to an Impulse Function 
If we consider the impulse funct ion as the difference between two step funct ions 
separated by a time tx — t0 = r , then, because the system is linear, the general so-
lution for t > tx is given by the superposition of the solutions (Equation 3.105) 
for the two step functions taken individually: 

x(t) = —[1 - cos w0t\, P = 0 /.\4 (3.107) 

x(t) = 
a ne-pa-to) 

1 - e-PC-Wcos &>!(* - *o) s ina>! (<- *0) 0)x 

a T pe~P(t-t0-T) 
— 1 - e-P('-<o-T> cos co,(£ - t0 - r) sin (o1(t - t0 - r) 

Pe?T P 
-\ sin - to - r ) s i n w ^ f - i o ) » t> tx (3.108) 
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The total response (i.e., Equations 3.105 and 3.108) to an impulse funct ion of 
duration r = 5 X 2tt/o)x applied at t = t0 is shown in Figure 3-23 for f3 = O.2o)0. 

If we allow the durat ion r of the impulse funct ion to approach zero, the re-
sponse funct ion will become vanishingly small. But if we allow a —> oo as r —> 0 so 
that the product ar is constant, then the response will be finite. This particular 
limiting case is considerably important , because it approximates the application 
of a driving force that is a "spike" at t = t0 (i.e., T <SC 2tt/o>i)* We want to ex-
pand Equation 3.108 by letting T —>0, but with b = ar = constant. Let A = t — t0 

and B= t, then use Equations D . l l and D.12 ( f rom Appendix D) to obtain 
ae~p(t-ta) ( 

x(t) = \ e^T[cos o)At — tn) cos o)\T sin&)i(£— < 0 )s inw 1 r ] 
I 

/3e* 
— cos w1(t — 10) H [sin wx(t — t0) cos WjT — cos wl(t — t0) sin W j t ] 

P \ - — sin w^t- <0)h t> t0 (3.109) (DX I 

x(t) 

*A "spike" of this type is usual ly t e r m e d a delta funct ion a n d is wr i t t en S(t — t0). T h e de l t a f u n c t i o n 
has t h e p r o p e r t y t h a t S(t) = 0 f o r t + 0 a n d S(0) = oo, b u t 

r+oo 
S(t-t0)dt=l 

J - oo 

T h i s is t h e r e f o r e n o t a p r o p e r f u n c t i o n in t h e m a t h e m a t i c a l sense , b u t it c a n b e d e f i n e d as t h e l imi t 
of a we l l -behaved a n d h igh ly local f u n c t i o n ( s u c h as a Gaus s i an f u n c t i o n ) as t h e w i d t h p a r a m e t e r 
a p p r o a c h e s ze ro . See also M a r i o n a n d H e a l d (Ma80, Sec t ion 1.11) . 
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Because r is small, we can expand , cos COJT, and sin co ,T using Equations D.34, 
D.29, and D.28, keeping only the first two terms in each. After multiplying out 
all the terms containing r , we keep only the lowest-order term of T. 

x(t) = sin a>}(t — tn) 
jS'V 
w. 

t > tn 

Using Equation 3.99 for u>% and r = b/a gives us, finally, 

x(t) = —g-^C-Wsin w,(/ - ta), t > t0 (3.110) 

This response function is shown in Figure 3-24 for the case (3 = O.2o>0. 
Notice that, as t becomes large, the oscillator returns to its original position of 
equilibrium. 

The fact that the response of a linear oscillator to an impulsive driving force 
can be represented in the simple manne r of Equation 3.110 leads to a powerful 
technique for dealing with general forcing functions, which was developed by 
Green.* Green's me thod is based on represent ing an arbitrary forcing funct ion 
as a series of impulses, shown schematically in Figure 3-25. If the driven system is 
linear, the principle of superposition is valid, and we can express the inhomoge-
neous part of the differential equation as the sum of individual forcing functions 
F„(t)/m, which in Green's me thod are impulse functions: 

2/3x wf)X = 2 FM 
o m 2 /„(/) (3.111) 

* G e o r g c G r e e n ( 1 7 9 3 - 1 8 4 1 ) , a s e l f - e d u c a t e d E n g l i s h m a t h e m a t i c i a n . 
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m 
m 

FIGURE 3-25 All arbitrary force function can be represented as a series of impulses, 
a method known as Green's methods. 

where 

In(t) = I(tn, tn+1) 

an(tn)> tn < t < tn+ j ^ ^ 
0, Otherwise 

The interval of time over which /„ acts is tn+ J tn — T, and T 2tt/ojx. The so-
lution for the nth impulse is, according to Equation 3.110, 

xn{t) = aj^t - tn)y t > tn + T (3.113) 

and the solution for all the impulses up to and including the M h impulse is 

a j j j r 
n= - oo (O 1 

x(t) = % a" " V^-'tt'sin 0)x(t- tn), tN< t< tN+1 (3.114) 

If we allow the interval r to approach zero and write tn as t', then the sum be-
comes an integral: 

ft a ( t ' \ 
x(t) = -L-Le-W-'">sm co^t- t')dt' (3.115) 
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We define 

G(t, f ) = > 

1 
TOO>i 
0, 

e-M'^smu^t- t'), f > f ' 

t < t' 

Then, because 

we have 

ma(t') = F(t') 

x(t) = 
"t 

F(t')G{t, t') dt' 
—OO 

(3.116) 

(3.117) 

(3.118) 

The funct ion G(t, t') is known as the Green's function for the linear oscillator 
equation (Equation 3.96). The solution expressed by Equation 3.118 is valid 
only for an oscillator initially at rest in its equilibrium position, because the solu-
tion we used for a single impulse (Equation 3.110) was obtained for jus t such an 
initial condition. For o ther initial conditions, the general solution may be ob-
tained in an analogous manner. 

Green's me thod is generally useful for solving linear, inhomogeneous differ-
ential equations. The main advantage of the me thod lies in the fact that the 
Green's funct ion G(t, t'), which is the solution of the equation for an infinitesi-
mal e lement of the inhomogeneous part, already contains the initial conditions—so 
the general solution, expressed by the integral of F(t') G(t, t'), automatically also 
contains the initial conditions. 

EXAMPLE 3.7 

Find x(t) for an exponentially decaying forcing funct ion beginning at t = 0 and 
having the following form for t > 0: 

F(t) = F0e-y\ t > 0 

Solution. The solution for x(t) according to Green's me thod is 

Fn <"' Lf< >i Jo 
x(t) = —— | sin w ^ i — t')dt' 

Making a change of variable to z = u>\(t — t'), we find 

x(t) = 0 
md) f 

o 
g-y«e[(r-»/«>.]*si n z d z 

bi\t 

F0/m 
(y - ft)2 + col e yt—e ( cos coxt — w ^ sin 

(3.119) 

(3.120) 

(3.121) 
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F0/m 

(y-Pf + fflj! 

F0/m 

(r-Pf+ of 

F0/m 

( Y - p f + CO? 

P = 0.1 £Wq 
/ = O.3to0 

FIGURE 3-26 Response function for Example 3.7. 

This response func t ion is i l lustrated in Figure 3-26 fo r th ree d i f fe ren t combi-
nat ions of the d a m p i n g parameters )3 and y. W h e n y is large compared with 
j8, a n d if bo th are small compared with <w0, then the response approaches that 
for a "spike"; compare Figure 3-24 with the u p p e r curve in Figure 3-26. W h e n 
y is small compared with (3, the response approaches the shape of the forc ing 
func t ion i tself—that is, an initial increase followed by an exponent ia l decay. 
T h e lower curve in Figure 3-26 shows a decaying ampl i tude on which is su-
per imposed a residual oscillation. W h e n /? and y are equal , Equat ion 3.121 
becomes 

x(t) = —^e-P'il - cos &M), P = J (3.122) 
mco f 

Thus, the response is oscillatory with a "period" equal to 27t/«i bu t with an 
exponential ly decaying ampl i tude , as shown in the middle curve of Figure 
3-26. 

A response of the type given by Equation 3.121 could result, for example, if 
a quiescent but intrinsically oscillatory electronic circuit were suddenly driven 
by the decaying voltage on a capacitor. 
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PROBLEMS 

3-1. A simple harmonic oscillator consists of a 100-g mass attached to a spring whose 
force constant is 104 dyne/cm. The mass is displaced 3 cm and released from rest. 
Calculate (a) the natural frequency v0 and the period T0, (b) the total energy, and 
(c) the maximum speed. 

3-2. Allow the motion in the preceding problem to take place in a resisting medium. 
After oscillating for 10 s, the maximum amplitude decreases to half the initial 
value. Calculate (a) the damping parameter /3, (b) the frequency v ( (compare with 
the undamped frequency v0), and (c) the decrement of the motion. 

3-3. The oscillator of Problem 3-1 is set into motion by giving it an initial velocity of 
1 cm/s at its equilibrium position. Calculate (a) the maximum displacement and 
(b) the maximum potential energy. 

3-4. Consider a simple harmonic oscillator. Calculate the time averages of the kinetic 
and potential energies over one cycle, and show that these quantities are equal. 
Why is this a reasonable result? Next calculate the space averages of the kinetic and 
potential energies. Discuss the results. 

3-5. Obtain an expression for the fraction of a complete period that a simple harmonic 
oscillator spends within a small interval A* at a position x. Sketch curves of this 
function versus x for several different amplitudes. Discuss the physical significance 
of the results. Comment on the areas under the various curves. 

3-6. Two masses m1 = 100 g and m2 = 200 g slide freely in a horizontal frictionless track 
and are connected by a spring whose force constant is k = 0.5 N/m. Find the fre-
quency of oscillatory motion for this system. 

3-7. A body of uniform cross-sectional area A = 1 cm2 and of mass density p = 0.8 
g/cm3 floats in a liquid of density p0 = 1 g/cm3 and at equilibrium displaces a vol-
ume V = 0.8 cm3. Show that the period of small oscillations about the equilibrium 
position is given by 

t = 2irVWgA 
where gis the gravitational field strength. Determine the value of T. 

3-8. A pendulum is suspended from the cusp of a cycloid* cut in a rigid support (Figure 
3-A). The path described by the pendulum bob is cycloidal and is given by 

x = a(4> — sin <p), y = a{cos (f> — 1) 

where the length of the pendulum is I = 4a, and where <f> is the angle of rotation 
of the circle generating the cycloid. Show that the oscillations are exactly isochro-
nous with a frequency co0 = X^g/l, independent of the amplitude. 

* T h e r e a d e r u n f a m i l i a r wi th t h e p r o p e r t i e s of cyc lo ids s h o u l d c o n s u l t a t e x t o n ana ly t i c g e o m e t r y . 
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y 

3-9. A particle of mass m is at rest at the end of a spring (force constant = k) hanging 
from a fixed support. At t = 0, a constant downward force F is applied to the mass 
and acts for a time t0. Show that, after the force is removed, the displacement of the 
mass from its equilibrium position (x = x0, where x is down) is 

F 
x — x0 = - [cosci)0(i — t0) — costond 

k 

where cog = k/m. 

3-10. If the amplitude of a damped oscillator decreases to 1 / e of its initial value after 
n periods, show that the frequency of the oscillator must be approximately 
[1 — (8"7R2n2) ' ] times the frequency of the corresponding undamped oscillator. 

3-11. Derive the expressions for the energy and energy-loss curves shown in Figure 3-8 
for the damped oscillator. For a lightly damped oscillator, calculate the average rate 
at which the damped oscillator loses energy (i.e., compute a time average over one 
cycle). 

3-12. A simple pendulum consists of a mass m suspended from a fixed point by a weight-
less, extensionless rod of length I. Obtain the equation of motion and, in the 
approximation that sin d = 0, show that the natural frequency is (o0 = \/g/l, where g 
is the gravitational field strength. Discuss the motion in the event that the motion 
takes place in a viscous medium with retarding force 2 m\fgl 6. 

3-13. Show that Equation 3.43 is indeed the solution for critical damping by assuming a 
solution of the form x(t) = y(t)cxp(~/3t) and determining the function y(t). 

3-14. Express the displacement x(t) and the velocity x(t) for the overdamped oscillator in 
terms of hyperbolic functions. 

3-15. Reproduce Figures 3-10b and c for the same values given in Example 3.2, but 
instead let /3 = 0.1 s and S = it rad. How many times does the system cross the * = 
0 line before the amplitude finally falls below 10 - of its maximum value? Which 
plot, b or c, is more useful for determining this number? Explain. 

3-16. Discuss the motion of a particle described by Equation 3.34 in the event that b < 0 
(i.e., the damping resistance is negative). 
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3-17. For a damped, driven oscillator, show that the average kinetic energy is the same at 
a frequency of a given number of octaves* above the kinetic energy resonance as at 
a frequency of the same number of octaves below resonance. 

3-18. Show that, if a driven oscillator is only lighdy damped and driven near resonance, 
the Q of the system is approximately 

/ T o t a l e n e r g y A 

^ ^ IEnergy loss during one period ) 

3-19. For a lightly damped oscillator, show that Q s w0/Aw (Equation 3.65). 

3-20. Plot a velocity resonance curve for a driven, damped oscillator with Q = 6, and show 
that the full width of the curve between the points corresponding to xmax/"\/2 is ap-
proximately equal to coa/6. 

3-21. Use a computer to produce a phase space diagram similar to Figure 3-11 for the 
case of critical damping. Show analytically that the equation of the line that the 
phase paths approach asymptotically is x = —f3x. Show the phase paths for at least 
three initial positions above and below the line. 

3-22. Let the initial position and speed of an overdamped, nondriven oscillator be x0 and 
j/0, respectively. 

(a) Show that the values of the amplitudes A, and A2 in Equation 3.44 have the values 
/32x0 + i>o /Vo + ^o Ax = — — andA2 = —where /31 = /3 — o>2 and/82 = 13 + w2. 

P 2 ~~ P i H 2 P i 
(b) Show that when = 0, the phase paths of Figure 3-11 must be along the 

dashed curve given by x = —j3.2x, otherwise the asymptotic paths are along the 
other dashed curve given by x = — /SjX. Hint: Note that /32 > /3l and find the 
asymptotic paths when t—> oo. 

3-23. To better understand underdamped motion, use a computer to plot x( t) of Equation 
3.40 (with A — 1 m) and its two components [e^131 and cos (colt — S)] and compar-
isons (with /3 = 0) on the same plot as in Figure 3-6. Let o>0 = 1 rad/s and make sep-
arate plots for /3

2

/<oo = 0.1, 0.5, and 0.9 and for S (in radians) = 0, tt/2, and it. Have 
only one value of S and /3 on each plot (i.e., nine plots). Discuss the results. 

3-24. For (3 = 0.2 s"1, produce computer plots like those shown in Figure 3-15 for a sinu-
soidal driven, damped oscillator where xp(t), xc(t), and the sum x(t) are shown. Let 
k = 1 kg/s2 and m = 1 kg. Do this for values of u>/col of 1/9, 1/3, 1.1, 3, and 6. For 
the xc(t) solution (Equation 3.40), let the phase angle <5 = 0 and the amplitude 
A = — 1 m. For the xp(t) solution (Equation 3.60), let A = 1 m/s 2 but calculate 8. 
What do you observe about the relative amplitudes of the two solutions as oj in-
creases? Why does this occur? For oj/oj , = 6, let A = 20 m/s2 for xp(t) and produce 
the plot again. 

3-25. For values o f / 3 = l s - 1 , f t = l kg/ s 2, and m = 1 kg, produce computer plots like those 
shown in Figure 3-15 for a sinusoidal driven, damped oscillator where xp(t), x,(t), 

* A n o c t a v e is a f r e q u e n c y i n t e r v a l i n w h i c h t h e h i g h e s t f r e q u e n c y is j u s t tw ice t h e l o w e s t f r e q u e n c y . 
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and the sum x{t) are shown. Do this for values of co/co0 of 1/9, 1/3, 1.1,3, and 6. For 
the critically damped xc(t) solution of Equation 3.43, let A = — 1 m and B = 1 m/s. 
For the Xp(t) solution of Equation 3.60, let A = 1 m/s 2 and calculate 5. What do you 
observe about the relative amplitudes of the two solutions as co increases? Why does 
this occur? For co/oj0 = 6, let A = 20 m/s 2 for Xp(t) and produce the plot again. 

3-26. Figure 3-B illustrates a mass m, driven by a sinusoidal force whose frequency is co. 
The mass m, is attached to a rigid support by a spring of force constant k and slides 
on a second mass m->. The frictional force between mx and m2 is represented by the 
damping parameter and the frictional force between m2 and the support is rep-
resented by b2. Construct the electrical analog of this system and calculate the 
impedance. 

h k 
AccaccQy 

FIGURE 3-B Problem 3-26. 

3-27. Show that the Fourier series of Equation 3.89 can be expressed as 

1 °° 
F(t) = - a0 + cncos(ncot - 4>„) 

Relate the coefficients cn to the an and bn of Equation 3.90. 

3-28. Obtain the Fourier expansion of the function 

-tt/co < t < 0 
l + l , 0 

in the interval —it/co < t < tt/io. Take co = 1 rad/s. In the periodical interval, cal-
culate and plot the sums of the first two terms, the first three terms, and the first 
four terms to demonstrate the convergence of the series. 

3-29. Obtain the Fourier series representing the function 

-2ir/a < t < 0 
(sir F(t) . l^sintu/; 0 < t < 2tt/co 

3-30. Obtain the Fourier representation of the output of a full-wave rectifier. Plot the first 
three terms of the expansion and compare with the exact function. 

3-31. A damped linear oscillator, originally at rest in its equilibrium position, is subjected 
to a forcing function given by 

f°' ' '< ° — = {a x Wt), 0 < t < t m t> t 
Find the response function. Allow T —» 0 and show that the solution becomes that 
for a step function. 



142 3 / OSClLLAl'lUNS 

3-32. Obtain the response of a linear oscillator to a step function and to an impulse func-
tion (in the limit r —> 0) for overdamping. Sketch the response functions. 

3-33. Calculate the maximum values of the amplitudes of the response functions shown 
in Figures 3-22 and 3-24. Obtain numerical values for (3 = 0.2ft>0 when a — 2 m/s2 , 
co0 = 1 rad/s, and t0 = 0. 

3-34. Consider an undamped linear oscillator with a natural frequency co0 = 0.5 rad/s 
and the step function a = 1 m/s2 . Calculate and sketch the response function for 
an impulse forcing function acting for a time r = 2tt/(o0. Give a physical interpre-
tation of the results. 

3-35. Obtain the response of a linear oscillator to the forcing function 

m f0' < < 0 

= < a s i n cat, 0 < t < t t / c o m 
1^0, t > ir/to 

3-36. Derive an expression for the displacement of a linear oscillator analogous to 
Equation 3.110 but for the initial conditions x(<0) = x0 and x(tu) = x0. 

3-37. Derive the Green's method solution for the response caused by an arbitrary forcing 
function. Consider the function to consist of a series of step functions—that is, start 
from Equation 3.105 rather than from Equation 3.110. 

3-38. Use Green's method to obtain the response of a damped oscillator to a forcing 
function of the form 

[O t < 0 
~~ \F0e~yt sin cot t > 0 

3-39. Consider the periodic function 

I s i n cot, 0 < t < t t / c o _ J sii 
^ ^ 1 7 / c o < t < 2 t t / c o 

which represents the positive portions of a sine function. (Such a function repre-
sents, for example, the output of a half-wave rectifying circuit.) Find the Fourier 
representation and plot the sum of the first four terms. 

3-40. An automobile with a mass of 1000 kg, including passengers, setdes 1.0 cm closer to 
the road for every additional 100 kg of passengers. It is driven with a constant hori-
zontal component of speed 20 km/h over a washboard road with sinusoidal bumps. 
The amplitude and wavelength of the sine curve are 5.0 cm and 20 cm, respectively. 
The distance between the front and back wheels is 2.4 m. Find the amplitude of 
oscillation of the automobile, assuming it moves vertically as an undamped driven 
harmonic oscillator. Neglect the mass of the wheels and springs and assume that 
the wheels are always in contact with the road. 

3-41. (a) Use the general solutions x(t) to the differential equation (Px/dt2 + 2 f idx /d t + 
oj'qX = 0 for underdamped, critically damped, and overdamped motion and choose 
the constants of integration to satisfy the initial conditions x = x0 and v = v0 = 0 at 
t = 0. (b) Use a computer to plot the results for x(t)/x0 as a function of co0t in the 
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three cases [i — (1 ~) f3 — coq, and f3 — n. Show all three curves on a single 
plot. 

3-42. An undamped driven harmonic oscillator satisfies the equation of motion m(dix/dt2+ 
co^x) = F(t). The driving force F(t) = F0 sin(w<) is switched on at t = 0. (a) Find x(t) 
for t> 0 for the initial conditions x = 0 and v = 0 at t = 0. (b) Find x(t) for co = co0 
by taking the limit co —>co0 in your result for part (a). Sketch your result for x(t). 
Hint: In part (a) look for a particular solution of the differential equation of the 
form x = A sin (cot) and determine A. Add the solution of the homogeneous equa-
tion to this to obtain the general solution of the inhomogeneous equation. 

3-43. A point mass m slides without friction on a horizontal table at one end of a massless 
spring of natural length a and spring constant k as shown in Figure 3-C. The spring 
is attached to the table so it can rotate freely without friction. The net force on the 
mass is the central force F(r) = — k(r — a), (a) Find and sketch both the potential 
energy (/(r) and the effective potential UeB(r). (b) What angular velocity o>0 is re-
quired for a circular orbit with radius r0? (c) Derive the frequency of small oscillations 
co about the circular orbit with radius r0. Express your answers for (b) and (c) in terms 
of k, m, r0, and a 

3-44. Consider a damped harmonic oscillator. After four cycles the amplitude of the os-
cillator has dropped to \ / e of its initial value. Find the ratio of the frequency of the 
damped oscillator to its natural frequency. 

FIGURE 3-C Problem 3-43. 

3-45. A grandfather clock has a pendulum length of 0.7 m and mass bob of 0.4 kg. A 
mass of 2 kg falls 0.8 m in seven days to keep the amplitude (from equilibrium) of 
the pendulum oscillation steady at 0.03 rad. What is the Q of the system? 



CHAPTER 

Nonlinear Oscillations 
and Chaos 

4.1 Introduction 
The discussion of oscillators in Chapter 3 was l imited to l inear systems. W h e n 
pressed to divulge greater detail, however, na tu re insists of be ing nonlinear, ex-
amples are the f lapping of a flag in the wind, the d r ipp ing of a leaky water 
faucet, and the oscillations of a double p e n d u l u m . T h e techniques learned thus 
far for l inear systems may n o t be useful fo r non l inea r systems, bu t a large num-
ber of techniques have been developed for non l inea r systems, some of which we 
address in this chapter. We use numerical techniques to solve some of the non-
linear equat ions in this chapter. 

The equat ion of mot ion for the d a m p e d a n d driven oscillator of Chapte r 3 
moving in only o n e d imension can be written as 

If f(x) or g(x) contains powers of x or x, respectively, h igher than linear, t hen the 
physical system is nonlinear . Complete solutions are n o t always available for 
Equat ion 4.1, and sometimes special t r ea tmen t is n e e d e d to solve such equa-
tions. For example, we can learn m u c h abou t a physical system by considering 
the deviation of the forces f r o m linearity and by examining phase diagrams. 
Such a system is the simple p lane p e n d u l u m , a system that is l inear only when 
small oscillations are assumed. 

In the beg inn ing of the n ine teen th century, the famous French mathemat i -
cian Pierre Simon de Laplace espoused the view that if we knew the position and 
velocities of all the particles in the universe, t h e n we would know the fu tu re fo r 
all time. This is the deterministic view of na ture . In recen t years, researchers in 

mx + f ( x ) + g(x) = h(t) (4.1) 

144 
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many disciplines have come to realize that knowing the laws of na ture is not 
enough. Much of nature seems to be chaotic. In this case, we refer to determin-
istic chaos, as opposed to randomness, to be the mot ion of a system whose time evo-
lution has a sensitive dependence on initial conditions. The deterministic develop-
men t refers to the way a system develops f rom one m o m e n t to the next, where 
the present system depends on the one jus t past in a well-determined way 
through physical laws. We are no t referr ing to a r andom process in which the 
present system has no causal connect ion to the previous one (e.g., the fl ipping 
of a coin). 

Measurements made on the state of a system at a given time may no t allow us 
to predict the fu ture situation even moderately far ahead, despite the fact that the 
governing equations are known exactly. Deterministic chaos is always associated 
with a nonl inear system; nonlinearity is a necessary condition for chaos but not a 
sufficient one. Chaos occurs when a system depends in a sensitive way on its pre-
vious state. Even a tiny effect, such as a butterfly flying nearby, may be enough to 
vary the conditions such that the fu ture is entirely different than what it might 
have been, noZjust a tiny bit different. The advent of computers has allowed chaos 
to be studied because we now have the capability of per forming calculations of 
the time evolution of the properties of a system that includes these tiny variations 
in the initial conditions. Chaotic systems can only be solved numerically, and 
there are no simple, general ways to predict when a system will exhibit chaos. 

Chaotic p h e n o m e n a have been uncovered in practically all areas of science 
and engineering—in irregular heartbeats; the mot ion of planets in our solar sys-
tem; water dr ipping f rom a tap; electrical circuits; weather patterns; epidemics; 
changing populations of insects, birds, and animals; and the mot ion of electrons 
in atoms. The list goes on and on. Henr i Poincare* is generally given credit for 
first recognizing the existence of chaos dur ing his investigation of celestial me-
chanics at the end of the n ine teenth century. H e came to the realization that the 
motion of apparently simple systems, such as the planets in our solar system, can 
be extremely complicated. Although various investigators also eventually came 
to unders tand the existence of chaos, t remendous breakthroughs did no t hap-
pen until the 1970s, when computers were readily available to calculate the long-
time histories required to documen t the behavior. 

The study of chaos has become widespread, and we will only be able to look 
at the rudimentary aspects of the phenomena . Specialized textbooks^ on the 
subject have become abundan t for those desiring fu r the r study. For example, 
space does not permit us to discuss the fascinating area of fractals, the compli-
cated patterns that arise f rom chaotic processes. 

* H e n r i P o i n c a r e ( 1 8 5 4 - 1 9 1 2 ) was a m a t h e m a t i c i a n w h o c o u l d a l so b e c o n s i d e r e d a phys ic i s t a n d 
p h i l o s o p h e r . H i s c a r e e r s p a n n e d t h e e r a w h e n classical m e c h a n i c s was a t its h e i g h t , s o o n t o b e over -
t a k e n by relat ivi ty a n d q u a n t u m m e c h a n i c s . H e s e a r c h e d f o r p r e c i s e m a t h e m a t i c a l f o r m u l a s t h a t 
w o u l d a l low h i m t o u n d e r s t a n d t h e d y n a m i c s tabi l i ty o f sys tems. 
' P a r t i c u l a r l y u s e f u l b o o k s a r e by B a k e r a n d G o l l u b ( B a 9 6 ) , M o o n ( M o 9 2 ) , H i l b o r n (HiOO), a n d 
S t r o g a t z (S t94 ) . 
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4.2 Nonlinear Oscillations 
Consider a potent ia l energy of the parabolic f o r m 

U(x) = — kx2 (4.2) 

T h e n the cor responding force is 

F(x) = —kx (4.3) 

This is j u s t the case of simple ha rmon ic mot ion discussed in Section 3.2. Now, 
suppose a particle moves in a potent ia l well, which is some arbitrary func t ion of 
distance (as in Figure 4-1). T h e n , in the vicinity of the m i n i m u m of the well, we 
usually approximate the potent ia l with a parabola . There fore , if the energy of 
the particle is only slighdy greater t han Umin, only small ampl i tudes are possible 
and the mo t ion is approximately simple ha rmonic . If the energy is appreciably 
greater than Umin, so that the ampl i tude of the mo t ion canno t be cons idered 
small, t hen it may n o longer be sufficiently accurate to make the approx imat ion 
U(x) ~ ^kx2 and we mus t deal with a nonlinear force. 

In many physical situations, the deviation of the force f r o m linearity is sym-
metric abou t the equi l ibr ium posit ion (which we take to be at x = 0). In such 
cases, the magnitude of the force exer ted on a particle is the same at — x as at x; 
the direction of the force is opposi te in the two cases. There fo re , in a symmetric 
situation, the first correct ion to a l inear force must be a t e rm propor t iona l to %3; 
hence , 

where e is usually a small quantity. T h e potent ia l co r responding to such a force 
is 

F(x) = —kx + ex: , 3 (4.4) 

U(x) = - kx2 — - ex4 1 1 
(4.5) 

2 4 

U(x) 

X 

FIGURE 4-1 Arbitrary potential U(x) indicating a parabolic region where simple 
harmonic motion is applicable. 
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F(x) 

\ 

e > 0 \ 
(So f t ) 

N\ 
\ 

F{x) 

K L i n e a r \ 

e < 0 \ 
( H a r d ) 

V 
U(x) 

P a r a b o l i c 
U{x) 

P a r a b o l i c 

0 0 

FIGURE 4-2 Force Fix) and potential Uix) for a soft and hard system when an x3 

term is added to the force. 

Depending on the sign of the quantity e, the force may either be greater or less 
than the linear approximation. If e > 0, then the force is less than the linear 
term alone and the system is said to be soft\ if e < 0, then the force is greater and 
the system is hard. Figure 4-2 shows the fo rm of the force and the potential for a 
soft and a hard system. 

EXAMPLE 4.1 

Consider a particle of mass m suspended between two identical springs (Figure 4-3). 
Show that the system is nonlinear. Find the steady-state solution for a driving 
force F0 cos cut. 

Solution. If both springs are in their unex tended conditions (i.e., there is no 
tension, and therefore no potential energy, in ei ther spring) when the particle 
is in its equilibrium posit ion—and if we neglect gravitational forces—then when 
the particle is displaced f rom equilibrium (Figure 4-3b), each spring exerts a 
force —kis — I) on the particle ik is the force constant of each spring). T h e net 
(horizontal) force on the particle is 

F= ~2kis - I ) sinO (4.6) 

Now, 

5= V l 2 + X2 
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(a) E q u i l i b r i u m p o s i t i o n (b ) E x t e n d e d p o s i t i o n 

FIGURE 4-3 Example 4.1. A double spring system in (a) equilibrium and 
(b) extended positions. 

so 

sin A 
x 
s VFV 

Hence , 

F = 
2kx 

V/2 + x2 (V/2 + - /) = -2kx 
V i + (x/i)2 

If we consider x/1 to be a small quantity and expand the radical, we f ind 

(4.7) 

F= -kl 

If we neglect all terms except the leading term, we have, approximately, 

F(x) = ~(k/P)x3 (4.8) 

Therefore , even if the ampl i tude of the mot ion is sufficiendy restricted so that 
x/l is a small quantity, the force is still p ropor t iona l to x3. T h e system is there-
fore intrinsically nonlinear. However, if it had b e e n necessary to stretch each 
spring a distance d to at tach it to the mass when at the equi l ibr ium position, 
t hen we would f ind for the force (see Problem 4-1): 

F(x) = -2{kd/l)x- [k(l- d)/l5]x3 (4.9) 

and a l inear t e rm is in t roduced . For oscillations with small ampl i tude , the mo-
tion is approximately simple harmonic . 

From Equat ion 4.9 we identify 

e ' = -k(l- d)/ls < 0 
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Thus the system is hard. 
If we have a driving force F0 cos cot, the equation of mot ion for the 

stretched spring (force of Equation 4.9) becomes 

2kd k(l- d) 3 mx = —x x3 + F0 cos cot (4.10) 
I Is 

Let 

e ' 2 kd F0 E = —, a = , and G = — (4.11) 
m ml m 

then 

x = —ax + ex3 + G cos ait (4.12) 

Equation 4.12 is a difficult differential equation to solve. We can find the impor-
tant characteristics of the solution by a m e t h o d of successive approximations 
(perturbation technique) . First, try a solution xx = A cos cot, and insert into 
the right-hand side of Equation 4.12, which becomes 

x2 = — aA cos (at + sA3 cos3 cot + G cos cot (4.13) 

where the solution of Equation 4.13 is x = x2- This equat ion can be solved for 
x2 using the identity 

* 3 . 1 

cos a)t = — cos (lit H— cos Scot 
4 4 

Using this equat ion in Equation 4.13 gives 

/ 3 \ i 
x2 = - I aA - - eAs - G Icos cot + - sA3 cos 3cot (4.14) 

Integrating twice (with integration constants set equal to zero) gives 

i f 3 \ sA3 

x2 = —rl aA eA3 — G Icos cot — cos 3cot (4.15) 
« r \ 4 J 36 (a1 

This is already a complicated solution. U n d e r what conditions for e, a, and x is 
x2 a suitable solution? Numerical techniques with a compute r can quickly yield 
a perturbative solution quite accurately. We have f o u n d that the ampl i tude 
depends on the driving frequency, but no resonance occurs at the natural 
frequency of the system. 

Further discussion of solution methods for Equation 4.12 would take us too 
far afield of our present discussion. The result is that for some values of the 
driving frequency co, three different amplitudes may occur with "jumps" be-
tween the amplitudes. The ampli tude may have a different value for a given co 
depending on whether co is increasing or decreasing (hysteresis). We present a 
simple case of this effect in Section 4.5. 
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F(x) 

In real physical situations, we are of ten concerned with symmetric forces 
and potentials. But some cases have asymmetric forms. For example, 

F(x) = -kx + Ax2 (4.16) 

The potential for which is 

U(x) = \kx2 - \ Ax3 (4.17) 
2 3 

This case is illustrated in Figure 4-4 for A < 0; the system is hard for x > 0 and 
soft for x < 0. 

4.3 Phase Diagrams for Nonlinear Systems 
The construction of a phase diagram for a nonl inear system may be accom-
plished by using Equation 2.97: 

x(x) oc V e - U(x) (4.18) 

When U(x) is known, it is relatively easy to make a phase diagram for x(x). 
Computers, with their ever-improving graphics capability, make this a particu-
larly easy task. However, in many cases it is difficult to obtain U(x), and we must 
resort to approximation procedures to eventually p roduce the phase diagram. 
O n the other hand , it is relatively easy to obtain a qualitative picture of the phase 
diagram for the mot ion of a particle in an arbitrary potential . For example, con-
sider the asymmetric potential shown in Figure 4-5a, which represents a system 
that is soft for x < 0 and ha rd for x > 0. If n o damping occurs, then because x is 
proport ional to V £ — U(x), the phase diagram must be of the fo rm shown in 
Figure 4-5b. Three of the oval phase paths are drawn, corresponding to the 
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U 

FIGURE 4-5 (a) Asymmetric potential and (b) phase diagram for bounded motion. 

three values of the total energy indicated by the dot ted lines in the potential di-
agram. For a total energy only slightiy greater than that of the min imum of the 
potential, the oval phase paths approach ellipses. If the system is damped, then 
the oscillating particle will "spiral down the potential well" and eventually come 
to rest at the equilibrium position, x = 0. The equilibrium point at x = 0 in this 
case is called an attractor. An attractor is a set of points (or one point) in phase 
space toward which a system is "attracted" when damping is present. 

For the case shown in Figure 4-5, if the total energy E of the particle is less 
than the height to which the potential rises on ei ther side of x = 0, then the par-
ticle is "trapped" in the potential well (cf., the region xa < x < xb in Figure 2-14). 
The point x — 0 is a position of stable equilibrium, because (d2U(x)/dx2)q > 0 
(see Equation 2.103), and a small disturbance results in locally b o u n d e d motion. 

In the vicinity of the maximum of a potential, a qualitatively different type of 
motion occurs (Figure 4-6). Here the point x = 0 is one of unstable equilibrium, 
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k 

FIGURE 4-6 (a) Inverted asymmetric potential and (b) phase diagram for 
unbounded motion. 

because if a particle is at rest at this point, then a slight disturbance will result in lo-
cally unbounded motion.* Similarly, (d2U(x)/dx2)0 < 0 gives unstable equilibrium. 

If t he po ten t ia l in F igure 4-6a were parabol ic—if U(x) = —| kx2—then the 
phase pa ths c o r r e s p o n d i n g to the energy E0 would be s t ra ight l ines a n d those 
c o r r e s p o n d i n g to the energ ies Ex and £ 2 would be hyperbolas . This is there -
fo re the l imit to which the phase pa ths of F igure 4-6 would a p p r o a c h if 
the n o n l i n e a r t e r m in the express ion fo r t he fo rce were m a d e to decrease in 
magn i tude . 

By re fe r r ing to the phase paths for the potent ials shown in Figures 4-5 a n d 
4-6, we can rapidly construct a phase diagram for any arbitrary potent ia l (such as 
that in Figure 2-14). 

* T h e d e f i n i t i o n of instabi l i ty m u s t b e s t a t ed in t e r m s of locally u n b o u n d e d m o t i o n , f o r if t h e r e a r e 
o t h e r m a x i m a of t h e p o t e n t i a l g r e a t e r t h a n t h e o n e s h o w n a t x = 0, t h e m o t i o n will b e b o u n d e d by 
these o t h e r p o t e n t i a l ba r r i e r s . 
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X 

FIGURE 4-7 Phase diagram for the solution of the van der Pol Equation 4.20. The 
damping term is fi = 0.05, and the solution very slowly approaches the 
limit cycle at 2. Positive and negative damping occur, respectively, for 
Id values outside and inside the limit cycle at 2. The solid and dashed 
lines have initial (x, x) values of (1.0, 0) and (3.0, 0), respectively. 

An impor tant type of nonl inear equat ion was extensively studied by van der 
Pol in his investigation of nonl inear oscillations in vacuum tube circuits of early 
radios.* This equat ion has the form 

x + fji(x2 — a?)x + o)qX = 0 (4.19) 

where /i is a small, positive parameter. A system described by van der Pol's equa-
tion has the following interesting property. If the ampli tude |x| exceeds the crit-
ical value \a\, then the coefficient of x is positive and the system is damped. But 
if < \a\, then negative damping occurs; that is, the ampli tude of the mot ion 
increases. It follows that there must be some ampli tude for which the motion nei-
ther increases nor decreases with time. Such a curve in the phase plane is called 
the limit cycle* (Figure 4-7) and is the at t ractor for this system. Phase paths 

*B. van d e r Pol, Phil. Mag. 2, 978 (1926) . Extens ive t r e a t m e n t s of van d e r Po l ' s e q u a t i o n m a y b e 
f o u n d , f o r e x a m p l e , in Minor sky (Mi47) o r in A n d r o n o w a n d C h a i k i n (An49) ; b r i e f d iscuss ions a r e 
given by L indsay (Li51, p p . 6 4 - 6 6 ) a n d by P ipes (Pi46, p p . 6 0 6 - 6 1 0 ) . 
t T h e t e r m was i n t r o d u c e d by P o i n c a r e a n d is o f t e n ca l l ed t h e Poincare limit cycle. 
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outside the limit cycle spiral inward, and those inside the limit cycle spiral outward. 
Inasmuch as the limit cycle defines locally bounded motion, we may refer to the 
situation it represents as stable. 

A system described by van der Pol's equat ion is self-limiting-, that is, once set 
into mot ion under conditions that lead to an increasing amplitude, the ampli-
tude is automatically prevented f rom growing without bound . T h e system has 
this property whether the initial ampli tude is greater or smaller than the critical 
(limiting) ampli tude x0. 

Now let us turn to the numerical calculation of van der Pol's Equation 4.19. 
In order to make the calculation simpler and to be able to examine the system's 
motion, we let a — 1 and a>0 = 1 with appropr ia te units. Equation 4.19 becomes 

x + n(x2 - l)x+x= 0 (4.20) 

In ou r case, we used Mathcad to solve this differential equation. We use a value 
of /x = 0.05, which will give a small damping term. It will take some time for the 
solution to reach the limit cycle. We show the calculation for two initial values of 
x(x0 = 1.0 and 3.0) in Figure 4-7; in bo th cases, we let the initial value of x = 0. 
Note that in this case the limit cycle is a circle of radius 2. In both cases, when 
the initial values are bo th inside and outside the limit cycle, the solution spirals 
toward the limit cycle. If we set x0 = 2 (with x0 = 0), the mot ion remains at the 
limit cycle. The solution of the circle in this case is a result of ou r special values 
for a and w0 above. If we use a large damping term, fx = 0.5, the solution reaches 
the limit cycle much more quickly, and the limit cycle is distorted as shown in 

X 

- 3 - 2 - 1 0 1 2 3 

FIGURE 4-8 Similar calculation to Figure 4-7 for the solution of the van der Pol 
Equation 4.20. In this case the damping parameter fi = 0.5. Note that 
the solution reaches the limit cycle (now skewed) much more quickly. 
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Figure 4-8. For a small value of /a (0.05) the x and x terms are sinusoidal with 
time, bu t for h igher values of ^(0 .5) the sinusoidal shapes become skewed (see 
Problem 4-26). The van der Pol oscillator is a nice system for studying nonl inear 
behavior and will be fur ther examined in the problems. 

4.4 Plane Pendulum 
The solutions of certain types of nonl inear oscillation problems can be ex-
pressed in closed fo rm by elliptic integrals.* An example of this type is the plane 
pendulum. Consider a particle of mass m constrained by a weightless, extension-
less rod to move in a vertical circle of radius I (Figure 4-9). T h e gravitational 
force acts downward, but the c o m p o n e n t of this force influencing the mot ion is 
perpendicular to the support rod. This force component , shown in Figure 4-10, is 
simply F(6) = — wgsin 6. The plane p e n d u l u m is a nonl inear system with a sym-
metric restoring force. It is only for small angular deviations that a linear ap-
proximation may be used. 

We obtain the equation of mot ion for the plane pendu lum by equat ing the 
torque about the support axis to the p roduc t of the angular acceleration and the 
rotational inertia about the same axis: 

16 = IF 

or, because I = ml2 and F= — mgsin 8, 

6 + <dI sin0 = 0 (4.21) 

where 

<4 = 
g (4.22) 

FIGURE 4-9 The plane pendulum where the mass m is not required to oscillate in 
small angles. The angle 6 > 0 is in the counterclockwise direction so 
that 0O < 0. 

"See A p p e n d i x B f o r a list of s o m e e l l ip t i c i n t e g r a l s . 
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L i n e a r 
a p p r o x i m a t i o n m 

- n 

U{0) 

FIGURE 4-10 The component of the force, F{0), and its associated potential that 
acts on the plane pendulum. Notice that the force is nonlinear. 

If the amplitude of the motion is small, we may approximate sin0 = 8, and the 
equation of motion becomes identical with that for the simple harmonic oscillator: 

8 + <o§61 = 0 

In this approximation, the per iod is given by the familiar expression 

T S 277 

If we wish to obtain the general result for the per iod in the event that the 
ampli tude is finite, we may begin with Equation 4.21. But because the system is 
conservative, we can use the fact that 

T + U = E = constant 

to obtain a solution by considering the energy of the system ra ther than by solv-
ing the equation of motion. 

If we take the zero of potential energy to be the lowest poin t on the circular 
path described by the pendu lum bob (i.e., 0 = 0; see Figure 4-10), the kinetic 
and potential energies can be expressed as 

T=- la)2 = -ml2 62 

2 2 
U = mgl( 1 — cos 8) 

(4.23) 
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If we let 9 = 90 at the highest point of the motion, then 

T(6 = 0O) = 0 

U(9 = eQ) = E = mgl( 1 - cos 0Q) 

Using the tr igonometric identity 

cos 6 = 1 - 2 sin2 (9/2) 

we have 

E = 2mgl sin2(0o /2) (4.24) 

and 

U= 2mglsin2(6/2) (4.25) 

Expressing the kinetic energy as the difference between the total energy and the 
potential energy, we have T = K — U, 

Knl292 = 2mgl [sin2(0o/2) - sin2(0/2)] 

or 

9 = 2 J-, [sin2(0o/2) - sin2 (9/2) ]1/2 (4.26) 

f rom which 

1 II 
d t = [sin2(0o/2) - sm2(9/2)]~1/2de 

2 V g 

This equation may be integrated to obtain the per iod r . Because the motion is 
symmetric, the integral over 9 f rom 9 = 0 to 9 = 90 yields T/4; hence 

1 re° 
T = 2 y - J [sin2(6»0/2) - sin2(6/2)]~l/2 d9 (4.27) 

Tha t this is actually an elliptic integral of the first kind* may be seen more clearly by 
making the substitutions 

sin(0/2) z = • ,L> k = sin(0o/2) 
sin(0o/2) 

Then 

cos(0/2) V l - k2z2 ^ 
dz = ~—:—,„ d9 = dB 

2 sin(0o/2) 2k 

* R e f e r t o E q u a t i o n B.2, A p p e n d i x B. 
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f rom which 

T = 4 
g Jo 

[(1 - z2)( l - tfz2)}-V2dz (4.28) 

Numerical values for integrals of this type can be f o u n d in various tables. 
For oscillatory mot ion to result, |0O| < 7 r , or, equivalently, s in(0o /2) = k, 

where —1 < k < +1. For this case, we can evaluate the integral in Equation 4.28 
by expanding (1 — k2z2)~1/2 in a power series: 

„ r, , ft Z O fC Z 
(l-k2z2)~1/2 = 1 + + + ••• v

 2 8 

Then, the expression for the per iod becomes 

t = 4 J -
dz 

g j 0(1 - z 2 ) 1 / 2 

k2z2 3k4z4 

1 + + + 
2 8 

g 

TT & I TT 3 f t 4 3 7J" - + + + 
2 2 2 2 8 8 2 

« n , k2 9k4 
= 2 t t J - 1 + — + — + •• 

V g L 4 6 4 

If is large (i.e., near 1), then we need many terms to p roduce a reasonably 
accurate result. But for small k, the expansion converges rapidly. And because 
k= sin (80/2), then k = (80/2) ~ (8o/48); the result, correct to the four th 
order, is 

T = 2TT 
1 o 11 et (4.29) 

Therefore , al though the plane pendu lum is no t isochronous, it is very nearly so 
for small amplitudes of oscillation.* 

We may construct the phase diagram for the plane pendu lum in Figure 4-11 
because Equation 4.26 provides the necessary relationship 8 = 9(8). The param-
eter 80 specifies the total energy through Equation 4.24. If 8 and 80 are small an-
gles, then Equation 4.26 can be written as 

(4.30) 

If the coordinates of the phase plane are 8 and 8/Vg/l, then the phase paths 
near 8 = 0 are approximately circles. This result is 
expected, because for small 80 , the mot ion is approximately simple harmonic . 

For TT <6 < TT and E < 2mgl = E0, the situation is equivalent to a particle 
b o u n d in the potential well U(8) = mgl( 1 — cos 8) (see Figure 4-10). The phase 

* T h i s was d i s c o v e r e d by G a l i l e o i n t h e c a t h e d r a l a t Pisa i n 1581 . T h e e x p r e s s i o n f o r t h e p e r i o d of 
sma l l osc i l l a t ions was g iven by C h r i s t i a a n H u y g e n s ( 1 6 2 9 - 1 6 9 5 ) i n 1673. F i n i t e o sc i l l a t i ons w e r e f i r s t 
t r e a t e d by E u l e r in 1736. 
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9 

FIGURE 4-11 The phase diagram for the plane pendulum. Note the stable and 
unstable equilibrium points and the regions of bounded and 
unbounded motion. 

paths are therefore closed curves for this region and are given by Equation 4.26. 
Because the potential is periodic in 8, exactly the same phase paths exist for the 
regions TT < 8 < Sir, —Sir < 8 < —TT, and so forth. The points 9 = ••• , 
— 27t, 0, 277", • • • along the 0-axis are positions of stable equilibrium and are the at-
tractors when the undriven pendu lum is damped . 

For values of the total energy exceeding E0, the mot ion is no longer 
oscillatory—although it is still periodic. This situation corresponds to the pen-
du lum execut ing complete revolutions abou t its suppor t axis. Normally the 
phase space diagram is plot ted for only one comple te cycle or a "unit cell," in 
this case over the interval — TT < 8 < TT. We deno te this region in Figure 4-11 
between the dashed lines at angles —IT and TT. O n e can follow a phase pa th by 
not ing that mot ion that exits on the lef t of the cell re-enters on the r ight a n d 
vice versa. 

If the total energy equals E0, then Equation 4.24 shows that 80 = ±TT. In this 
case, Equation 4.26 reduces to 

8 = ± 2 ^ c o s ( 0 / 2 ) (4.31) 
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so the phase paths for E = E0 are jus t cosine funct ions (see the heavy curves in 
Figure 4-11). There are two branches, depend ing on the direction of motion. 

The phase paths for E = E0 do no t actually represent possible cont inuous 
motions of the pendu lum. If the pendu lum were at rest at, say, 0 = tt (which is a 
point on the E = E0 phase paths), then any small disturbance would cause the 
motion to follow closely but not exactly on one of the phase paths that diverges 
f rom 6 = tt, because the total energy would be E = E0 + 5, where 8 is a small but 
nonzero quantity. If the mot ion were along one of the E = £ 0 phase paths, the 
pendu lum would reach one of the points 0 = mr with exactly zero velocity, but 
only after an infinite time! (This may be verified by evaluating Equation 4.27 for 
60 — tt; the result is r —» oo.) 

A phase path separating locally b o u n d e d mot ion f rom locally u n b o u n d e d 
motion (such as the pa th for E = El} in Figure 4-11) is called a separatrix. A sep-
aratrix always passes through a point of unstable equilibrium. T h e mot ion in the 
vicinity of such a separatrix is extremely sensitive to initial conditions because 
points on either side of the separatrix have very different trajectories. 

4.5 Jumps, Hysteresis, and Phase Lags 
In Example 4.1 we considered a particle of mass m suspended between two 
springs. We showed that the system was nonl inear and ment ioned the phenom-
ena of jumps in ampli tude and hysteresis effects. Now, we want to examine such 
p h e n o m e n a more carefully. We follow closely the description by janssen and col-
leagues* who developed a simple me thod to investigate such effects. 

Consider a harmonic oscillator subjected to an external force F(t) = 
F0 cos (ot and a resistive viscous force — rx, where r i s a constant. The equation of 
motion for a particle of mass m connec ted to a spring with force constant k is 

mx = — rx — kx + F0 cos cot (4.32) 

A solution to Equation 4.32 is 

x(t) = A(w) cos[&>« - cf>(a))] (4.33) 

where 

A ( a ) ) = TTl t ^211/2 <4-3 4) [(k - TO')' + (ro))']17' 

and 

tan [4>(w)] = - ^ (4.35) 
(h — tow') 

The reader can verify that Equation 4.33 is a particular solution by substitution 
into Equation 4.32. 

*H. J . J a n s s e n , et a l„ Am. J. Phys., 51, 655 (1983) . 
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A(a>) 0(®) 

CO CO 
coQ w1 w2 0)0 COi co2 

FIGURE 4-12 The amplitude A(co) and phase angle 4>(co) as a function of the 
angular frequency co. Notice the "jumps" atoi , and co2 depending 
on the direction of change of co. 

If t he spr ing cons tan t k d e p e n d s o n x a s ^ ( x ) , t h e n we have a n o n l i n e a r oscil-
lator. A n o f t e n used d e p e n d e n c e is 

a n d t h e resul t ing e q u a t i o n of m o t i o n in E q u a t i o n 4.32 is known as the Duffing 
equation. It has b e e n widely s tud ied t h r o u g h p e r t u r b a t i o n t echn iques with solu-
tions similar to Equa t ion 4.33 b u t with compl i ca t ed results fo r A(co) a n d (f>(oo) as 
shown in Figure 4-12. As w increases, A(co) increases to its p e a k unt i l it r eaches 
co = co2, w h e r e the a m p l i t u d e sudden ly decreases by a large factor.' As co de-
creases f r o m large values, t he a m p l i t u d e slowly increases unt i l co = co 1( w h e r e the 
a m p l i t u d e suddenly approx imate ly doubles . T h e s e a re t h e " jumps" r e f e r r e d to 
earlier. T h e amp l i t ude be tween cox a n d a>2 d e p e n d s o n w h e t h e r co is increas ing 
o r dec reas ing (hysteresis e f fec t ) . Similarly s t range p h e n o m e n a occur fo r the 
p h a s e <f>(a>) in Figure 4-12. T h e physical exp lana t ion of F igure 4-12 is n o t very 
t r anspa ren t , so we cons ide r a s impler d e p e n d e n c e of k as shown in Figure 4-13. 

k(x) = (1 + /3x2)&o (4.36) 

F(x) = —kx 
k X c x> a 

x< a 
(4.37) 

-F(x) 

x 

FIGURE 4-13 A simpler dependence of F(x) on the spring constant k than that in 
Equation 4.36. 
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A(co) 

a 

CO 0) o < 
FIGURE 4-14 The values of A(co) for the two values of k shown in Figure 4-12. 

T h e Duf f ing equa t i on r ep re sen t s a s i tuat ion with m a n y values of a, because h(x) 
cont inuously varies in E q u a t i o n 4.36. O u r e x a m p l e of a n a n h a r m o n i c oscil lator 
allows s impler mathemat ics . 

F igure 4-14 shows t h e h a r m o n i c response curves A(a>) f o r k a n d k' (with 
k < k'). For very large values of a(a —> , we have a l inear oscil lator with fo r ce 
cons tan t k (because x< a, see F igure 4-13) a n d a r e s o n a n c e f r e q u e n c y 
«0 = (k/m)l/-. For very small values of a(a —> 0 ) , t he fo r ce cons t an t is k' a n d 

We want to cons ide r i n t e r m e d i a t e values of a, w h e r e b o t h k a n d k' a r e effec-
tive. We cons ider the s i tuat ion in which a is m u c h smaller t h a n t h e m a x i m u m 
ampl i t ude of A(w). If we start a t small values of w, o u r system has small v ibrat ions 
tha t follow the a m p l i t u d e curve f o r k. T h e amp l i t ude moves u p the tail of t he 
A((o) curve f o r k as shown in Figure 4-15. 

However, w h e n t h e v ibra t ion a m p l i t u d e A(w) is la rger t h a n t h e critical am-
p l i tude a, the fo rce cons tan t k' is effective. For these la rger ampl i tudes , t h e sys-
t e m follows A'(<o) f o r fo rce cons tan t k'. This is r e p r e s e n t e d by t h e solid bo ld l ine 
f r o m B to C i n Figure 4-15. 

w'o = (k ' /m) 1 / 2 . 

1 1 ^ a 
(Uj 0)2 

FIGURE 4-15 The bold lines and arrows help follow the path as co increases 
and decreases. 
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<t>(co) 

Tt It 

CO CO co0 coi co1 co2 

(b) (a) 

FIGURE 4-16 The phase angle 4>(co) for k and k' is shown in (a), and the system's 

Between A a n d B, as the f r e q u e n c y increases, t he system follows the simpli-
f i ed amp l i t ude rise shown by t h e d a s h e d l ine in F igure 4-15. C o n t i n u i n g to in-
crease the dr iving f r e q u e n c y co a t C, we again r each t h e critical a m p l i t u d e a a t 
p o i n t D. If co is only slightiy increased , t he system m u s t fol low A(co) f o r k, a n d the 
amp l i t ude sudden ly j u m p s down f r o m A ' ( « ) at p o i n t D to A(co) a t p o i n t F at 
co = co2. As co con t inues increas ing above co2, t he system follows the A(co) curve. 

Now let us see what h a p p e n s if we decrease co f r o m large values. T h e system 
follows A(co) un t i l co = co,, w h e r e A(co) = a. If w is barely dec reased , t h e ampli-
t u d e increases above a, a n d the system mus t fol low A '(co). T h e r e f o r e the ampli-
t ude j u m p s f r o m £ to G. As co con t inues decreas ing, it follows a similar pa th as 
be fo re . 

A hysteresis e f fec t occurs because the system behaves d i f ferent ly d e p e n d i n g 
o n w h e t h e r co is increas ing or decreas ing. Two a m p l i t u d e j u m p s occur, o n e f o r co 
increas ing a n d o n e f o r co decreas ing . T h e system's pa ths a re ABGCDF (co increas-
ing) a n d FEGBA (co decreas ing) . 

Similar p h e n o m e n a occur fo r the phase lag </>(co). F igure 4-16a shows the 
p h a s e curves </>(&>) a n d (f)'((o) fo r the l inear h a r m o n i c oscillators. Using the same 
a rgumen t s as app l ied to A(co), we depic t t he system's pa ths in Figure 4-16b by the 
bold lines a n d the arrows. T h e r e a d e r is r e f e r r ed to the article by Janssen e t al. fo r 
a n e x p e r i m e n t suitably d e m o n s t r a t i n g these p h e n o m e n a . 

4.6 Chaos in a Pendulum 
We will use the d a m p e d a n d dr iven p e n d u l u m to i n t r o d u c e several chaos con-
cepts. T h e s imple m o t i o n of a p e n d u l u m is well u n d e r s t o o d a f t e r h u n d r e d s of 
years of study, b u t its chaot ic m o t i o n has b e e n extensively s tud ied only in the 
past few years. A m o n g the m o t i o n s of p e n d u l a tha t have b e e n f o u n d to be 
chaot ic are a p e n d u l u m with a f o r ced oscillating s u p p o r t as shown in Figure 

path is shown in (b). 
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A cos cot 

(a) F o r c e d pivot (b) D o u b l e p e n d u l u m 

(c) C o u p l e d p e n d u l u m s (d) Magne t i c p e n d u l u m 

FIGURE 4-17 Examples of pendulums that have chaotic motion. 

4-17a, t he d o u b l e p e n d u l u m (Figure 4-17b), c o u p l e d p e n d u l u m s (Figure 4-17c), 
a n d a p e n d u l u m oscillating be tween m a g n e t s (Figure 4-17d). T h e d a m p e d a n d 
dr iven p e n d u l u m tha t we will cons ide r is dr iven a r o u n d its pivot po in t , a n d the 
geome t ry is displayed in Figure 4-18. 

F o r c e d 
m o t i o n 
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The torque a round the pivot poin t can be written as 

d29 N = I— = 19 = -be - mg£ sin 9 + Nd cos <odt (4.38) at* 
where / is the m o m e n t of inertia, b is the damping coefficient, and Nd is the driv-
ing torque of angular f requency a)d. If we divide by I = mi2, we have 

We will eventually want to deal with this equat ion with a computer , and it will be 
much easier in that case to use dimensionless parameters. Let us divide 
Equation 4.39 by co0

2 = g/( and def ine the dimensionless time t' = t/t0 with 
t0 = l/ai0 and the dimensionless driving f requency w = (od/co0. The new dimen-
sionless variables and parameters are 

x = 9 oscillating variable (4.40a) 

c = ——— damping coefficient (4.40b) ml -«n 

Nd Nd 

w€2w0
2 mgt driving force strength (4.40c) 

t g 
t' = — = , / - t dimensionless time (4.40d) 

to V ( 

o>d R 
a) = — = ^ - cod driving angular f requency (4.40e) wo V g 

Note that 

, _ dx _ d9 dt _ dd 1 
dt' dt dt' dt a>0 

fdA V _ d2d 1 _ 9 
x ~ dt2 ~ dt2 \dt'J ~ dt2 W0

2 ~ w0
2 

Using these variables and parameters, Equation 4.39 becomes 

x = —cx— s inx + F cos ait' (4.41) 
Equation 4.41 is a nonl inear equation of the form first presented in 

Equation 4.1. We will use numerical methods to solve this equat ion for x, given 
the parameters c, F, and w. The techniques ment ioned in Chapter 3 are used to 
solve this equation, depend ing on the accuracy desired and computer speed 
available, and commercial software programs are available. We use the program 
Chaos Demonstrations by Sprott and Rowlands (Sp92). 

Equation 4.41, a second-order differential equation, can be reduced to two 
first-order equations by making the substitution 

dx 



166 4 / NONLINEAR OSCILLATIONS AND CHAOS 

Equation 4.41 becomes a first-order differential equat ion 

dy 
—- = cy sin x + F cos z (4.43) dt 

where we have also made the substitution z = cot'. Equations 4.42 and 4.43 are 
the first-order differential equations. 

We present the results of numerical methods solutions in Figure 4-19. We 
leave the parameters c and co set at 0.05 and 0.7, respectively, and vary only the 
driving strength F i n steps of 0.1 f rom 0.4 to 1.0. The results are that the mot ion 
is periodic for F values of 0.4, 0.5, 0.8, and 0.9 bu t is chaotic for 0.6, 0.7, and 1.0. 
These results indicate the beautiful and surprising results obta ined f rom nonlin-
ear dynamics. The left side of Figure 4-19 displays y = dx/dt' (angular velocity) 
versus time long after the initial mot ion (i.e., transient effects have died out) . 
The value of F = 0.4 shows simple harmonic motion, but the results for 0.5, 0.8, 
and 0.9, a l though periodic, are hardly simple. 

We can learn more by examining the phase space plots, shown in the middle 
column of Figure 4-19 (note that we present only a unit cell of the phase dia-
gram f rom — TT to TT). AS expected, the result for F = 0.4 shows the results seen 
previously in Chapter 3 (Figure 3-5). T h e phase plot for F= 0.5 shows one long 
cycle that includes two complete revolutions and two oscillations. T h e entire al-
lowed area in the phase plane is accessed chaotically for F= 0.6 and 0.7, but fo r 
F = 0.8, the motion becomes periodic again with one complete revolution and 
an oscillation. The result for F = 0.9 is interesting, because there appears to be 
two different revolutions in one cycle, each similar to the one for F = 0.8. This 
result is called period doubling (i.e., the per iod for F = 0.9 is twice the per iod for 
F = 0.8). After close inspection, this effect can also be observed f rom the dx/dt' 
versus time plot, shown on the left column of Figure 4-19. 

Poincare Section 
Henry Poincare invented a technique to simplify the representat ions of phase 
space diagrams, which can become quite complicated. It is equivalent to taking a 
strobdfccopic view of the phase space diagram. A three-dimensional phase dia-
gram plots y( — x= 6) versus x ( = 6) versus z( = cot'). T h e left co lumn of Figure 
4-19 is a projection of this plot on to a y-z plane, showing points that correspond 
to various values of phase angle x. The middle column of Figure 4-19 is a projection 
onto a y-x plane, showing points belonging to various values of z. In Figure 4-20 we 
show the three-dimensional phase space diagram intersected by a set of y-x 
planes, perpendicular to the z-axis, at equal z intervals. A Poincare section plot is 
the sequence of points fo rmed by the intersections of the phase path with these 
parallel planes in phase space, projected on to one of the planes. The phase 
path pierces the planes as a funct ion of angular speed (y = 9), time (z = cot'), 
and phase angle (x = 9). The points on the intersections are labeled as 
A1 ; A2 , A3 , etc. This set of points A, forms a pat tern when projected onto one of 
the planes (Figure 4-20b) that sometimes will be a recognizable curve, bu t some-
times will appear irregular. For simple harmonic motion, such as F = 0.4 in 
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P h a s e - s p a c e p l o t P o i n c a r e s e c t i o n 

10 K 
T i m e t' 

FIGURE 4-19 The damped and driven pendu lum for various values of the driving 
force strength. T h e angular velocity versus time is shown on the left, 
and phase diagrams are in the center. Poincare sections are shown on 
the right. Note that motion is chaotic for the driving force F values of 
0.6, 0.7, and 1.0. 
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(a) (b) 

FIGURE 4-20 (a) Poincare plot, a three-dimensional phase diagram, showing three 
Poincare sections and the phase path. The sections are projections 
along the y-x plane, (b) The points A, are the phase path intersections 
with the section plots. They are plotted here on the y-x plane to help 
visualize the motion in phase space. 

Figure 4-19, all t he po in t s p ro j ec t ed a re the same (or in a s m o o t h curve, de-
p e n d i n g o n the z spac ing of the y-x p lanes) . Po inca re real ized tha t t he s imple 
curves r ep re sen t m o t i o n with possibly analytic solut ions, b u t t h e many compli -
cated, appa ren t ly irregular , curves r e p r e s e n t chaos. T h e Po inca re section curve 
effectively r educes a n N-dimensional d i ag ram to (N — 1 ) -d imens ions fo r g raph-
ical p u r p o s e s a n d o f t e n he lps visualize the m o t i o n in p h a s e space. 

For the case of t h e d a m p e d a n d dr iven p e n d u l u m , t h e regulari ty of t h e dy-
namical m o t i o n is d u e to the fo rc ing pe r iod , a n d a c o m p l e t e descr ip t ion of t h e 
dynamical m o t i o n d e p e n d s o n th ree pa rame te r s . We can take those p a r a m e t e r s 
to be x (angle 0), y = dx/dt' (angular f r e q u e n c y ) , a n d z = a>t' (phase of the driv-
ing force) . A comple te descript ion of the m o t i o n in phase space would requ i re 
three-dimensional phase diagrams r a the r t han displaying jus t two pa ramete r s as in 
Figure 4-19. All t he values of z are inc luded in the midd le c o l u m n of Figure 4-19, 
so we choose to take t h e s t roboscopic sect ions of t h e m o t i o n fo r j u s t t he values 
of z = 2 rm ( n = 0 , 1 , 2 , . . . ) , which is at a f r e q u e n c y equa l to t ha t of the driving 
force . 

We show the Po incare section f o r the p e n d u l u m in t h e r ight c o l u m n of 
Figure 4-19 fo r the same systems displayed in the lef t a n d m i d d l e co lumns . For 
the s imple m o t i o n of F = 0.4, the system always comes back to t h e same posi t ion 
of (x, y) a f t e r z goes t h r o u g h 2tt. The re fo re , we expec t the Poincare section to 
show only o n e poin t , a n d tha t is what we f ind in the top f igure of the r ight c o l u m n 
of Figure 4-19. T h e mo t ion for F= 0.8 also shows only o n e point , bu t F = 0.5 a n d 
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0.9 show three and two points, respectively, because of the more complex mo-
tion. The n u m b e r of points n on the Poincare section here shows that the new 
period T = T0n/m, where T0 = 2tt/w is the period of the driven force and m is 
an integer (m = 2 for the F = 0.5 plot and m = 1 for the F = 0.9 plot). The 
chaotic motions for F = 0.6, 0.7, and 1.0 display the complicated variation of 
points expected for chaotic motion with a period T—> oo. The Poincare sections 
are also rich in structure for chaotic motion. 

On three occasions thus far (Figures 4-5, 4-7, and 4-11), we have pointed out 
attractors, a set of points (or a point) on which the mot ion converges for dissipa-
tive systems. The regions traversed in phase space are strictly bounded when 
there is an attractor. In chaotic motion, nearby trajectories in phase space are 
continually diverging f rom one another bu t must eventually re turn to the attrac-
tor. Because the attractors in these chaotic motions, called strange or chaotic at-
tractors, are necessarily bounded in phase space, the attractors must fold back 
into the nearby regions of phase space. Strange attractors create intricate pat-
terns, because the folding and stretching of the trajectories must occur such that 
no trajectory in phase space intersects, which is ruled out by the deterministic 
dyamical motion. The Poincare sections of Figure 4-19 reveal the folded, layered 
structure of the attractors. Chaotic attractors are fractals, but space does not per-
mit fu r the r discussion of this extremely interesting p h e n o m e n o n . 

4.7 Mapping 
If we use n to denote the time sequence of a system and x to denote a physical 
observable of the system, we can describe the progression of a nonl inear system 
at a particular m o m e n t by investigating how the (re + l ) t h state (or iterate) de-
pends on the nth state. An example of such a simple, nonl inear behavior is 
xn+] = (2xn + 3)2. This relationship, xn+1 = f(xn), is called mapping and is 
often used to describe the progression of the system. The Poincare section plots 
previously discussed are examples of two-dimensional maps. A physical example 
appropriate for mapping might be the tempera ture of the space shuttle orbiter 
tiles while the shuttle descends through the atmosphere. After the orbiter has 
been on the ground for some time, the tempera ture Tn+X is the same as Tn, but 
this was no t t rue while the shuttle p lummeted through the a tmosphere f rom its 
earth orbit. Modeling the tile temperatures correctly with a mathematical model 
is difficult, and linear assumptions are of ten first assumed in such calculations 
with nonl inear terms added to make more realistic calculations. 

We can write a difference equation using f(a, x„) where xn is restricted to a real 
n u m b e r in the interval (0, 1) between 0 and 1, and a is a mode l -dependen t 
parameter. 

Xn+1 = f ( a , x n ) (4.44) 

The func t ion f(a, xn) generates the value of x„ + ] f r o m xn, and the collection 
of points genera ted is said to be a map of the func t ion itself. The equations, 
which are of ten nonlinear, are amenable to numer ica l solution by iteration, 
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starting with We will restrict ourselves he re to one-dimensional maps, but 
two-dimensional (and h igher order) equat ions are possible. 

Mapping can best be unders tood by looking at an example. Let us consider 
the "logistic" equation, a simple one-dimensional equation given by 

f(a, x) = a x ( l — x) (4.45) 

so that the iterative equation becomes 

Xn+l = aXn(l ~ Xn) (4.46) 

We follow the discussion of Bessoir and Wolf (Be91) who use the logistic equa-
tion for a biological application example of studying the populat ion growth of 
fish in a pond, where the p o n d is well isolated f rom external effects such as 
weather. The iterations, or n values, represent the annual fish populat ion, where 
xi is the n u m b e r of fish in the p o n d at the beginning of the first year of the 
study. If x, is small, the fish populat ion may grow rapidly in the early years be-
cause of available resources, bu t overpopulation may eventually deplete the 
number of fish. The population x„ is scaled so that its value fits in the interval (0,1) 
between 0 and 1. The factor a is a model -dependent parameter represent ing av-
erage effects of environmental factors (e.g., f ishermen, floods, drought , preda-
tors) that may affect the fish. The factor a may be varied as desired in the study, 
but experience shows that a should be limited in this example to the interval (0, 4) 
to prevent the fish population from becoming negative or infinite. 

The results of the logistic equation are most easily observed by graphical 
means in a map called the logistic map. The iteration xn+l is plotted versus x„ in 
Figure 4-21a for a value of a = 2.0. Starting with an initial value x, on the hori-
zontal (xn) axis, we move up until we intersect with the curve xn+1 = 2xn(l — x j , 
and then we move to the left where we f ind x2 on the vertical axis (x„ + , ) . We 
then start with this value of x2 on the horizontal axis and repeat the process to 
f ind x3 on the vertical axis. If we do this for a few iterations, we converge on the 
value x = 0.5, and the fish populat ion stabilizes at half its maximum. We arrive at 
this result independen t of our initial value of xx as long as it is no t 0 or 1. 

An easier way to follow the process is to add the 45° line, xn+1 = x„, to the 
same graph. Then after initially intersecting the curve f rom x1; one moves hori-
zontally to intersect with the 45° line to f ind x2 and then moves u p vertically to 
find the next iterative value of x3. This process can go on and reach the same re-
sult as in Figure 4-2la. We show the process in Figure 4-2lb to indicate that this 
method is easier to use than the one without the 45° line. 

In practice, we want to study the behavior of the system when the model pa-
rameter a is varied. In the present case, for values of a less than 3.0, stable pop-
ulations will result (Figure 4-22a). T h e solutions follow a square spiral pa th to 
the central, final value. For values of a jus t above 3.0, more than one solution 
for the fish populat ion occurs (Figure 4-22b). T h e solutions follow a pa th simi-
lar to the square spiral, which converges to the two points at which the square 
intersects the "iteration line," ra ther than to a single point. Such a change in 
the n u m b e r of solutions to an equation, when a parameter such as a is varied, is 
called a bifurcation. 
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(b) 

FIGURE 4-21 Techniques for p roduc ing a m a p of the logistics equation. 

We obtain a more general view of the global picture by plotting a bifurcation 
diagram, which consists of x„, determined after many iterations to avoid initial ef-
fects, plotted as a function of the model parameter a. Many new interesting ef-
fects emerge indicating regions and windows of stability as well as those of 
chaotic dynamics. We show the bifurcation diagram in Figure 4-23 for the logis-
tic equation over the range of a values from 2.8 to 4.0. For the value of a = 2.9 
shown in Figure 4-22a, we observe that after a few iterations, a stable configura-
tion for x = 0.655 results. An N cycle is an orbit that returns to its original posi-
tion after N iterations, that is, xN+i = The period for a = 2.9 is then a one 
cycle. For a = 3.1 (Figure 4-22b), the value of x oscillates between 0.558 and 
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(a) 

(b) 

FIGURE 4-22 Logistic equat ion map for a values of 2.9 and 3.1, indicating stable 
populat ions in (a) and multiple possible solutions for a > 3.0 in (b). 

0.765 (two cycle) after a few iterations evolve. The bifurcation occuring at 3.0 is 
called a pitchfork bifurcation because of the obvious shape of the diagram caused 
by the splitting. At a = 3.1, the period doubling effect has xn+2 = xn. At a = 
3.45, the two-cycle bifurcation evolves into a four cycle, and the bifurcation and 
period doubling continues up to an infinite number of cycles near a = 3.57. 
Chaos occurs for many of the a values between 3.57 and 4.0, but there are still 
windows of periodic motion, with an especially wide window around 3.84. A re-
ally interesting behavior occurs for a = 3.82831 (Problem 4-11). An apparent 
periodic cycle of 3 years seems to occur for several periods, but then it suddenly 
violently changes for a few years, and then returns again to the 3-year cycle. This 
intermittent behavior could certainly prove devastating to a biological study oper-
ating over several years that suddenly turns chaotic without apparent reason. 
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EXAMPLE 4.2 

Let Aan = a n — a n { be the width between successive period doubling bifurca-
tions of the logistic map that we have been discussing. For example, from 
Figure 4-23, we let a ! = 3.0 where the first bifurcation occurs and a 2

 = 

3.449490 where the next one occurs. Let 8n be defined as the ratio 

K = t (4.47) 
1 

and let 8n —> 8 as n —• oo. Find 8n for the first few bifurcations and the limit 8. 

Solution. Although we could program this numerical calculation with a com-
puter, we will use one of the commercially available software programs (Be91)to 
work this example. We make a table of the a n values using the computer pro-
gram, find Aan, and then determine a few values of otn. 

»
 a„ 

1 3.0 
2 3.449490 
3 3.544090 
4 3.564407 
5 3.568759 

3.5699456 

A a S„ 

0.449490 4.7515 
0.094600 4.6562 
0.020317 4.6684 
0.004352 

4.6692 

As a n approaches the limit 3.5699456, the number of period doublings 
approaches infinity, and the ratio 8n, called Feigenbaum's number, approaches 
4.669202. This result was first found by Mitchell Feigenbaum in the 1970s, and 
he found that the limit 8 was a universal property of the period doubling route 



174 4 / NONLINEAR OSCILLATIONS AND CHAOS 

to chaos when the funct ion/(a , x) has a quadratic maximum. It is a remarkable 
fact that this universality is not confined to one-dimensional mappings; it is also 
true for two-dimensional maps and has been confirmed for several cases. 
Feigenbaum claims to have found this result using a programmable hand calcu-
lator. The calculation obviously has to be carried to many significant figures to 
establish its accuracy, and such a calculation was not possible before such calcu-
lators (or computers) were available. 

4.8 Chaos Identification 

In our driven and damped pendulum, we found that chaotic motion occurs for 
some values of the parameters, but not for others. What are the characteristics of 
chaos and how can we identify them? Chaos does not represent periodic motion, 
and its limiting motion will not be periodic. Chaos can generally be described as 
having a sensitive dependence on initial conditions. We can demonstrate this ef-
fect by the following example. 

EXAMPLE 4.3 

Consider the nonlinear relation x„+1 = f(a, xn) = axn( 1 — x„2). Let a = 2.5 
and make two numerical calculations with initial xx values of 0.700000000 and 
0.700000001. Plot the results and find the iteration n where the solutions have 
clearly diverged. 

Solution. The iterative equation that we are considering is 

*n+l = OLXn{ 1 - x„2) (4.48) 

We perform a short numeric calculation and plot the results of iterations for 
the two initial values on the same graph. The result is shown in Figure 4-24 
where there is no observed difference for xn+1 until n reaches at least 30. By 
n = 39, the difference in the two results is marked, despite the original values 
differing by only 1 part in 108. 

If the computations are made without error, and the difference between it-
erated values doubled on the average for each iteration, then there will be an 
exponential increase such as 

2« — ln2 

where n is the number of iterations undergone. For the iterates to be separated 
by the order of unity (the size of the attractor), we will have 

2 " 1 0 " 8 ~ 1 
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Iteration, n 

FIGURE 4-24 Example 4.3. T h e n + 1 iterative state is plot ted versus the n u m b e r of 
iterations and shows two eventual results for slighdy di f ferent initial 
condit ions of 

which gives n = 27. That is, after 27 iterations, the difference between the two 
iterates reaches the full range of xn. To have the results differ by unity for n = 
40 iterations, we would have to know the initial values with a precision of 1 part 
in 1012! 

The previous example indicates the sensitive dependence on initial condi-
tions that is characteristic of chaos. The two results can still be determined in 
this case, but it is rare to know the initial values to a precision of 10 ~8. If we add 
another factor of 10 to the precision of xx, we gain only four interative steps of 
agreement in the calculation. We must accept the reality that increasing the pre-
cision of the initial conditions only gains us a little in the accuracy of the ulti-
mate measurement. This exponential growth of an initial error will ultimately 
prevent us from predicting the outcome of a measurement. 

The effect of sensitive dependence on initial conditions has been called the 
"butterfly" effect. A butterfly moving slowly through the air may cause an ex-
tremely small effect on the airflow that will prevent us from predicting the 
weather patterns next week. Background noise or thermal effects will usually 
add uncertainties larger than the ones we have discussed here, and we cannot 
distinguish these effects from measurement errors. Precise predictive power of 
many steps is just not possible. 

Lyapunov Exponents 
One method to quantify the sensitive dependence on initial conditions for 
chaotic behavior uses the Lyapunov characteristic exponent. It is named after the 
Russian mathematician A. M. Lyapunov (1857-1918). There are as many 
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Lyapunov exponents for a particular system as there are variables. We will limit 
ourselves at first to considering only one variable and therefore one exponent. 
Consider a system with two initial states differing by a small amount; we call the 
initial states x0 and x0 + e. We want to investigate the eventual values of xn 

after n iterations from the two initial values. The Lyapunov exponent A repre-
sents the coefficient of the average exponential growth per unit time between 
the two states. After n iterations, the difference dn between the two xn values is 
approximately 

dn = eenK (4.49) 

From this equation, we can see that if A is negative, the two orbits will eventually 
converge, but if positive, the nearby trajectories diverge and chaos results. 

Let us look at a one-dimensional map described by xn+l = f(xn). The initial 
difference between the states is d0 = e, and after one iteration, the difference dx 
is 

d\ = /K + s) - J[x0) dx 

where the last result on the right side occurs because e is very small. After n iter-
ations, the difference dn between the two initially nearby states is given by 

dn = /»(* + e) - /"(*0) ee nA (4.50) 

where we have indicated the nth iterate of the map f{x) by the superscript n. If 
we divide by e and take the logarithm of both sides, we have 

(fn{x + e) - fn(x0)\ 
l n l — = ln(e"») = nA 

and because e is very small, we have for A, 

1 f*(x+e) - f n ( x 0 ) \ 1 
A = - lnl / = - In 

n \ e / n 
d f ( x ) 

dx 
(4.51) 

The value of fn(x0) is obtained by iterating the function f{x0) n times. 

/"(*<>) = / < / ( - ( / ( * o ) ) - ) ) 

We use the derivative chain rule of the nth iterate to obtain 

d f ( x ) = df d£ ...1 
dx =c„ dx xn^dx dx 

Xn-2 

We take the limit as n —> oo and finally obtain 

n— 1 
• 2 

n—>oo n i-0 

^ n— 1 
A = lim — 2 In 

df(x,) 
dx 

(4.52) 
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a 
FIGURE 4-25 Lyapunov exponen t as a funct ion of a for the logistic equat ion map. 

A value of A > 0 indicates chaos. 

We plot the Lyapunov exponent as a function of a in Figure 4-25 for the lo-
gistic map. We note the agreement of the sign of A with the discussion of chaotic 
behavior in Section 4.6. The value of A is zero when bifurcation occurs, because 
\df/dx\ = 1, and the solution becomes unstable (see Problem 4-16). A super-
stable point occurs where df(x)/dx = 0, and this implies that A = — F r o m -

Figure 4-25 as A goes above 0, we see there are windows where A returns to A < 0 
and periodic orbits occur amid the chaotic behavior. The relatively wide window 
just above 3.8 is apparent. 

Remember that for n dimensional maps, there will be n Lyapunov expo-
nents. Only one of them need be positive for chaos to occur. For dissipative sys-
tems, the phase space volume will decrease as time passes. This means the sum 
of the Lyapunov exponents will be negative. 

The calculation of Lyapunov exponents for the damped and driven pendu-
lum is difficult, because one has to deal with the solutions of differential equa-
tions rather than maps such as those of the logistic equation. Nevertheless, 
these calculations have been done, and we show in Figure 4-26 the Lyapunov 
exponents, three of them because of the three dimensions (calculated using 
Baker's program [Ba90]). The parameters are the same as those discussed in 
Section 4.6: c = 0.05, w = 0.7, and F= 0.4 (periodic) and F= 0.6 (chaotic). For 
both cases, we must make at least several hundred iterations to make sure tran-
sient effects have died out. Note that one of the Lyapunov exponents is zero, 
because it does not contribute to the expansion or contraction of the phase 
space volume. For the case of F = 0.4, none of the Lyapunov exponents is 
greater than zero after 350 iterations, but for the F = 0.6 driven case, one of the 
exponents is still well above zero. The motion is chaotic for F= 0.6, as we found 
earlier in Figure 4-19. However, because the motion described in Figure 4-26 is 
damped, the sum of the three Lyapunov exponents is negative for both cases, as 
it should be. 
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FIGURE 4-26 The three Lyapunov exponen ts for the d a m p e d and driven 

pendu lum. T h e values of A are those approached as t —» oo 
(large n u m b e r of cycles). 

PROBLEMS 

4-1. Refer to Example 4.1. If each of the springs must be stretched a distance d to attach 
the particle at the equil ibrium position (i.e., in its equil ibrium position, the particle 
is subject to two equal and oppositely directed forces of magni tude kd), then show 
that the potential in which the particle moves is approximately 

U(x) = (kd/l)x2 + [k(l - d)/4ls]x4 

4-2. Construct a phase diagram for the potential in Figure 4-1. 

4-3. Construct a phase diagram for the potential U(x) = — (A/3) x3. 

4-4. Lord Rayleigh used the equat ion 

5c — (a — bx2)x+ a>lx = 0 

in his discussion of nonl inear effects in acoustic p h e n o m e n a . * Show that differenti-
ating this equat ion with respect to t ime and making the substitution y = y0\/Sb/ax 

*J. W. S. Rayleigh, Phil. Mag. 15 (April 1883); see also Ra94, Section 68a. 

t i i i i i i r 
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results in van der Pol's equation: 

y ~ "i bo ~ y2)y + «>ly = o 

4-5. Solve by a successive approximat ion procedure , and obtain a result accurate to fou r 
significant figures: 
(a) x + x2 + 1 = tan x, 0 < x < t t / 2 

(b) x(x + 3) = 10 sin x, x > 0 
(c) 1 + x + cosx — e", x> 0 

(It may be prof i table to make a c rude g raph to choose a reasonable first 
approximat ion. ) 

4-6. Derive the expression for the phase paths of the p lane p e n d u l u m if the total energy 
is £ > 2 mgl. Note that this is jus t the case of a particle moving in a periodic poten-
tial U(6) = mgl( 1 - cos 9). 

4-7. Consider the f ree motion of a plane p e n d u l u m whose ampli tude is no t small. Show 
that the horizontal component of the mot ion may be represented by the approximate 
expression (components th rough the third o rde r are included) 

( * o \ X + 0>o(l + Jx — EX3 = 0 

where co2 = g/l and e = 3g/2ls, with / equal to the length of the suspension. 

4-8. A mass m moves in one dimension and is subject to a constant force +F0 when 
x < 0 and to a constant force — F0 when x > 0. Describe the mot ion by constructing 
a phase diagram. Calculate the per iod of the mot ion in terms of m, F0, and the am-
pli tude A (disregard damping) . 

4-9. Investigate the mot ion of an u n d a m p e d particle subject to a force of the fo rm 

| x| < a j—kx, 
^ 1 + S)x + 8a, |x| > a 

where k and 8 are positive constants. 

4-10. T h e parameters F = 0.7 and c = 0.05 are fixed for Equat ion 4.43 describing the 
driven, d a m p e d pendu lum. De te rmine which of the values for co (0.1, 0.2, 0.3, 
1.5) p roduce chaotic motion. Produce a phase plot for co = 0.3. Do this problem 
numerically. 

4-11. A really interesting situation occurs for the logistic equat ion, Equation 4.46, when 
a = 3.82831 and x, = 0.51. Show that a th ree cycle occurs with the approximate x 
values 0.16, 0.52, and 0.96 for the first 80 cycles before the behavior apparently 
turns chaotic. Find for what iteration the next apparently periodic cycle occurs and 
fo r how many cycles it stays periodic. 
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4-12. Let the value of a in the logistic equat ion, Equat ion 4.46, be equal to 0.9. Make a 
m a p like that in Figure 4-21 when x, = 0.4. Make the plot for three o the r values of 
x | for which 0 < X\ < 1. 

4-13. Pe r fo rm the numerical calculation done in Example 4.3 and show that the two cal-
culations clearly diverge by n = 39. Next, let the second initial value agree to within 
ano the r factor of 10 (i.e., 0.700 000 000 1), and conf i rm the s ta tement in the text 
that only four more iterations are gained in the agreement between the two initial 
values. 

4-14. Use the func t ion described in Example 4.3, x n + 1 = a x „ ( l — xn
2) where a = 2.5. 

Consider two starting values of Xj that are similar, 0.900 000 0 and 0.900 000 1. 
Make a plot of xn versus n fo r the two starting values and de te rmine the lowest 
value of n for which the two values diverge by more than 30%. 

4-15. Use direct numerical calculation to show that the m a p f(x) = a sin irx also leads to 
the Feigenbaum constant, where x a n d a are limited to the interval (0, 1). 

4-16. T h e curve x n + 1 = f(xn) intersects the curve x n + 1 = xn at x0. T h e expansion of x n + 1 

about x0 is xn+l — x0 = /3(x„ — x0) where j8 = ( d f / d x ) at x = x0. 
(a) Describe the geometrical sequence that the successive values of x„+ j — x0 fo rm. 
(b) Show that the intersection is stable when | /31 < 1 and unstable when (3 \ > 1 . 

4-17. T h e tent map is represented by the following iterations: 

x„+ j = 2ax„ for 0 < x < 1/2 
xn+1 = 2 a ( l - x„) for 1/2 < x < 1 

where 0 < a < 1. Make a m a p u p to 20 iterations for a = 0.4 and 0.7 with xl = 0.2. 
Does it appear that e i ther of the maps represent chaotic behavior? 

4-18. Plot the bifurcation diagram for the tent m a p of the previous problem. Discuss the 
results fo r the various regions. 

4-19. Show analytically that the Lyapunov e x p o n e n t for the tent maps is A = In (2a) . This 
indicates that chaotic behavior occurs for a > 1 /2 . 

4-20. Consider the H e n o n m a p described by 

Xn+l = Jn + 1 - axl 

y n+ 1 = bxn 

Let a = 1.4 and b = 0.3, and use a compute r to plot the first 10,000 points (x„, y„) 
starting f rom the initial values x0 = 0, yn = 0. Choose the plot region as —1.5 < x < 
1.5 and —0.45 < y< 0.45. 

4-21. Make a plot of the H e n o n map, this t ime starting f r o m the initial values 
Xq = 0.63135448, y0 = 0.18940634. Compare the shape of this plot with that ob-
tained in the previous problem. Is the shape of the curves i n d e p e n d e n t of the ini-
tial conditions? 
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4-22. A circuit with a nonl inear inductor can be mode led by the first-order differential 
equations 

dx 
dt ' 
dy 
— = — ky — x3 + B cos t 
dt J 

Chaotic oscillations for this situation have been extensively studied. Use a com-
puter to construct the Poincare section plot for the case k = 0.1 and 9.8 < 5 < 13.4. 
Describe the map. 

4-23. T h e mot ion of a b o u n c i n g ball, on successive bounces , when the f loor oscillates 
sinusoidally can be descr ibed by the Chirikov map: 

Pn+1 = Pn~ Ksinqn 

?tl+l = In + Pn +1 

where — v ^ p ^ T T and — t t £ q £ t t . Construct two-dimensional maps for K = 0.8, 
3.2, and 6.4 by starting with r a n d o m values of p and q and i terating them. Use peri-
odic boundary conditions, which means that if the i terated values of p o r q exceed 
tt, a value of 2tt is subtracted and whenever they are less than — tt, a value of 2n is 
added. Examine the maps af ter thousands of iterations and discuss the differences. 

4-24. Assume that x(t) = b cos (<o0t) + u(t) is a solution of the van der Pol Equat ion 4.19. 
Assume that the damping parameter f i is small and keep terms in u(t) to first o rde r 
in fi. Show that b = 2a and u(t) = — (fias/4w0) sin (3a)0t) is a solution. Produce a 
phase diagram of x versus x and p roduce plots of x(t) and x(t) fo r values of a = 1, 
(o0 = 1, and fx. = 0.05. 

4-25. Use numerical calculations to f ind a solution for the van de r Pol oscillator of 
Equation 4.19. Let x0 and co0 equal 1 for simplicity. Plot the phase diagram, x(t), 
and x(t) for the following conditions: (a) f i = 0.07, x0 = 1.0, x0 = 0 at t = 0; (b) f i = 
0.07, x(l = 3.0, x0 = 0 at t = 0. Discuss the motion; does the mot ion appear to ap-
proach a limit cycle? 

4-26. Repeat the previous prob lem with fj. = 0.5. Discuss also the appearance of the limit 
cycle, x(t), and x(t). 



CHAPTER 5 
Gravitation 

5.1 Introduction 

By 1666, Newton had formulated and numerically checked the gravitation law 
he eventually published in his book Principia in 1687. Newton waited almost 20 
years to publish his results because he could not justify his method of numerical 
calculation in which he considered Earth and the Moon as point masses. With 
mathematics formulated on calculus (which Newton later invented), we have a 
much easier time proving the problem Newton found so difficult in the seven-
teenth century. 

Newton's law of universal gravitation states that each mass particle attracts every 
other particle in the universe with a force that varies directly as the product of the two 
masses and inversely as the square of the distance between them. In mathematical form, 
we write the law as 

where at a distance r from a particle of mass M a second particle of mass m expe-
riences an attractive force (see Figure 5-1). The unit vector er points from M to m, 
and the minus sign ensures that the force is attractive—that is, that m is attracted 
toward M. 

A laboratory verification of the law and a determination of the value of G was 
made in 1798 by the English physicist Henry Cavendish (1731-1810). Cavendish's 
experiment, described in many elementary physics texts, used a torsion balance 
with two small spheres fixed at the ends of a light rod. The two spheres were at-
tracted to two other large spheres that could be placed on either side of the 
smaller spheres. The official value for G is 6.673 ± 0.010 X 10"11 N • m2/kg2. 
Interestingly, although G is perhaps the oldest known of the fundamental constants, 

(5.1) 

182 
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M 

F I G U R E 5-1 Particle m feels an attractive gravitational force toward M. 

we know it with less precision than we know most of the modern fundamental 
constants such as e, c, and h. Considerable research is ongoing today to improve 
the precision of G. 

In the form of Equation 5.1, the law strictly applies only to point particles. If 
one or both of the particles is replaced by a body with a certain extension, we 
must make an additional hypothesis before we can calculate the force. We must 
assume that the gravitational force field is a linear field. In other words, we as-
sume that it is possible to calculate the net gravitational force on a particle due 
to many other particles by simply taking the vector sum of all the individual 
forces. For a body consisting of a continuous distribution of matter, the sum be-
comes an integral (Figure 5-2): 

f P( r ')e r , 
F = -Gm ' dv' (5.2) 

Jv r 

where p(r') is the mass density and dv' is the element of volume at the position 
defined by the vector r ' from the (arbitrary) origin to the point within the mass 
distribution. 

If both the body of mass M and the body of mass m have finite extension, a 
second integration over the volume of m will be necessary to compute the total 
gravitational force. 

distribution of matter, we integrate the mass density over the volume. 
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The gravitational field vector g is the vector representing the force per unit 
mass exerted on a particle in the field of a body of mass M. Thus 

F M 
g = - = - G — er m r 2 

(5.3) 

or 

p( r')e, dv' (5.4) 

Note that the direction of er varies with r' (in Figure 5-2). 
The quantity g has the dimensions of force per unit mass, also equal to accelera-

tion. In fact, near the surface of the earth, the magnitude of g is just the quantity 
that we call the gravitational acceleration constant. Measurement, with a simple 
pendulum (or some more sophisticated variation) is sufficient to show that I g| is 
approximately 9.80 m/s2 (or 9.80 N/kg) at the surface of the earth. 

5.2 Gravitational Potential 
The gravitational field vector g varies as 1/r2 and therefore satisfies the require-
ment* that permits g to be represented as the gradient of a scalar function. 
Hence, we can write 

-V4> (5.5) 

where <P is called the gravitational potential and has dimensions of (force per unit 
mass) X (distance), or energy per unit mass. 

Because g has only a radial variation, the potential <P can have at most a vari-
ation with r. Therefore, using Equation 5.3 for g, we have 

V<J> 
d<P M 
— e r - G—e r dr rz 

Integrating, we obtain 

<f> = - G 
M 

(5.6) 

The possible constant of integration has been suppressed, because the potential 
is undetermined to within an additive constant; that is, only differences in poten-
tial are meaningful, not particular values. We usually remove the ambiguity in 
the value of the potential by arbitrarily requiring that >0 as r—»oo; then 
Equation 5.6 correcdy gives the potential for this condition. 

T h a t is, V X g = 0. 
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The potential due to a continuous distribution of matter is 

& = - G l £(*ldv> (5.7) 
Jv r 

Similarly, if the mass is distributed only over a thin shell (i.e., a surface distri-
bution) , then 

<P=-G\—da' (5.8) 
Js r 

where p, is the surface density of mass (or areal mass density). 
Finally, if there is a line source with linear mass density pt, then 

<P - ds' (5.9) 
r r 

The physical significance of the gravitational potential function becomes 
clear if we consider the work per unit mass dW' that must be done by an outside 
agent on a body in a gravitational field to displace the body a distance dr. In this 
case, work is equal to the scalar product of the force and the displacement. 
Thus, for the work done on the body per unit mass, we have 

dW = —g' dr = (V<2>) • dr 

; dx{ 

because <P is a function only of the coordinates of the point at which it is meas-
ured: <P = x2, x3) = Therefore the amount of work per unit mass 
that must be done on a body to move it from one position to another in a gravi-
tational field is equal to the difference in potential at the two points. 

If the final position is farther from the source of mass M than the initial posi-
tion, work has been done on the unit mass. The positions of the two points are arbi-
trary, and we may take one of them to be at infinity. If we define the potential to 
be zero at infinity, we may interpret <P at any point to be the work per unit mass 
required to bring the body from infinity to that point. The potential energy is 
equal to the mass of the body multiplied by the potential <P. If U is the potential 
energy, then 

U = m<P (5.11) 

and the force on a body is given by the negative of the gradient of the potential 
energy of that body, 

F = —VU (5.12) 

which is just the expression we have previously used (Equation 2.88). 
We note that both the potential and the potential energy increase when work 

is done on the body. (The potential, according to our definition, is always nega-
tive and only approaches its maximum value, that is, zero, as r tends to infinity.) 
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A certain potential energy exists whenever a body is placed in the gravita-
tional field of a source mass. This potential energy resides in the field* but it is 
customary under these circumstances to speak of the potential energy "of the 
body." We shall continue this practice here. We may also consider the source 
mass itself to have an intrinsic potential energy. This potential energy is equal to 
the gravitational energy released when the body was formed or, conversely, is 
equal to the energy that must be supplied (i.e., the work that must be done) to 
disperse the mass over the sphere at infinity. For example, when interstellar gas 
condenses to form a star, the gravitational energy released goes largely into the 
initial heating of the star. As the temperature increases, energy is radiated away 
as electromagnetic radiation. In all the problems we treat, the structure of the 
bodies is considered to remain unchanged during the process we are studying. 
Thus, there is no change in the intrinsic potential energy, and it may be neg-
lected for the purposes of whatever calculation we are making. 

EXAMPLE 5.1 

What is the gravitational potential both inside and outside a spherical shell of 
inner radius b and outer radius a? 

Solution. One of the important problems of gravitational theory concerns the 
calculation of the gravitational force due to a homogeneous sphere. This prob-
lem is a special case of the more general calculation for a homogeneous spheri-
cal shell. A solution to the problem of the shell can be obtained by directly com-
puting the force on an arbitrary object of unit mass brought into the field (see 
Problem 5-6), but it is easier to use the potential method. 

We consider the shell shown in Figure 5-3 and calculate the potential at 
point P a distance R from the center of the shell. Because the problem has sym-
metry about the line connecting the center of the sphere and the field point P, 
the azimuthal angle <j> is not shown in Figure 5-3 and we can immediately inte-
grate over d<f> in the expression for the potential. Thus, 

P(r') 
<P = -G 

= - 2 t r p G 

dv' 

sin d 
r'2dr' 

b 
de (5.13) 

where we have assumed a homogeneous mass distribution for the shell, 
p(r') = p. According to the law of cosines, 

r2 = r '2 + R2 - 2r 'R cos 6 (5.14) 

Because R is a constant, for a given r' we may differentiate this equation and 
obtain 

2 r d r = 2r'R sin Odd 

*See, however, the remarks at the end of Section 9.5 regarding the energy in a field. 
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FIGURE 5-3 T h e geometry for f inding the gravitational potential at point I ' due to a 
spherical shell of mass. 

or 

sin 9 dr 
dQ = — 

r r'R 

Substituting this expression into Equation 5.13, we have 

0 = - -
2v pG 

R 
r' dr' dr 

(5 .15) 

(5 .16) 

The limits on the integral over dr depend on the location of point P. If P is out-
side the shell, then 

<P{R > a) = - r'dr' 
•R+r' 

R-r' 
2 npG 

R 
4:77pG f" „ 

— 1 r '2 dr' 

(aB - b3) 

dr 

R h 
4 TTpG 
3 R (5 .17) 

But the mass M of the shell is 

M=-Trp{a3 -

so the potential is 

(5 .18) 

<P(R > a) = 
GM 
R (5 .19) 
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If the field point lies inside the shell, then 

R Jb Jr'-R 

= —47TpG r'dr' 
Jb 

= - 2 7 T p G ( a 2 - b2) (5.20) 

The potential is therefore constant and independent of position inside the shell. 
Finally, if we wish to calculate the potential for points within the shell, we 

need only replace the lower limit of integration in the expression for <P(R< b) 
by the variable R, replace the upper limit of integration in the expression for 
0(R > a) by R, and add the results. We find 

We see that if R—> a, then Equation 5.21 yields the same result as Equation 5.19 
for the same limit. Similarly, Equations 5.21 and 5.20 produce the same result 
for the limit R—>b. The potential is therefore continuous. If the potential were 
not continuous at some point, the gradient of the potential—and hence, the 
force—would be infinite at that point. Because infinite forces do not represent 
physical reality, we conclude that realistic potential functions must always be 
continuous. 

Note that we treated the mass shell as homogeneous. In order to perform 
calculations for a solid, massive body like a planet that has a spherically symmet-
ric mass distribution, we could add up a number of shells or, if we choose, we 
could allow the density to change as a function of radius. 

The results of Example 5.1 are very important. Equation 5.19 states that the 
potential at any point outside of a spherically symmetric distribution of matter 
(shell or solid, because solids are composed of many shells) is independent of 
the size of the distribution. Therefore, to calculate the external potential (or the 
force), we consider all the mass to be concentrated at the center. Equation 5.20 
indicates that the potential is constant (and the force zero) anywhere inside a 
spherically symmetric mass shell. And finally, at points within the mass shell, the 
potential given by Equation 5.21 is consistent with both of the previous results. 

The magnitude of the field vector g may be computed from g = — d&/dR for 
each of the three regions. The results are 

4TrpG 
<P(b < R< a) = — ~ b3) - 2irpG(a2 - R2) 

3 R 

(5.21) 
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FIGURE 5-4 T h e results of Example 5.1 indicating the gravitational potential 
and magni tude of the field vector g (actually — g) as a func t ion 
of radial distance. 

We see that not only the potential but also the field vector (and hence, the 
force) are continuous. The derivative of the field vector, however, is not continu-
ous across the outer and inner surfaces of the shell. 

All these results for the potential and the field vector can be summarized as 
in Figure 5-4. 

E X A M P L E 5.2 

Astronomical measurements indicate that the orbital speed of masses in many 
spiral galaxies rotating about their centers is approximately constant as a func-
tion of distance from the center of the galaxy (like our own Milky Way and our 
nearest neighbor Andromeda) as shown in Figure 5-5. Show that this experi-
mental result is inconsistent with the galaxy having its mass concentrated near 
the center of the galaxy and can be explained if the mass of the galaxy increases 
with distance R. 

Solution. We can find the expected orbital speed v due to the galaxy mass M 
that is within the radius R. In this case, however, the distance R may be hundreds 
of light years. We only assume the mass distribution is spherically symmetric. 
The gravitational force in this case is equal to the centripetal force due to the 
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(thousands of light years) 

FIGURE 5-5 Example 5.2. T h e solid line represents data for the orbital speed of mass 
as a funct ion of distance f r o m the center of the An d ro meda galaxy. T h e 
dashed line represents the 1 /VR behavior expected f r o m the Keplerian 
result of Newton's laws. 

mass m having orbital speed v. 

GMm mv2 

= T 
We solve this equation for v: 

If this were the case, we would expect the orbital speed to decrease as 
1 / V r as 

shown by the dashed line in Figure 5-5, whereas what is found experimentally is 
that v is constant as a function of R. This can only happen in the previous equa-
tion if the mass M of the galaxy itself is a linear function of R, M(R) oc R. 
Astrophysicists conclude from this result that for many galaxies there must be 
matter other than that observed, and that this unobserved matter, often called 
"dark matter," must account for more than 90 percent of the known mass in the 
universe. This area of research is at the forefront of astrophysics today. 

EXAMPLE 5.3 

Consider a thin uniform circular ring of radius a and mass M. A mass m is 
placed in the plane of the ring. Find a position of equilibrium and determine 
whether it is stable. 

Solution. From symmetry, we might believe that the mass m placed in the cen-
ter of the ring (Figure 5-6) should be in equilibrium because it is uniformly sur-
rounded by mass. Put mass m at a distance r' from the center of the ring, and 
place the %-axis along this direction. 
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z 

FIGURE 5-6 Example 5.3. T h e geometry of the po in t mass m and r ing of mass M. 

The potential is given by Equation 5.7 where p = M/2na: 
dM dtp = -G-

Gap 
—d(j> (5.23) 

where b is the distance between dMand m, and dM = pad<f>. Let r and r' be the 
position vectors to dM and m, respectively. 

b = |r — r'| = | a cos <f>e1 + a sin </>e2 — r 'e j | 

= | (a cos <p — r')e1 + a sin </>e21 = [(a cos < - r ')2 + a2 sin2 </>]1/2 

= (a2 + r '2 - 2ar'cos </>)1/2 = a 

Integrating Equation 5.23 gives 

1 + 
/ \ 2 2 r' 

cos <f> 
1/2 

(5.24) 

, dM r2 7 r d<P 

= - p G 
2ir 

1 + a, 

2 / 
cos <fi 

1/2 
(5.25) 

The integral in Equation 5.25 is difficult, so let us consider positions close to 
the equilibrium point, r' = 0. If r' <3C a, we can expand the denominator in 
Equation 5.25. 

,'\2 2 r' 
1 + I — cos d> 1 a) a 

"1/2 J 

= 1 - 2 
r ' V 2r' 
a ~ ~ c o s ^ 

3 + -
' \ 2 2 r ' 

a 
cos <j> 

r' if r'V 
= 1 + - cos + - - (3 cos2 cf> - 1) + 

a 4 
(5.26) 



192 5 / GRAVITATION 

Equation 5.25 becomes 

H $(r') = -pG 

which is easily integrated with the result 

1 r'V cos + - 1 - 1 (3 cos24> - 1) + 

4>(r') = -
MG 

The potential energy U(r') is from Equation 5.11, simply 

U(r') = m<P(r') = -
mMG 

>d<f> (5.27) 

(5.28) 

(5.29) 

The position of equilibrium is found (from Equation 2.100) by 

dU(r') n mMG I r' 
—T7^ = 0 = + ••• (5.30) dr' a 2a2 ' 

so r' = 0 is an equilibrium point. We use Equation 2.103 to determine the stability: 

d2U(r') 
dr' .'2 

mMG 
2 as + ••• < 0 (5.31) 

so the equilibrium point is unstable. 
This last result is not obvious, because we might be led to believe that a small 

displacement from r' = 0 might still be returned to r' = 0 by the gravitational 
forces from all the mass in the ring surrounding it. 

Poisson's Equation 
It is useful to compare these properties of gravitational fields with some of the fa-
miliar results from electrostatics that were determined in the formulation of 
Maxwell's equations. Consider an arbitrary surface as in Figure 5-7 with a mass m 
placed somewhere inside. Similar to electric flux, let's find the gravitational flux 
<Pm emanating from mass m through the arbitrary surface 5. 

<*>„= j^n-g da (5.32) 

where the integral is over the surface S and the unit vector n is normal to the 
surface at the differential area da. If we substitute g f rom Equation 5.3 for 
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Surface S 

FIGURE 5-7 An arbitrary surface with a mass m placed inside. T h e uni t vector n is 
normal to the surface at the differential area da. 

the gravitational field vector for a body of mass TO, we have for the scalar 
product n • g, 

cos 9 
n • g - G m ^ 

where 9 is the angle between n and g. We substitute this into Equation 5.32 and 
obtain 

<f> = -Gm 
cos 9 

-da 

The integral is over the solid angle of the arbitrary surface and has the value 4tt 
steradians, which gives for the mass flux 

(5.33) <Pm = n • g da = — 4irGm 

Note that it is immaterial where the mass is located inside the surface S. We can 
generalize this result for many masses m, inside the surface S by summing over 
the masses. 

n - g da = —47TG2 TO, 

If we change to a continuous mass distribution within surface S, we have 

n • g da = —4irG pdv 

(5.34) 

(5.35) 

where the integral on the right-hand side is over the volume V enclosed by S, p is 
the mass density, and dv is the differential volume. We use Gauss's divergence 
theorem to rewrite this result. Gauss's divergence theorem, Equation 1.130 
where da = n da, is 

n • g da = V • g dv (5.36) 



194 5 / GRAVITATION 

If we set the right-hand sides of Equations 5.35 and 5.36 equal, we have 

( — 477 G)pdv = V'gdv 
v JV 

and because the surface S, and its volume V, is completely arbitrary, the two inte-
grands must be equal. 

This result is similar to the differential form of Gauss's law for electric field, 
V • E = p/e, where p in this case is the charge density. 

We insert g = — V<£ from Equation 5.5 into the left-hand side of Equation 
5.37 and obtain V - g = - V - V < f » = - V2<J>. Equation 5.37 becomes 

which is known as Poisson's equation and is useful in a number of potential theory 
applications. When the right-hand side of Equation 5.38 is zero, the result 
V2cp = 0 is an even better known equation called Laplace's equation. Poisson's 
equation is useful in developing Green's functions, whereas we often encounter 
Laplace's equation when dealing with various coordinate systems. 

5.3 Lines of Force and Equipotential Surfaces 
Let us consider a mass that gives rise to a gravitational field that can be described 
by a field vector g. Let us draw a line outward from the surface of the mass such 
that the direction of the line at every point is the same as the direction of g at 
that point. This line will extend from the surface of the mass to infinity. Such a 
line is called a line of force. 

By drawing similar lines from every small increment of surface area of the 
mass, we can indicate the direction of the force field at any arbitrary point in 
space. The lines of force for a single point mass are all straight lines extending 
from the mass to infinity. Defined in this way, the lines of force are related only 
to the direction of the force field at any point. We may consider, however, that the 
density of such lines—that is, the number of lines passing through a unit area ori-
ented perpendicular to the lines—is proportional to the magnitude of the force 
at that area. The lines-of-force picture is thus a convenient way to visualize both 
the magnitude and the direction (i.e., the vector property) of the field. 

The potential function is defined at every point in space (except at the posi-
tion of a point mass). Therefore, the equation 

V-g = — 477 Gp (5.37) 

V2<£ = 4ttGP (5.38) 

<P = <£(*!, x2, x3) = constant (5.39) 

defines a surface on which the potential is constant. Such a surface is called an 
equipotential surface. The field vector g is equal to the gradient of <t>, so g can 
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P 

have no component along an equipotential surface. It therefore follows that 
every line of force must be normal to every equipotential surface. Thus, the field 
does no work on a body moving along an equipotential surface. Because the po-
tential function is single valued, no two equipotential surfaces can intersect or 
touch. The surfaces of equal potential that surround a single, isolated point 
mass (or any spherically symmetric mass) are all spheres. Consider two point 
masses M that are separated by a certain distance. If r, is the distance from one 
mass to some point in space and if r2 is the distance from the other mass to the 
same point, then 

0 = -GM\ — + — ] = c o n s t a n t (5 .40) 
\

r
i r 2 / 

defines the equipotential surfaces. Several of these surfaces are shown in Figure 
5-8 for this two-particle system. In three dimensions, the surfaces are generated 
by rotating this diagram around the line connecting the two masses. 

5.4 When Is the Potential Concept Useful? 
The use of potentials to describe the effects of "action-at-a-distance" forces is an 
extremely important and powerful technique. We should not, however, lose 
sight of the fact that the ultimate justification for using a potential is to provide a 
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convenient means of calculating the force on a body (or the energy for the body 
in the field)—for it is the force (and energy) and not the potential that is the phys-
ically meaningful quantity. Thus, in some problems, it may be easier to calculate 
the force direcdy, rather than computing a potential and then taking the gradi-
ent. The advantage of using the potential method is that the potential is a scalar 
quantity*: We need not deal with the added complication of sorting out the 
components of a vector until the gradient operation is performed. In direct cal-
culations of the force, the components must be carried through the entire com-
putation. Some skill, then, is necessary in choosing the particular approach to 
use. For example, if a problem has a particular symmetry that, from physical 
considerations, allows us to determine that the force has a certain direction, 
then the choice of that direction as one of the coordinate directions reduces the 
vector calculation to a simple scalar calculation. In such a case, the direct calcu-
lation of the force may be sufficiently straightforward to obviate the necessity of 
using the potential method. Every problem requiring a force must be examined 
to discover the easiest method of computation. 

E X A M P L E 5 . 4 

Consider a thin uniform disk of mass M and radius a. Find the force on a mass 
m located along the axis of the disk. 

Solution. We solve this problem by using both the potential and direct force 
approaches. Consider Figure 5.9. The differential potential d<t> at a distance z is 

F I G U R E 5-9 E x a m p l e 5 .4 . W e u s e t h e g e o m e t r y s h o w n h e r e t o f i n d t h e g r a v i t a t i o n a l 
f o r c e o n a p o i n t m a s s m d u e t o a t h i n u n i f o r m d i s k o f m a s s M. 

*We shall see in Chapter 7 a n o t h e r example of a scalar func t ion f rom which vector results may be ob-
tained. This is the Lagrangian function, which, to emphasize the similarity, is sometimes (mosdy in 
older t reatments) called the kinetic potential. 
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given by 

d<P=~G— (5.41) r 

The differential mass dM is a thin ring of width dx, because we have azimuthal 
symmetry. 

dM = pdA = p2vx dx (5.42) 

_ _ x dx __ x dx 
d<P = - 2 vpG = —2irpG~ 

r r (x2 + z2)1/2 

= -2u -pG[(a 2 + z2)1/2 - z] (5.43) 

We find the force from 

F=-VU=-mV<P (5.44) 

From symmetry, we have only a force in the z direction, 

d&(z) 
-m = +2irmpG 

dz i (a2 + z2)1/2 1 (5.45) 

In our second method, we compute the force directly using Equation 4.2: 

dM' 
dF=-Gm—er (5.46) 

r1-

where dM' refers to the mass of a small differential area more like a square t han 
a thin ring. The vectors complicate matters. How can symmetry help? For every 
small dM' on one side of the thin ring of width dx, another dM' exists on the 
other side that exactly cancels the horizontal component of dF on m. Similarly, 
all horizontal components cancel, and we need only consider the vertical com-
ponent of dF along z. 

„i „ cos 8 dM' 
dF, = cos0|c*F| = -mG 

rl 

and, because cos 6 = z/r, 
z dM' 

dFz = —mG — 

Now we integrate over the mass dM' = p2irx dx around the ring and obtain 

,, 277X2 dx 
dFz = —mGp — 
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and 

Fz = —7rmpGz 

= — irmpGz 

= 27TmpC 

2 xdx 
0 ( z 2 + x 2 ) 3 / 2 

- 2 

_ ( z 2 + x 2 ) 1 / 2 

r 
- 1 

w + z 2 ) 1 / 2 
(5.47) 

which is identical to Equation 5.45. Notice that the value of Fz is negative, indi-
cating that the force is downward in Figure 5-9 and attractive. 

5.5 Ocean Tides 
The ocean tides have long been of interest to humans. Galileo tried unsuccess-
fully to explain ocean tides but could not account for the timing of the approxi-
mately two high tides each day. Newton finally gave an adequate explanation. 
The tides are caused by the gravitational attraction of the ocean to both the 
Moon and the Sun, but there are several complicating factors. 

The calculation is complicated by the fact that the surface of Earth is not an 
inertial system. Earth and Moon rotate about their center of mass (and move 
about the Sun), so we may regard the water nearest the Moon as being pulled 
away from Earth, and Earth as being pulled away from the water farthest from 
the Moon. However, Earth rotates while the Moon rotates about Earth. Let's first 
consider only the effect of the Moon, adding the effect of the Sun later. We will 
assume a simple model whereby Earth's surface is completely covered with 
water, and we shall add the effect of Earth's rotation at an appropriate time. We 
set up an inertial frame of reference x'y'z' as shown in Figure 5.10a. We let Mm 
be the mass of the Moon, r the radius of a circular Earth, and D the distance 
from the center of the Moon to the center of Earth. We consider the effect of 
both the Moon's and Earth's gravitational attraction on a small mass m placed on 
the surface of Earth. As displayed in Figure 5-10a, the position vector of the mass 
m from the Moon is R, from the center of Earth is r, and from our inertial system 
r'm. The position vector from the inertial system to the center of Earth is r}.. As 
measured from the inertial system, the force on m, due to the earth and the 
Moon, is 

GmME GmMm er eR ( 5 , 4 8 ) 

Similarly, the force on the center of mass of Earth caused by the Moon is 

GMEM, 
I ) 2 MEr'E= (5.49) 
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FIGURE 5-10 (a) Geometry to f ind ocean tides on Earth due to the Moon, 
(b) Polar view with the polar axis along the z-axis. 
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We want to find the acceleration r as measured in the noninertial system 
placed at the center of Earth. Therefore, we want 

.. .., .., mr'm MEr'E r=r„ -, rE~-
m Me 

GMe 
e — 

GMm 

K2 

GM, 

GME p — 
9 T GMm 

[ eR eD 

\R2 D2 (5.50) 

The first part is due to Earth, and the second part is the acceleration from the 
tidal force, which is responsible for producing the ocean tides. It is due to the 
difference between the Moon's gravitational pull at the center of Earth and on 
Earth's surface. 
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We next find the effect of the tidal force at various points on Earth as 
noted in Figure 5-10b. We show a polar view of Earth with the polar axis along 
the z-axis. The tidal force Fy. on the mass m on Earth's surface is 

F (5.51) 

where we have used only the second part of Equation 5.50. We look first at point 
a, the farthest point on Earth from the Moon. Both unit vectors eR and eD are 
pointing in the same direction away from the Moon along the x-axis. Because R 
> D, the second term in Equation 5.51 predominates, and the tidal force is 
along the + x-axis as shown in Figure 5-1 Ob. For point b, R < D and the tidal 
force has approximately the same magnitude as at point a because r/D « 1, but 
is along the —x-axis. The magnitude of the tidal force along the x-axis, FTx, is 

FTx = -GmMm[ ~ - = - -

/ 
GmM„ 

D 2 

1 

We expand the first term in brackets using the (1 + x) 2 expansion in Equation 
D.9. 

FTx = -
GmM„ 

D 2 

2GmMmr 

where we have kept only the largest nonzero term in the expansion, because r/D = 
0.02. 

For point c, the unit vector e^ (Figure 5-10b) is not quite exactiy along e^, 
but the x-axis components approximately cancel, because R — D and the x-com-
ponents of eR and eD are similar. There will be a small component of eR along 
the 3>-axis. We approximate the ^-component of eR by (r/D)j, and the tidal force 
at point c, call it FV}1, is along the 31-axis and has the magnitude 

, 1 r \ GmMmr 
FTy=-GmMj-- = — (5.53) 

Note that this force is along the — )>-axis toward the center of Earth at point c. We 
find similarly at point D the same magnitude, but the component of eR will be 
along the —j-axis, so the force itself, with the sign of Equation 5.53, will be along 
the +3;-axis toward the center of Earth. We indicate the tidal forces at points a, b, 
c, and d on Figure 5-1 la. 
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FIGURE 5-11 (a) T h e tidal forces are shown at various places on Earth 's surface 
including the points a, b, c, and d of Figure 5-10. (b) An exaggerated 
view of Earth 's ocean tides. 

We determine the force at an arbitrary point e by noting that the x- and y-
components of the tidal force can be found by substituting x and y for r in Flx 
and FTy, respectively, in Equations 5.52 and 5.53. 

2 GmMmx 
FTx = D3 

GmMmy 
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Then at an arbitrary point such as e, we let x = r cos 6 and y = r sin 6, so we have 

2 GmMmr cos 6 
FTx = (5.54a) 

GmMmr sin 6 
Fry = f s (5.54b) 

Equations 5.54a and b give the tidal force around Earth for all angles 8. Note 
that they give the correct result at points a, b, c, and d. 

Figure 5-1 la gives a representation of the tidal forces. For our simple model, 
these forces lead to the water along the y-axis being more shallow than along 
the x-axis. We show an exaggerated result in Figure 5- l lb . As Earth makes a rev-
olution about its own axis every 24 hours, we will observe two high tides a day. 

A quick calculation shows that the Sun's gravitational attraction is about 175 
times stronger than the Moon's on Earth's surface, so we would expect tidal 
forces from the Sun as well. The tidal force calculation is similar to the one we 
have just performed for the Moon. The result (Problem 5-18) is that the tidal 
force due to the Sun is 0.46 that of the Moon, a sizable effect. Despite the 
stronger attraction due to the Sun, the gravitational force gradient over the sur-
face of Earth is much smaller, because of the much larger distance to the Sun. 

EXAMPLE 5.5 

Calculate the maximum height change in the ocean tides caused by the Moon. 

Solution. We continue to use our simple model of the ocean surrounding 
Earth. Newton proposed a solution to this calculation by imagining that two 
wells be dug, one along the direction of high tide (our x-axis) and one along 
the direction of low tide (our 31-axis). If the tidal height change we want to de-
termine is h, then the difference in potential energy of mass m due to the 
height difference is mgh. Let's calculate the difference in work if we move the 
mass m from point c in Figure 5-12 to the center of Earth and then to point a. 
This work W done by gravity must equal the potential energy change mgh. The 
work Wis 

W = 
r+Sl 

FTydy + 
r+S, 

FTxdx 

where we use the tidal forces FTy and FTx of Equations 5.54. The small distances 
<5, and 8 2 are to account for the small variations from a spherical Earth, but 
these values are so small they can be henceforth neglected. The value for W 
becomes 

W = 
GmM„ 

Z)3 

GmM„ 
£>3 

r 0 
(~y)dy + 2 xdx 

+ r2 = 
3 GrnMmr2 

2 D S 
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FIGURE 5-12 Example 5.5. We calculate the work done to move a point mass m f rom 
point c to the center of Earth and then to point a. 

Because this work is equal to mgh, we have 

3 GrnMmr2 

mgh 
2 D3 

h = ( 5 - 5 5 ) 

Note that the mass m cancels, and the value of h does not depend on rri. Nor 
does it depend on the substance, so to the extent Earth is plastic, similar tidal 
effects should be (and are) observed for the surface land. If we insert the 
known values of the constants into Equation 5.55, we find 

_ 3(6.67 X 10" nm 3Ag-s 2 ) (7 .350 X 1022kg)(6.37 X 106m)2 _ 
k ~ 2(9.80m/s2) (3.84 X 10 8m) 3 ~ ° ' 5 4 m 

The highest tides (called spring tides) occur when Earth, the Moon, and the 
Sun are lined up (new moon and full moon), and the smallest tides (called neap 
tides) occur for the first and third quarters of the Moon when the Sun and 
Moon are at right angles to each other, partially cancelling their effects. The 
maximum tide, which occurs every 2 weeks, should be 1.46A = 0.83 m for the 
spring tides. 

An observer who has spent much time near the ocean has noticed that typi-
cal oceanshore tides are greater than those calculated in Example 5.5. Several 
other effects come into play. Earth is not covered completely with water, and the 
continents play a significant role, especially the shelfs and narrow estuaries. 
Local effects can be dramatic, leading to tidal changes of several meters. The 
tides in midocean, however, are similar to what we have calculated. Resonances 
can affect the natural oscillation of the bodies of water and cause tidal changes. 
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(highly exaggerated) 
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FIGURE 5-13 Some effects cause the high tides to no t be exacdy along 
the Earth-Moon axis. 

Tidal friction between water and Earth leads to a significant amount of energy 
loss on Earth. Earth is not rigid, and it is also distorted by tidal forces. 

In addition to the effects just discussed, remember that as Earth rotates, the 
Moon is also orbiting Earth. This leads to the result that there are not quite ex-
actly two high tides per day, because they occur once every 12 h and 26 min 
(Problem 5-19). The plane of the moon's orbit about Earth is also not perpendi-
cular to Earth's rotation axis. This causes one high tide each day to be slightly 
higher than the other. The tidal friction between water and land mentioned pre-
viously also results in Earth "dragging" the ocean with it as Earth rotates. This 
causes the high tides to be not quite along the Earth-Moon axis, but rather sev-
eral degrees apart as shown in Figure 5-13. 

5-1. Sketch the equipotent ial surfaces and the lines of force for two poin t masses sepa-
rated by a certain distance. Next, consider o n e of the masses to have a fictitious 
negative mass — M. Sketch the equipotential surfaces and lines of force for this 
case. To what kind of physical situation does this set of equipotentials and field 
lines apply? (Note that the lines of force have direction; indicate this with appropri-
ate arrows.) 

PROBLEMS 

5-2. If the field vector is i ndependen t of the radial distance within a sphere, find the 
funct ion describing the density p = p(r) of the sphere. 
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5-3. Assuming that air resistance is un impor tan t , calculate the min imum velocity a par-
ticle must have at the surface of Ear th to escape f r o m Earth 's gravitational field. 
Obta in a numerical value for the result. (This velocity is called the escape velocity.) 

5-4. A particle at rest is at tracted toward a center of force according to the relation F = 
— wiA2/ x3. Show that the time required for the particle to reach the force center 
f r o m a distance d is d2/k. 

5-5. A particle falls to Ear th starting f r o m rest at a great he ight (many times Earth 's 
radius). Neglect air resistance and show that the particle requires approximately yy 
of the total time of fall to traverse the first half of the distance. 

5-6. Compute directly the gravitational force on a uni t mass at a po in t exterior to a ho-
mogeneous sphere of matter. 

5-7. Calculate the gravitational potential due to a thin rod of length I and mass M at a 
distance R f r o m the center of the rod and in a direction perpendicu lar to the rod. 

5-8. Calculate the gravitational field vector d u e to a homogeneous cylinder at exterior 
points on the axis of the cylinder. Pe r fo rm the calculation (a) by comput ing the 
force direcdy and (b) by comput ing the potential first. 

5-9. Calculate the potential d u e to a thin circular r ing of radius a and mass M fo r points 
lying in the plane of the r ing and exterior to it. T h e result can be expressed as an 
elliptic integral.* Assume that the distance f r o m the center of the r ing to the field 
po in t is large compared with the radius of the ring. Expand the expression for the 
potential and find the first correct ion term. 

5-10. Find the potential at off-axis points due to a thin circular r ing of radius a and mass 
M. Let R be the distance f r o m the center of the r ing to the field point , and let 9 be 
the angle between the line connect ing the center of the r ing with the field point 
and the axis of the ring. Assume R^> a so that terms of o rde r ( a / R ) 3 and h igher 
may be neglected. 

5-11. Consider a massive body of arbitrary shape and a spherical surface that is exterior 
to and does no t contain the body. Show that the average value of the potential due 
to the body taken over the spherical surface is equal to the value of the potential at 
the center of the sphere . 

5-12. In the previous problem, let the massive body be inside the spherical surface. Now 
show that the average value of the potential over the surface of the sphere is equal 
to the value of the potential that would exist on the surface of the sphere if all the 
mass of the body were concent ra ted at the center of the sphere. 

5-13. A planet of density p , (spherical core, radius Rx) with a thick spherical cloud of 
dust (density p2 , radius R2) is discovered. What is the force on a particle of mass m 
placed within the dust cloud? 

*See Appendix B for a list of some elliptic integrals. 
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5-14. Show that the gravitational self-energy (energy of assembly piecewise f r o m infinity) 
of a un i form sphere of mass M and radius R is 

5-15. A particle is d r o p p e d into a hole drilled straight th rough the center of Earth. 
Neglecting rotational effects, show that the particle's mot ion is simple harmonic if 
you assume Earth has un i form density. Show that the per iod of the oscillation is 
about 84 min. 

5-16. A uniformly solid sphere of mass M a n d radius R is f ixed a distance h above a thin 
infinite sheet of mass density ps (mass /area) . With what force does the sphere at-
tract the sheet? 

5-17. Newton's model of the tidal height, using the two water wells dug to the center of 
Earth, used the fact that the pressure at the bo t tom of the two wells should be the 
same. Assume water is incompressible and f ind the tidal height dif ference h, 
Equation 5.55, due to the Moon using this model . {Hint: SI""" Pgydy = So""Pgxdx\ 
h = *max - >max> where xmax + ymax= 2ftc a r t h , and Re a r t h is Earth 's median radius.) 

5-18. Show that the ratio of max imum tidal heights d u e to the Moon and Sun is given by 

and that this value is 2.2. R& is the distance between the Sun and Earth, and Ms is 
the Sun's mass. 

5-19. T h e orbital revolution of the Moon about Earth takes about 27.3 days and is in the 
same direction as Earth's rotat ion (24 h) . Use this informat ion to show that high 
tides occur everywhere on Earth every 12 h and 26 min. 

5-20. A thin disk of mass M and radius R lies in the (x, y) p lane with the z-axis passing 
through the center of the disk. Calculate the gravitational potential <P(z) and the 
gravitational field g(z) = —V<P(z) = —id<t>(z)/dz on the z-axis. 

5-21. A point mass m is located a distance 1) f r o m the nearest end of a thin rod of mass M 
and length L a long the axis of the rod. Find the gravitational force exerted on the 
point mass by the rod. 



CHAPTER 6 
Some Methods in the 

Calculus of Variations 

6.1 Introduction 
Many problems in Newtonian mechanics are more easily analyzed by means of 
alternative statements of the laws, including Lagrange's equation and Hamilton's 
principle.* As a prelude to these techniques, we consider in this chapter some 
general principles of the techniques of the calculus of variations. 

Emphasis will be placed on those aspects of the theory of variations that 
have a direct bearing on classical systems, omitting some existence proofs. Our 
primary interest here is in determining the path that gives extremum solutions, 
for example, the shortest distance (or time) between two points. A well-known 
example of the use of the theory of variations is Fermat's principle: Light travels 
by the path that takes the least amount of time (see Problem 6-7). 

6.2 Statement of the Problem 
The basic problem of the calculus of variations is to determine the function y(x) 
such that the integral 

T h e development of the calculus of variations was begun by Newton (1686) and was extended by 
Johann and Jakob Bernoulli (1696) and by Euler (1744). Adrien Legendre (1786), Joseph Lagrange 
(1788), Hamilton (1833), a n d j a c o b i (1837) all made important contributions. The names of Peter 
Dirichlet (1805-1859) and Karl Weierstrass (1815-1879) are particularly associated with the estab-
lishment of a rigorous mathematical foundation for the subject. 

/= f{y(x),y'(x); x] dx (6.1) 

207 
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x | x<2 

F I G U R E 6-1 T h e f u n c t i o n y(x) is t h e p a t h t h a t m a k e s t h e f u n c t i o n a l J a n e x t r e m u m . 
T h e n e i g h b o r i n g f u n c t i o n s y{x) + ar](x) v a n i s h a t t h e e n d p o i n t s a n d 
m a y b e c lose to y(x), b u t a r e n o t t h e e x t r e m u m . 

is an extremum (i.e., either a maximum or a minimum). In Equation 6.1, 
y'(x) = dy/dx, and the semicolon in/separates the independent variable xfrom 
the dependent variable y(x) and its derivative y'{x). The functional* J depends 
on the function y(x), and the limits of integration are fixed.* The function y(x) is 
then to be varied until ah extreme value of J is found. By this we mean that if a 
function y = y(x) gives the integral J a minimum value, then any neighboring func-
tion, no matter how close to y(x), must make / increase. The definition of a 
neighboring function may be made as follows. We give all possible functions y a 
parametric representation y = y(a, x) such that, for a = 0, y = y(0, x) = y{x) is 
the function that yields an extremum for J. We can then write 

y(a, x) = y(0, x) + arj(x) (6.2) 

where 17 (x) is some function of x that has a continuous first derivative and that 
vanishes at x{ and x2, because the varied function y(a, x) must be identical with 
y(x) at the endpoints of the path: TJCX,) = TJ(X2) = 0. The situation is depicted 
schematically in Figure 6-1. 

If functions of the type given by Equation 6.2 are considered, the integral J 
becomes a functional of the parameter a: 

/(«) = /{y(a, x), y' (a, x); x} dx (6.3) 

*The quantity J is a generalization of a funct ion called a functional, actually an integral functional in 
this case. 
f i t is not necessary that the limits of integration be considered fixed. If they are allowed to vary, the prob-
lem increases to finding not only y(x) but also x, and x2 such that J is an extremum. 
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The condition that the integral have a stationary value (i.e., that an extremum re-
sults) is that J be independent of a in first order along the path giving the ex-
tremum (a = 0), or, equivalently, that 

dJ 
— = 0 (6.4) da a=0 

for all functions rj(x). This is only a necessary condition; it is not sufficient. 

EXAMPLE 6. 

Consider the function / = (dy/dx ) 2 , where y(x) = x. Add to y(x) the function 
7](x) = sin x, and find J(a) between the limits of x = 0 and x = 2tt. Show that 
the stationary value of J(a) occurs for a = 0. 

Solution. We may construct neighboring varied paths by adding to y(x), 

y{x) = x (6 .5) 

the sinusoidal variation a sin x, 

y(a, x) = x + asmx (6.6) 

These paths are illustrated in Figure 6-2 for a = 0 and for two different nonvan-
ishing values of a. Clearly, the function 7](x) = sin x obeys the endpoint condi-
tions, that is, 17(0) = 0 = 17(277). To determine f(y, y'\ x) we first determine. 

dy(a, x) 
= 1 + a cos x (6.7) 

dx 

FIGURE 6-2 Example 6.1. The various paths y(a, x) = x + a sin x. T h e ex t remum 
path occurs for a = 0. 
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then 

dx 
' dy(a, x ) \ 2 

/ = [ ; ) = 1 + 2 a cos x + a2 cos2 x 

Equation 6.3 now becomes 

/(«) = (1 + 2a cos x + a2 cos2 x)dx 

= 27r + a27T 

(6.8) 

(6.9) 

(6 .10) 

Thus we see the value of J(a) is always greater than J{0), no matter what value 
(positive or negative) we choose for a. The condition of Equation 6.4 is also 
satisfied. 

6.3 Euler's Equation 
To determine the result of the condition expressed by Equation 6.4, we perform 
the indicated differentiation in Equation 6.3: 

dj a r*2 

da da 
f{y,y';x}dx (6.11) 

Because the limits of integration are fixed, the differential operation affects only 
the integrand. Hence, 

da 

From Equation 6.2, we have 

\dy da dy' da J 

dy dy' dr) 
— = rj(x); — = — 
da da dx 

(6.12) 

(6 .13) 

Equation 6.12 becomes 

da (—TJ(JC) H———jdx 
dy dy dxj 

The second term in the integrand can be integrated by parts: 

(6 .14) 

u dv = uv v du 

'*2 df d-q df 
—, — d x = — rj(x) 
dy dx dy Xl dx\dy' 

- 17)(x)dx 

(6 .15) 

(6.16) 
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The integrated term vanishes because 17(x,) = 17(*2) = 0. Therefore, Equation 
6.12 becomes 

dl 
da 

— r](x) (— I r j ( x ) 
dy dx\dy 1 dx 

"z/df 

,dy 
(6.17) 

The integral in Equation 6.17 now appears to be independent of a. But the 
functions y and y' with respect to which the derivatives of f are taken are still 
functions of a. Because (dj/da) | a = 0 must vanish for the extremum value and be-
cause T](x) is an arbitrary function (subject to the conditions already stated), the 
integrand in Equation 6.17 must itself vanish for a = 0: 

dl_ d df 
, = 0 

dy dxdy 
Euler's equation (6.18) 

where now y and y' are the original functions, independent of a. This result is 
known as Euler's equation,* which is a necessary condition for J to have an ex-
tremum value. 

EXAMPLE 6.2 

We can use the calculus of variations to solve a classic problem in the history of 
physics: the brachistochrone.) Consider a particle moving in a constant force field 
starting at rest from some point (xj, y t) to some lower point y2). Find the 
path that allows the particle to accomplish the transit in the least possible time. 

Solution. The coordinate system may be chosen so that the point (xlt y^ is at 
the origin. Further, let the force field be directed along the positive x-axis as 
in Figure 6-3. Because the force on the particle is constant—and if we ignore 
the possibility of friction—the field is conservative, and the total energy of the 
particle is T + U= const. If we measure the potential f rom the point x = 0 
[i.e., U(x = 0 ) = 0 ] , then, because the particle starts f rom rest, T+ U = 0. 
The kinetic energy is T = |wiw2, and the potential energy is U = —Fx = —mgx, 
where g is the acceleration imparted by the force. Thus 

v = V 2 g x (6.19) 

The time required for the particle to make the transit from the origin to (x<>, y2) is 

t = 
(*i0>i) v 

(dx2 + dy2) 2\ 1/2 

(2 gx) 1/2 

x, = 0 

1 + y2V/2 
2 gx 

dx (6.20) 

*Derived first by Euler in 1744. W h e n appl ied to mechanical systems, this is known as the Euler-
Lagrange equation. 
fFirst solved b y j o h a n n Bernoull i (1667-1748) in 1696. 
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(*l>?i) 

(*2> >2) 

X 

FIGURE 6-3 Example 6.2. T h e brachistochrone p rob lem is to find the pa th of a particle 
moving f r o m (X],}' | ) to (x2 , y%) that occurs in the least possible time. 
T h e force field acting on the particle is F, which is down a n d constant. 

The time of transit is the quantity for which a minimum is desired. Because the 
constant (2g) ~1/2 does not affect the final equation, the function /may be iden-
tified as 

where a is a new constant. 
Performing the differentiation df/dy' on Equation 6.21 and squaring the 

result, we have 

(6.21) 

(6.22) 

(6 .23) J (2ax — x2)1/2 

We now make the following change of variable: 
x = a( 1 — cos 0) 

dx = a sin 8 d8 
The integral in Equation 6.23 then becomes 

y = 

(6.24) 

y = a( 1 — cos 8)d8 
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F I G U R E 6-4 E x a m p l e 6.2. T h e so lu t ion of t h e b r a c h i s t o c h r o n e p r o b l e m is a cycloid. 

and 

y = a(0 — sin 0) + constant 

The parametric equations for a cycloid? passing through the origin are 

x — a{ 1 - cos 0)1 
y = a{6 - sin 6) J 

(6.25) 

(6.26) 

which is just the solution found, with the constant of integration set equal to • 
zero to conform with the requirement that (0, 0) is the starting point of the 
motion. The path is then as shown in Figure 6-4, and the constant a must be 
adjusted to allow the cycloid to pass through the specified point (x2, y2). 
Solving the problem of the brachistochrone does indeed yield a path the parti-
cle traverses in a minimum time. But the procedures of variational calculus are 
designed only to produce an extremum—either a minimum or a maximum. It 
is almost always the case in dynamics that we desire (and find) a minimum for 
the problem. 

E X A M P L E 6 . 3 

Consider the surface generated by revolving a line connecting two fixed points 
(*i, y,) and (x2, y2) about an axis coplanar with the two points. Find the equa-
tion of the line connecting the points such that the surface area generated by 
the revolution (i.e., the area of the surface of revolution) is a minimum. 

Solution. We assume that the curve passing through (*i,jii) and (x2, y2) is re-
volved about the )'-axis, coplanar with the two points. To calculate the total area 
of the surface of revolution, we first find the area dA of a strip. Refer to Figure 6-5. 

*A cycloid is a curve traced by a point on a circle rolling on a plane along a line in the plane. See the 
dashed sphere rolling along x = 0 in Figure 6-4. 
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FIGURE 6-5 Example 6.3. T h e geometry of the p rob lem and area dA are indicated to 
minimize the surface of revolution a round the y-axis. 

dA = 2tt-xds = 2irx{dx2 + d f ) v 2 

A = 2tt x(\ + y2)V2dx 

where y' = dy/dx. To find the extremum value we let 

/ = x ( i + y 2 ) 1 / 2 

and insert into Equation 6.18: 
dl, 

dy 

df 

0 

xy 
dy' (1 + y2)1/2 

therefore, 

d, 
dx 

xy 
_(i + y 2 ) 1 ^ 

xy' 
( i + y 2 ) 1 / 2 

From Equation 6.30, we determine 

— = constant = a 

y = 
(x2 - a 2 ) 1 / 2 

adx 
(x2 - «2)1 /2 

(6.27) 

(6.28) 

(6.29) 

(6.30) 

(6.31) 

(6.24) 
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The solution of this integration is 

y = a c o s h " 1 ^ + b (6.33) 

where a and b are constants of integration determined by requiring the curve to 
pass through the points (*i, and (x2,}'2). Equation 6.33 can also be written as 

(y - b\ 
x = a cos h I I (6.34) 

\ a J 

which is more easily recognized as the equation of a catenary, the curve of a flex-
ible cord hanging freely between two points of support. 

Choose two points located at (x1; }',) and (x2, y2) joined by a curve }'(x). We 
want to find y(x) such that if we revolve the curve around the x-axis, the surface 
area of the revolution is a minimum. This is the "soap film" problem, because a 
soap film suspended between two wire circular rings takes this shape (Figure 6-6). 
We want to minimize the integral of the area dA = 2vy ds where ds = 
V I + y'2 dx and y' = dy/dx. 

A= 2v 
I ________ 

yV 1 + y'2dx (6.35) 

We find the extremum by setting / = + / 2 and inserting into Equation 6.18. 
The derivatives we need are 
dl 

dy 
df 

= v T T " ,'2 

yy 

dy ' V i + v ' 2 

ds= (dx2 + dy2)Vz 

FIGURE 6-6 T h e "soap film" problem in which we want to minimize the surface area of 
revolution a round the x-axis. 
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Equation 6.18 becomes 

dx 
yy 

V i + / 2 j 
(6.36) 

Equation 6.36 does not appear to be a simple equation to solve for y(x). Let's 
stop and think about whether there might be an easier method of solution. You 
may have noticed that this problem is just like Example 6.3, but in that case we 
were minimizing a surface of revolution about the y-axis rather than around the 
x-axis. The solution to the soap film problem should be identical to Equation 
6.34 if we interchange x and y. But how did we end up with such a complicated 
equation as Equation 6.36? We blindly chose x as the independent variable and 
decided to find the function y(x). In fact, in general, we can choose the inde-
pendent variable to be anything we want: x, 0, t, or even y. If we choose y as the 
independent variable, we would need to interchange x and y in many of the pre-
vious equations that led up to Euler's equation (Equation 6.18). It might be eas-
ier in the beginning to just interchange the variables that we started with (i.e., 
call the horizontal axis y in Figure 6-6 and let the independent variable be x). (In 
a right-handed coordinate system, the x-di recti on would be down, but that pres-
ents no difficulty in this case because of symmetry.) No matter what we do, the 
solution of our present problem would just parallel Example 6.3. Unfortunately, 
it is not always possible to look ahead to make the best choice of independent 
variable. Sometimes we just have to proceed by trial and error. 

6.4 The "Second Form" of the Euler Equation 
A second equation may be derived from Euler's equation that is convenient for 
functions that do not explicitly depend on x: df/dx = 0. We first note that for any 
function f(y, y'; x) the derivative is a sum of terms 

df d , , , df dy df dy' df 
— = — f\y, y;x\ = H 1 
dx dx dy dx dy dx dx 

df df df 
= y'T + y"r-> + v <6-37> 

Also 

dy dy' dx 

A , V ) = „V+ ,A*L 
dx\dy') y dy' y dxdy' 

or, substituting from Equation 6.37 for y"(df/dy'), 

d( ,df\ df df df >d df 
—I y—- I = y by (6.38) 
dx\ dy ) dx dx dy dxdy 
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The last two terms in Equation 6.38 may be written as 

,( d df a f \ 
\dxdy' dy/ 

which vanishes in view of the Euler equation (Equation 6.18). Therefore, 

(6.39) 

We can use this so-called "second form" of the Euler equation in cases in which f 
does not depend explicitly on x, and df/dx = 0. Then, 

df f— y'—- = constant 
dy 

for — = 0 
dx 

(6.40) 

EXAMPLE 6.4 

A geodesic is a line that represents the shortest path between any two points 
when the path is restricted to a particular surface. Find the geodesic on a 
sphere. 

Solution. The element of length on the surface of a sphere of radius p is given' 
(see Equation F.15 with dr = 0) by 

ds = p(dd2 + sin2 0 d<f>2)1/2 

The distance 5 between points 1 and 2 is therefore 

5 = p dOY . , „ 
!*) + s i n 2 ® 

1/2 

d<p 

(6.41) 

(6.42) 

and, if s is to be a minimum, / is identified as 

/ = (0'2 + sin2 0)1 /2 (6.43) 

where 9' = d0/d<f>. Because df/d<j) = 0, we may use the second form of the 
Euler equation (Equation 6.40), which yields 

(0'2 + sin2 0)1/2 - 0' • — ( 0 ' 2 + sin2 0)1/2 = constant = a (6.44) 
<30 

Differentiating and multiplying through by f , we have 

sin2 0 = a(0'2 + sin2 0)1/2 

This may be solved for d(f>/dd = 0'"1, with the result 

d<j> _ a csc20 
d6 ~ (1 - a2csc20)1 / 2 

(6.45) 

(6.46) 
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Solving for </>, we obtain 

<I) = + « (6-47> 

where a is the constant of integration and )32 = (1 — a2)/a2. Rewriting 
Equation 6.47 produces 

cot 0 = /3 sin (<f> - a) (6.48) 

To interpret this result, we convert the equation to rectangular coordinates by 
multiplying through by p sin0 to obtain, on expanding sin(</> — a), 

(/3 cos a)p sin 0 sin (j) — (/3 sin a)p sin 0 cos 4> = p cos 6 (6.49) 

Because a and are constants, we may write them as 

)3 cos a = A, f3 sin a = B (6.50) 

Then Equation 6.49 becomes 

A(p sin 6 sin <j>) — B(p sin 6 cos <f>) = (p cos 0) (6.51) 

The quantities in the parentheses are just the expressions for y, x, and z, respec-
tively, in spherical coordinates (see Figure F-3, Appendix F); therefore Equation 
6.51 may be written as 

Ay - Bx = z (6.52) 

which is the equation of a plane passing through the center of the sphere. 
Hence the geodesic on a sphere is the path that the plane forms at the intersec-
tion with the surface of the sphere—a great circle. Note that the great circle is the 
maximum as well as the minimum "straight-line" distance between two points 
on the surface of a sphere. 

6.5 Functions with Several Dependent Variables 
The Euler equation derived in the preceding section is the solution of the varia-
tional problem in which it was desired to find the single function y(x) such that 
the integral of the functional/was an extremum. The case more commonly en-
countered in mechanics is that in which / is a functional of several dependent 
variables: 

f=f{yi(x),y'i(x),y2(x),/2(*)> •••; *} (6.53) 

or simply 

/ = /{?,•(*), y<(*); *}, « = 1, 2, •••, n (6.54) 

In analogy with Equation 6.2, we write 

y{(a, x) = yi(0, x) + arj{(x) (6.55) 
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The development proceeds analogously (cf. Equation 6.17), resulting in 

dj d d f \ 
— = "TTT Vi(x)dx da JXl • \dyt dx dy J 

(6.56) 

Because the individual variations—the rji{x)—are all independent, the vanishing 
of Equation 6.56 when evaluated at a = 0 requires the separate vanishing of each 
expression in the brackets: 

(6.57) 

6.6 Euler's Equations When Auxiliary Conditions 
Are Imposed 

Suppose we want to find, for example, the shortest path between two points on a 
surface. Then, in addition to the conditions already discussed, there is the con-
dition that the path must satisfy the equation of the surface, say, x) = 0. 
Such an equation was implicit in the solution of Example 6.4 for the geodesic on 
a sphere where the condition was 

g = 2 x f - p 2 = 0 (6.58) 
i 

that is, 

r = p = constant (6.59) 

But in the general case, we must make explicit use of the auxiliary equation or 
equations. These equations are also called equations of constraint. Consider the 
case in which 

/= fb» y'i> = fb> /> z> 2'; 4 (6.60) 
The equation corresponding to Equation 6.17 for the case of two variables is 

da 
d/_ ^ d f t f y + i ^ W 
dy dxdy'Jda \dz dx'dz ) 'da_ 

dx (6.61) 

But now there also exists an equation of constraint of the form 

gbi', x} = g{y, z; xj = 0 (6.62) 
and the variations dy/da and dz/da are no longer independent, so the expres-
sions in parentheses in Equation 6.61 do not separately vanish at a = 0. 

Differentiating gf rom Equation 6.62, we have 

(dg dy dg dz\ 
dg= — — + — — )da = 0 (6.63) 

\dy da dz da) 
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where no term in x appears since dx/da = 0. Now 

y(a, x) = y(x) + (x)l 
z(a, x) = z(x) + arj2(x)j 

Therefore, by determining dy/da and dz/da from Equation 6.64 and inserting 
into the term in parentheses of Equation 6.63, which, in general, must be zero, 
we obtain 

dg 
dy 

dg 
~ 172 M dz 

(6.65) 

Equation 6.61 becomes 

V. 
da 

dJ 
l\dy 

dx 

Factoring TJJ (X) out of the square brackets and writing Equation 6.65 as 

172 (x) dg/;>y 
17! (x) dg/dz 

we have 

dl 
da Py 

A V ) 
dxdy') 

^f d aA/VM' 
dz dx dz' J \dg/dzJ 

17! (x) dx (6.66) 

(6.67) 

This latter equation now contains the single arbitrary function 171 (x), which is 
not in any way restricted by Equation 6.64, and on requiring the condition of 
Equation 6.4, the expression in the brackets must vanish. Thus we have 

lBl- A*t\ M"
1
 = (df_ ±df\ 

\d>' dxdy'J \dyj \dz dxdz'J \dzj 

The left-hand side of this equation involves only derivatives o f / and gwith re-
spect to y and y', and the right-hand side involves only derivatives with respect to 
z and z'. Because y and z are both functions of x, the two sides of Equation 6.67 
may be set equal to a function of x, which we write as — A(x): 
bl. 

dy 
df d 
dz 

d df dg 
- — - + A(x)— = 0 
dxdy dy 

df dg 
— —, + A(x)— = 0 
dxdz dz 

(6.68) 

The complete solution to the problem now depends on finding three functions: 
y(x), z(x), and A(x). But there are three relations that may be used: the two equa-
tions (Equation 6.68) and the equation of constraint (Equation 6.62). Thus, 
there is a sufficient number of relations to allow a complete solution. Note that 
here A(x) is considered to be undetermined* and is obtained as a part of the solu-
tion. The function A(x) is known as a Lagrange undetermined multiplier. 

*The function A(x) was introduced in Lagrange's Mecanique analytique (Paris, 1788). 
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For the general case of several dependent variables and several auxiliary 
conditions, we have the following set of equations: 

ty i 

d df , + dxdyj 
v dSj 2,A ;(x)—' = 0 
j dyt 

Sjbi; x} = 0 

(6.69) 

(6.70) 

If i = 1,2, •••, m, and j = 1,2, •••, n, Equation 6.69 represents m equations in 
m + n unknowns, but there are also the n equations of constraint (Equation 
6.70). Thus, there are m + n equations in m + n unknowns, and the system is 
soluble. 

Equation 6.70 is equivalent to the set of n differential equations 

2 , — > , - = 0, 
1 dy; 

U= 1,2,-, 
\ j = 1 , 2 , - , 

m 
n 

(6.71) 

In problems in mechanics, the constraint equations are frequently differential 
equations rather than algebraic equations. Therefore, equations such as Equation 
6.71 are sometimes more useful than the equations represented by Equation 6.70. 
(See Section 7.5 for an amplification of this point.) 

E X A M P L E 6 . 5 

Consider a disk rolling without slipping on an inclined plane (Figure 6-7). 
Determine the equation of constraint in terms of the "coordinates"* y and 0. 

Solution. The relation between the coordinates (which are not independent) is 

y = R6 (6.72) 

where R is the radius of the disk. Hence the equation of constraint is 

g(y,9) = y - Re = 0 (6.73) 

FIGURE 6-7 E x a m p l e 6.5. A disk rolls d o w n a n i nc l i ned p l a n e w i t h o u t s l ipping. 

T h e s e are actually the generalized coordinates discussed in Section 7.3; see also Example 7.9. 
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and 

dg dg 
f = 1, (6-74) dy dd 

are the quantities associated with A, the single undetermined multiplier for this 
case. 

The constraint equation can also appear in an integral form. Consider the 
isoperimetric problem that is stated as finding the curve y = y(x) for which the 
functional 

M f{y, y'; x)dx (6.75) 

has an extremum, and the curve y(x) satisfies boundary conditions y(a) = A and 
y{b) = B as well as the second functional 

K[y] = g{y, y'; x}dx (6.76) 

that has a fixed value for the length of the curve (C). This second functional rep-
resents an integral constraint. 

Similarly to what we have done previously,* there will be a constant A such 
that y(x) is the extremal solution of the functional 

rb 
( / + A g)dx. 

The curve y(x) then will satisfy the differential equation 

dy dxdy \dy dxdy J 

(6.77) 

(6.78) 

subject to the constraints y(a) = A, y(b) = B, and K[y] = €. We will work an ex-
ample for this so-called Dido Problem 

EXAMPLE 6.6 

One version of the Dido Problem is to find the curve y(x) of length € bounded 
by the x-axis on the bottom that passes through the points ( — a, 0) and (a, 0) 
and encloses the largest area. The value of the endpoints a is determined by the 
problem. 

*For a proof, see Ge63, p. 43. 
f T h e isoperimetric problem was made famous by Virgil's poem Aeneid, which described Queen Dido 
of Carthage, who in 900 B.C. was given by a local king as much land as she could enclose with an ox's 
hide. In order to maximize her claim, she had the hide cut into thin strips and tied them end to end. 
She apparently knew enough mathematics to know that for a perimeter of a given length, the maxi-
mum area enclosed is a circle. 
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FIGURE 6-8 Example 6.6. We want to find the curve y(x) that maximizes the area 
above the y = 0 line consistent with a fixed per imeter length. The curve 
must go through x = —a and a. T h e differential area dA = ydx, and the 
differential length along the curve is d(. 

Solution. We can use the equations just developed to solve this problem. We 
show in Figure 6-8 that the differential area dA = y dx. We want to maximize the 
area, so we want to find the extremum solution for Equation 6.75, which 
becomes 

/ = ydx 

The constraint equations are 

y(x):y( — a) = 0 ,y(a) = 0 and K = d£ = i. 

(6.79) 

(6.80) 

The differential length along the curve di = (dx2 + dy2)1/2 = (1 + y 2)1/2 dx 
where y' = dy/dx. The constraint functional becomes 

K = [1 + y'*]Wdx = €. (6.81) 

We now have y(x) = y and g(x) = v T + / 2 , and we use these functions 
Equation 6.78. 

in 

df df 
- = 1, ^ 7 = 0, dy dy 

Equation 6.78 becomes 

A 
1 - A — 

dx L ( i + y 2 ) 1 / 2 . 

We manipulate Equation 6.82 to find 

/ 

dg dg y' 
dy = °' d f = (1 + /2)1/2 

= 0 

A 
dx ( i + y 2 ) 1 / 2 

(6.82) 

(6.83) 
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We integrate over x to find 

— x 
V(i + y2) 

where C1 is an integration constant. This can be rearranged to be 

±(x — C,)dx 

This equation is integrated to find 

y=+ VA2 - (x - CO2 + C2 (6.84) 

where C2 is another integration constant. We can rewrite this as the equation of 
a circle of radius A. 

The maximum area is a semicircle bounded by the y = 0 line. The semicircle 
must go through (x, y) points of ( — a, 0) and ( a, 0), which means the circle 
must be centered at the origin, so that Cj = 0 = C2, and the radius = a = A. 
The perimeter of the top half of the semicircle is what we called and the 
perimeter length of a half circle is it a. Therefore, we have ira = i, and a = Z/ir. 

In analyses that use the calculus of variations, we customarily use a shorthand 
notation to represent the variation. Thus, Equation 6.17, which can be written as 

(x - Q) 2 + ( y - C2)2 = A2 (6.85) 

6.7 The 8 Notation 

(6.86) 

may be expressed as 

(6.87) 

where 

dy 
» (6.88) 

The condition of extremum then becomes 

8J = 8 f{y, y1; x}dx = 0 (6.89) 
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Varied path 
(x2, y2) 

Actual path 

(x^yi) 

FIGURE 6-9 The varied path is a virtual displacement Sy f rom the actual pa th consistent 
with all the forces and constraints. 

Taking the variation symbol 8 inside the integral (because, by hypothesis, the 
limits of integration are not affected by the variation), we have 

But 

so 

8J= | 8fdx 

df df , 
— Sy -I 8y' dx J dy' J ' 

— 8y H—— — 8y | dx 
dy } dy'dx ' ' 

Integrating the second term by parts as before, we find 
x*'df d a / \ 

— — I 8y dx 
dy dxdy' 

(6 .90) 

(6 .91) 

(6.92) 

(6.93) 

Because the variation 8y is arbitrary, the extremum condition 8J= 0 requires the 
integrand to vanish, thereby yielding the Euler equation (Equation 6.18). 

Although the 8 notation is frequently used, it is important to realize that it is 
only a shorthand expression of the more precise differential quantities. The varied 
path represented by 8y can be thought of physically as a virtual displacement from 
the actual path consistent with all the forces and constraints (see Figure 6-9). This 
variation 8y is distinguished from an actual differential displacement dy by the 
condition that dt = 0 — that is, that time is fixed. The varied path 8y, in fact, need 
not even correspond to a possible path of motion. The variation must vanish at the 
endpoints. 
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PROBLEMS 

6-1. Consider the line connect ing (*!, 3i[) = (0, 0) and (x2, y,2) = (1, 1). Show explicitly 
that the funct ion y(x) = x produces a m in imum path length by using the varied 
funct ion y(a, x) = x + a sin 77" (1 — x). Use the first few terms in the expansion of 
the resulting elliptic integral to show the equivalent of Equat ion 6.4. 

6-2. Show that the shortest distance between two points on a p lane is a straight line. 

6-3. Show that the shortest distance between two points in (three-dimensional) space is 
a straight line. 

6-4. Show that the geodesic on the surface of a r ight circular cylinder is a segment of a 

6-5. Consider the surface generated by revolving a line connect ing two fixed points 
(*!, }'|) and (x2, y->) about an axis coplanar with the two points. Find the equat ion 
of the line connect ing the points such that the surface area genera ted by the revo-
lution (i.e., the area of the surface of revolution) is a min imum. Obtain the solu-
tion by using Equation 6.39. 

6-6. Reexamine the prob lem of the brachis tochrone (Example 6.2) a n d show that the 
time required for a particle to move (frictionlessly) to the minimum, point of the cy-
cloid is 77 , independent of the starting point . 

6-7. Consider light passing f r o m one m e d i u m with index of refract ion n , into ano the r 
med ium with index of refraction n2 (Figure 6-A). Use Fermat 's principle to mini-
mize time, and derive the law of refraction: nx sin = n, sin 02-

helix. 

(n2 > »j) 

FIGURE 6-A Problem 6-7. 

6-8. 

6-9. 

Find the dimensions of the parallelepiped of max imum volume circumscribed by 
(a) a sphere of radius R; (b) an ellipsoid with semiaxes a, b, c. 

Find an expression involving the funct ion <f>(xj, x2, that has a m in imum average 
value of the square of its gradient within a certain volume Vof space. 
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6-10. Find the ratio of the radius R to the height H of a right-circular cylinder of fixed 
volume V that minimizes the surface area A. 

6-11. A disk of radius R rolls without slipping inside the parabola y = ax2. Find the equa-
tion of constraint. Express the condi t ion that allows the disk to roll so that it con-
tacts the parabola at o n e and only one point , i ndependen t of its position. 

6-12. Repeat Example 6.4, finding the shortest pa th between any two points on the sur-
face of a sphere, bu t use the m e t h o d of the Euler equat ions with an auxiliary con-
dition imposed. 

6-13. Repeat Example 6.6 bu t do no t use the constraint that the y = 0 line is the bo t tom 
part of the area. Show that the plane curve of a given length, which encloses a max-
imum area, is a circle. 

6-14. Find the shortest pa th between the (x, y, z) points (0, — 1, 0) and (0, 1, 0) on the 
conical surface z = 1 — V x 2 + y2. What is the length of the path? Note: this is the 
shortest mounta in pa th a round a volcano. 

6-15. (a) Find the curve y(x) that passes th rough the endpoints (0, 0) and (1 ,1) and min-
imizes the funct ional I[y\ = J't\(dy/dx)2 — y2]dx. (b) What is the min imum value 
of the integral? (c) Evaluate I[y\ for a straight line y = x between the points (0, 0) 
and (1, 1). 

6-16. (a) What curve on the surface z = xs/2 j o in ing the points (x, y, z) = (0, 0, 0) and 
(1, 1, 1) has the shortest arc length? (b) Use a compute r to p roduce a plot showing 
the surface and the shortest curve on a single plot. 

6-17. T h e corners of a rectangle lie on the ellipse (x/a)2 + (y/b)1 = 1. (a) Where should 
the corners be located in o rde r to maximize the area of the rectangle? (b) What 
fraction of the area of the ellipse is covered by the rectangle with max imum area? 

6-18. A particle of mass m is constrained to move u n d e r gravity with no friction on the 
surface xy = z. What is the trajectory of the particle if it starts f rom rest at (x, y, z) = 
(1, — 1, —1) with the z-axis vertical? 



CHAPTER 

Hamilton9s Principle— 
Lagrangian and 

Hamiltonian Dynamics 

7.1 Introduction 
Experience has shown that a particle's motion in an inertial reference frame is 
correctly described by the Newtonian equation F = p. If the particle is not re-
quired to move in some complicated manner and if rectangular coordinates are 
used to describe the motion, then usually the equations of motion are relatively 
simple. But if either of these restrictions is removed, the equations can become 
quite complex and difficult to manipulate. For example, if a particle is con-
strained to move on the surface of a sphere, the equations of motion result from 
the projection of the Newtonian vector equation onto that surface. The repre-
sentation of the acceleration vector in spherical coordinates is a formidable 
expression, as the reader who has worked Problem 1-25 can readily testify. 

Moreover, if a particle is constrained to move on a given surface, certain 
forces must exist (called forces of constraint) that maintain the particle in con-
tact with the specified surface. For a particle moving on a smooth horizontal sur-
face, the force of constraint is simply F( = — mg. But, if the particle is, say, a bead 
sliding down a curved wire, the force of constraint can be quite complicated. 
Indeed, in particular situations it may be difficult or even impossible to obtain ex-
plicit expressions for the forces of constraint. But in solving a problem by using 
the Newtonian procedure, we must know all the forces, because the quantity F 
that appears in the fundamental equation is the total force acting on a body. 

To circumvent some of the practical difficulties that arise in attempts to 
apply Newton's equations to particular problems, alternate procedures may be 

228 
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developed. All such approaches are in essence a posteriori, because we know before-
hand that a result equivalent to the Newtonian equations must be obtained. Thus, 
to effect a simplification we need not formulate a new theory of mechanics—the 
Newtonian theory is quite correct—but only devise an alternate method of deal-
ing with complicated problems in a general manner. Such a method is con-
tained in Hamilton's Principle, and the equations of motion resulting from the 
application of this principle are called Lagrange's equations. 

If Lagrange's equations are to constitute a proper description of the dynam-
ics of particles, they must be equivalent to Newton's equations. On the other 
hand, Hamilton's Principle can be applied to a wide range of physical phenom-
ena (particularly those involving fields) not usually associated with Newton's 
equations. To be sure, each of the results that can be obtained from Hamilton's 
Principle was first obtained, as were Newton's equations, by the correlation of 
experimental facts. Hamilton's Principle has not provided us with any new physical 
theories, but it has allowed a satisfying unification of many individual theories by 
a single basic postulate. This is not an idle exercise in hindsight, because it is the 
goal of physical theory not only to give precise mathematical formulation to ob-
served phenomena but also to describe these effects with an economy of funda-
mental postulates and in the most unified manner possible. Indeed, Hamilton's 
Principle is one of the most elegant and far-reaching principles of physical theory. 

In view of its wide range of applicability (even though this is an after-the-fact 
discovery), it is not unreasonable to assert that Hamilton's Principle is more 
"fundamental" than Newton's equations. Therefore, we proceed by first postulat-
ing Hamilton's Principle; we then obtain Lagrange's equations and show that 
these are equivalent to Newton's equations. 

Because we have already discussed (in Chapters 2, 3, and 4) dissipative phe-
nomena at some length, we henceforth confine our attention to conservative 
systems. Consequently, we do not discuss the more general set of Lagrange's 
equations, which take into account the effects of nonconservative forces. The 
reader is referred to the literature for these details.* 

7.2 Hamilton's Principle 
Minimal principles in physics have a long and interesting history. The search for 
such principles is predicated on the notion that nature always minimizes certain 
important quantities when a physical process takes place. The first such mini-
mum principles were developed in the field of optics. Hero of Alexandria, in the 
second century B.C., found that the law governing the reflection of light could be 
obtained by asserting that a light ray, traveling from one point to another by a re-
flection from a plane mirror, always takes the shortest possible path. A simple 
geometric construction verifies that this minimum principle does indeed lead to 

*See, for example, Goldstein (Go80, Chapter 2) or, for a comprehensive discussion, Whittaker 
(Wh37, Chapter 8). 



230 7 / HAMILTON'S PRINCIPLE—LAGRANGIAN AND HAMILTONIAN DYNAMICS 

the equality of the angles of incidence and reflection for a light ray reflected 
from a plane mirror. Hero's principle of the shortest path cannot, however, yield a 
correct law for refraction. In 1657, Fermat reformulated the principle by postulat-
ing that a light ray always travels from one point to another in a medium by a 
path that requires the least time.* Fermat's principle of least time leads immedi-
ately, not only to the correct law of reflection, but also to Snell's law of refraction 
(see Problem 6-7) J 

Minimum principles continued to be sought, and in the latter part of the sev-
enteenth century the beginnings of the calculus of variations were developed by 
Newton, Leibniz, and the Bernoullis when such problems as the brachistochrone 
(see Example 6.2) and the shape of a hanging chain (a catenary) were solved. 

The first application of a general minimum principle in mechanics was made 
in 1747 by Maupertuis, who asserted that dynamical motion takes place with min-
imum action.1 Maupertuis's principle of least action was based on theological 
grounds (action is minimized through the "wisdom of God"), and his concept of 
"action" was rather vague. (Recall that action is a quantity with the dimensions of 
length X momentum or energy X time.) Only later was a firm mathematic foundation 
of the principle given by Lagrange (1760). Although it is a useful form from which 
to make the transition from classical mechanics to optics and to quantum me-
chanics, the principle of least action is less general than Hamilton's Principle 
and, indeed, can be derived from it. We forego a detailed discussion here.§ 

In 1828, Gauss developed a method of treating mechanics by his principle of 
least constraint; a modification was later made by Hertz and embodied in his 
principle of least curvature. These principles" are closely related to Hamilton's 
Principle and add nothing to the content of Hamilton's more general formula-
tion; their mention only emphasizes the continual concern with minimal princi-
ples in physics. 

In two papers published in 1834 and 1835, Hamilton1 announced the dy-
namical principle on which it is possible to base all of mechanics and, indeed, 
most of classical physics. Hamilton's Principle may be stated as follows**: 

Of all the possible paths along which a dynamical system may move from one 
point to another within a specified time interval (consistent with any con-
straints), the actual path followed is that which minimizes the time integral of the 
difference between the kinetic and potential energies. 

*Pierre de Fermat (1601-1665), a French lawyer, linguist, and amateur mathematician, 
f i n 1661, Fermat correcdy deduced the law of refraction, which had been discovered experimentally 
in about 1621 by Willebrord Snell (1591-1626), a Dutch mathematical prodigy. 
JPierre-Louise-Moreau de Maupertuis (1698-1759), French mathematician and astronomer. The 
first use to which Maupertuis put the principle of least action was to restate Fermat's derivation of 
the law of refraction (1744). 
§See, for example, Goldstein (Go80, pp. 365-371) or Sommerfeld (So50, pp. 204-209). 
llSee, fo r example , Lindsay and Margenau (Li36, pp . 112-120) or S o m m e r f e l d (So50, pp . 
210-214). 
ISir William Rowan Hamilton (1805-1865), Irish mathematician and astronomer, and later, Irish 
Astronomer Royal. 
**The general meaning of "the path of a system" is made clear in Section 7.3. 
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In terms of the calculus of variations, Hamilton's Principle becomes 

8 ( T - U)dt = 0 (7.1) 

where the symbol 8 is a shorthand notation to describe the variation discussed in 
Sections 6.3 and 6.7. This variational statement of the principle requires only 
that the integral of T — U be an extremum, not necessarily a minimum. But in al-
most all important applications in dynamics, the minimum condition occurs. 

The kinetic energy of a particle expressed in fixed, rectangular coordinates 
is a function only of the x„ and if the particle moves in a conservative force field, 
the potential energy is a function only of the x,: 

T= T{xt), U= U(x,) 

If we define the difference of these quantities to be 

L= T — U = L(xit xt) (7.2) 

then Equation 7.1 becomes 

(7.3) 

The function L appearing in this expression may be identified with the function 
/ o f the variational integral (see Section 6.5), 

/{}',(*), y'i{x) \ x}dx 

if we make the transformations 

x—*t 

Ji(x) -> Xi(t) 

y!(x) -*• Xi(t) 

fiyAx), y',(x); x}-> 

The Euler-Lagrange equations (Equation 6.57) corresponding to Equation 7.3 
are therefore 

dL 
dx, 

A 
dt Sx, 

0, i = 1, 2, 3 Lagrange equations of motion (7.4) 

These are the Lagrange equations of motion for the particle, and the quantity L 
is called the Lagrange function or Lagrangian for the particle. 
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By way of example, let us obtain the Lagrange equation of motion for the 
one-dimensional harmonic oscillator. With the usual expressions for the kinetic 
and potential energies, we have 

L = T — U= —mx2 kx2 

2 2 

dx 
dL 
— = mx 
dx 

d(dl\ 
——I —-1 = mx 
dt\dx) 

Substituting these results into Equation 7.4 leads to 

mx + kx = 0 

which is identical with the equation of motion obtained using Newtonian 
mechanics. 

The Lagrangian procedure seems needlessly complicated if it can only du-
plicate the simple results of Newtonian theory. However, let us continue illustrat-
ing the method by considering the plane pendulum (see Section 4.4). Using 
Equation 4.23 for Tand U, we have, for the Lagrangian function 

L = ^ ml262 - mgl( 1 - cos 0) 

We now treat 9 as if it were a rectangular coordinate and apply the operations speci-
fied in Equation 7.4; we obtain 

, - „ = — mgl sin 9 

dL 
= ml29 

dd 

dt\d0, 
m p'e 

d + - sin e = 0 

which again is identical with the Newtonian result (Equation 4.21). This is a 
remarkable result; it has been obtained by calculating the kinetic and potential 
energies in terms of 9 rather than x and then applying a set of operations de-
signed for use with rectangular rather than angular coordinates. We are therefore 
led to suspect that the Lagrange equations are more general and useful than the 
form of Equation 7.4 would indicate. We pursue this matter in Section 7.4. 

Another important characteristic of the method used in the two preceding 
simple examples is that nowhere in the calculations did there enter any statement 
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regarding force. The equations of motion were obtained only by specifying certain 
properties associated with the particle (the kinetic and potential energies), and 
without the necessity of explicidy taking into account the fact that there was an 
external agency acting on the particle (the force) . Therefore , insofar as energy can 
be defined independendy of Newtonian concepts, Hamilton's Principle allows us 
to calculate the equations of motion of a body completely without recourse to 
Newtonian theory. We shall re turn to this important point in Sections 7.5 and 7.7. 

7.3 Generalized Coordinates 
We now seek to take advantage of the flexibility in specifying coordinates that 
the two examples of the preceding section have suggested is inheren t in 
Lagrange's equations. 

We consider a general mechanical system consisting of a collection of n dis-
crete point particles, some of which may be connec ted to form rigid bodies. We 
discuss such systems of particles in Chapter 9 and rigid bodies in Chapter 11. To 
specify the state of such a system at a given time, it is necessary to use n radius 
vectors. Because each radius vector consists of three numbers (e.g., the rectan-
gular coordinates), 3n quantities must be specified to describe the positions of 
all the particles. If there exist equations of constraint that relate some of these 
coordinates to others (as would be the case, for example, if some of the particles' 
were connected to form rigid bodies or if the mot ion were constrained to lie 
along some path or on some surface), then no t all the 3n coordinates are inde-
pendent . In fact, if there are m equations of constraint, then 3 n — m coordinates 
are independent , and the system is said to possess 3n — m degrees of freedom. 

It is impor tant to note that if s = 3n — m coordinates are required in a given 
case, we need no t choose s rectangular coordinates or even s curvilinear coordi-
nates (e.g., spherical, cylindrical). We can choose any s i ndependen t parameters, 
as long as they completely specify the state of the system. These s quantities need 
not even have the dimensions of length. Depend ing on the problem at hand , it 
may prove more convenient to choose some of the parameters with dimensions 
of energy, some with dimensions of (length)2, some that are dimensionless, and so 
forth. In Example 6.5, we described a disk rolling down an inclined plane in 
terms of one coordinate that was a length and one that was an angle. We give the 
name generalized coordinates to any set of quantities that completely specifies 
the state of a system. The generalized coordinates are customarily written as 
qi, or simply as the qj. A set of i ndependen t generalized coordinates 
whose n u m b e r equals the n u m b e r s of degrees of f r eedom of the system and no t 
restricted by the constraints is called a proper set of generalized coordinates. In 
certain instances, it may be advantageous to use generalized coordinates whose 
n u m b e r exceeds the n u m b e r of degrees of f r eedom and to explicidy take into 
account the constraint relations through the use of the Lagrange unde te rmined 
multipliers. Such would be the case, for example, if we desired to calculate the 
forces of constraint (see Example 7.9). 
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The choice of a set of generalized coordinates to describe a system is not 
unique; there are in general many sets of quantities (in fact, an infinite number!) 
that completely specify the state of a given system. For example, in the problem 
of the disk rolling down the inclined plane, we might choose as coordinates the 
height of the center of mass of the disk above some reference level and the dis-
tance through which some point on the rim has traveled since the start of the 
motion. The ultimate test of the "suitability" of a particular set of generalized 
coordinates is whether the resulting equations of mot ion are sufficiently simple 
to allow a straightforward interpretation. Unfortunately, we can state no general 
rules for selecting the "most suitable" set of generalized coordinates for a given 
problem. A certain skill must be developed through experience, and we present 
many examples in this chapter. 

In addition to the generalized coordinates, we may define a set of quantities 
consisting of the time derivatives of qf. q{, q2, ... , or simply qr In analogy with the 
nomenclature for rectangular coordinates, we call fy the generalized velocities. 

If we allow for the possibility that the equations connect ing xa i and q} explic-
itly contain the time, then the set of t ransformation equations is given by* 

(a = 1, 2, . . . , n 
Xa,, = *a,.(?l> . ft. 0 , S • , q „ ^ I - 1, I, 3 

= xaj(qj,t), j=l,%...,s (7.5) 

In general, the rectangular components of the velocities depend on the general-
ized coordinates, the generalized velocities, and the time: 

xa,i = x^Mj, fy, t) (7.6) 
We may also write the inverse transformations as 

q, = qj(xa,i, t) (7.7) 
ij = qj(Xa,i' t) (7.8) 

Also, there are m = 3n — s equations of constraint of the fo rm 

fkixa,i,t)= 0, k=\,2,...,m (7.9) 

EXAMPLE 7.1 

Find a suitable set of generalized coordinates for a point particle moving on the 
surface of a hemisphere of radius R whose center is at the origin. 

Solution. Because the motion always takes place on the surface, we have 

x2 + f + z2 - R? = 0, z > 0 (7.10) 
Let us choose as our generalized coordinates the cosines of the angles between 
the x-, y-, and z-axes and the line connect ing the particle with the origin. 

*In this chapter, we attempt to simplify the notation by reserving the subscript i to designate rectan-
gular axes; therefore, we always have i = 1,2, 3. 
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Therefore , 

x y z 
ft = g q» = # ft = - (7.ii) 

But the sum of the squares of the direction cosines of a line equals unity. Hence, 

q\ + ql + ql = i (7.12) 
This set of ^ does not constitute a p roper set of generalized coordinates, because 
we can write q3 as a funct ion of qt and q2: 

?s = V l - q\ - ql (7.13) 
We may, however, choose = x/R and q2 = y/R as p rope r generalized coordi-
nates, and these quantities, together with the equation of constraint (Equation 
7.13) 

z = Vr2 - X2 - y2 (7.14) 
are sufficient to uniquely specify the position of the particle. This should be an 
obvious result, because only two coordinates (e.g., latitude and longitude) are 
necessary to specify a point on the surface of a sphere. But the example illus-
trates the fact that the equations of constraint can always be used to reduce a 
trial set of coordinates to a p roper set of generalized coordinates. 

EXAMPLE 7.2 

Use the (x, y) coordinate system of Figure 7-1 to f ind the kinetic energy T, po-
tential energy U, and the Lagrangian L for a simple pendu lum (length i , mass 
bob m) moving in the x, y plane. Determine the transformation equations f rom 
the (x, y) rectangular system to the coordinate 9. Find the equation of motion. 

Solution. We have already examined this general p rob lem in Sections 4.4 and 
7.1. W h e n us ing the Lagrang ian m e t h o d , it is o f t e n use fu l to beg in with 

FIGURE 7-1 Example 7.2. A simple pendulum of length i and bob of mass m. 
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rec tangu la r coordinates and t ransform to the most obvious system with the 
simplest generalized coordinates. In this case, the kinetic a n d potent ia l energies 
and the Lagrangian become 

T = - mx2 H— my2 

2 2 

U = mgy 

1 9 1 „ 
L = T — U = — mx2 + — my — mgy 

Inspection of Figure 7-1 reveals that the mot ion can be be t te r described by 
using 0 and 6. Let's t ransform x and y in to the coordinate 6 a n d t h e n find L in 
terms of 6. 

x = ( sin 0 
y=—£ cos 8 

We now find for x a n d y 

x = (8 cos 8 

y= €8 sin 8 
jn . . m • 

L = —(€202 cos2 8 + € 20 2 sin2 0) + mgi cos 0 = - € 20 2 + mgi cos 8 

T h e only generalized coordina te in the case of the p e n d u l u m is the angle 0, 
and we have expressed the Lagrangian in terms of 0 by following a simple 
p rocedure of finding L in terms of x and y, finding the t ransformat ion equations, 
and then insert ing t h e m into the expression for L. If we d o as we did in the 
previous section and treat 8 as if it were a rectangular coordinate, we can f ind the 
equat ion of mot ion as follows: 

dL 
= — mgl sin 0 

dL 
— = mt26 
d8 

d (dL\ /J9.. — — = m€28 
dt\d8J 

We insert these relations into Equat ion 7.4 to f ind the same equat ion of mot ion 
as f o u n d previously. 

0 + | s in0 = 0 
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T h e state of a system consisting of n particles and subject to m constraints 
that connect some of the 3n rectangular coordinates is completely specified by 
s = 3 n — m generalized coordinates. We may therefore represent the state of 
such a system by a point in an s-dimensional space called configuration space. 
Each dimension of this space corresponds to one of the qj coordinates. We may 
represent the time history of a system by a curve in configurat ion space, each 
po in t specifying the configuration of the system at a part icular instant. T h r o u g h 
each such point passes an infinity of curves represent ing possible motions of 
the system; each curve corresponds to a particular set of initial conditions. We 
may therefore speak of the "path" of a system as it "moves" through configuration 
space. But we must be careful no t to confuse this terminology with that applied to 
the motion of a particle along a path in ordinary three-dimensional space. 

We should also note that a dynamical pa th in a configurat ion space consis-
ting of p roper generalized coordinates is automatically consistent with the con-
straints on the system, because the coordinates are chosen to correspond only to 
realizable motions of the system. 

7.4 Lagrange's Equations of Motion 
in Generalized Coordinates 

In view of the definitions in the preceding sections, we may now restate Hamilton's 
Principle as follows: 

Of all the possible paths along which a dynamical system may move from one 
point to another in configuration space within a specified time interval, the ac-
tual path followed is that which minimizes the time integral of the Lagrangian 
function for the system. 

To set u p the variational fo rm of Hamil ton 's Principle in generalized coordi-
nates, we may take advantage of an impor tan t property of the Lagrangian we 
have no t so far emphasized. T h e Lagrangian for a system is def ined to be the dif-
ference between the kinetic and potential energies. But energy is a scalar quantity 
and so the Lagrangian is a scalar function. Hence the Lagrangian must be invari-
ant with respect to coordinate transformations. However, certain transformations that 
change the Lagrangian bu t leave the equations of motion unchanged are allowed. 
For example, equations of mot ion are unchanged if L is replaced by 
L + d/dt[f(qi, f)] for a funct ion f{qh t) with cont inuous second partial deriva-
tives. As long as we def ine the Lagrangian to be the difference between the ki-
netic and potential energies, we may use different generalized coordinates. (The 
Lagrangian is, however, indefinite to an additive constant in the potential energy 
U.) It is therefore immaterial whether we express the Lagrangian in terms of xai 

and xai or and q-. 

L = T{xa i) - t/(xa,) 

= T{qp qp t) - U(qp t) (7.15) 
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that is, 

L = L(qi, q2,..., qs; qx, • • •, qs; t) 

= L{qp qp t) 

Thus, Hamilton's Principle becomes 

Hamil ton 's Principle 

(7.16) 

(7.17) 

If we refer to the defini t ions of the quanti t ies in Section 6.5 and make the 
identifications 

x -

Ji(x) -

y'i(x) -

fbi> y'i>x} -

>t 

•L(qj, qp t) 

then the Euler equations (Equation 6.57) corresponding to the variational prob-
lem stated in Equation 7.17 become 

dL d dL 
T = 0, dqj dtdqj j = 1,2,...,5 (7.18) 

These are the Euler-Lagrange equations of mot ion for the system (usually called 
simply Lagrange's equations*). There are s of these equations, and together with 
the m equations of constraint and the initial conditions that are imposed, they 
completely describe the mot ion of the system.* 

It is impor tant to realize that the validity of Lagrange's equations requires 
the following two conditions: 

1. The forces acting on the system (apart f rom any forces of constraint) must 
be derivable f rom a potential (or several potentials). 

2. The equations of constraint must be relations that connect the coordinates of 
the particles and may be functions of the time—that is, we must have con-
straint relations of the fo rm given by Equation 7.9. 

If the constraints can be expressed as in condit ion 2, they are termed holonomic 
constraints. If the equations do no t explicitly contain the time, the constraints 
are said to be f ixed or scleronomic; moving constraints are rheonomic. 

*First derived for a mechanical system (although not, of course, by using Hamilton's Principle) by 
Lagrange and presented in his famous treatise Mecanique analytique in 1788. In this monumental 
work, which encompasses all phases of mechanics (statics, dynamics, hydrostatics, and hydrodynam-
ics), Lagrange placed the subject on a firm and unified mathematical foundation. The treatise is 
mathematical rather than physical; Lagrange was quite proud of the fact that the entire work con-
tains not a single diagram. 
•(•Because there are s second-order differential equations, 2s initial conditions must be supplied to 
determine the motion uniquely. 
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Here we consider only the mot ion of systems subject to conservative forces. 
Such forces can always be derived f rom potential functions, so that condit ion 1 is 
satisfied. This is not a necessary restriction on ei ther Hamil ton 's Principle or 
Lagrange's equations; the theory can readily be extended to include nonconser-
vative forces. Similarly, we can formulate Hamilton's Principle to include certain 
types of nonholonomic constraints, bu t the t reatment here is conf ined to holo-
nomic systems. We re turn to nonho lonomic constraints in Section 7.5. 

We now want to work several examples using Lagrange's equations. Experience 
is the best way to determine a set of generalized coordinates, realize the con-
straints, and set up the Lagrangian. Once this is done, the remainder of the 
problem is for the most par t mathematical. 

EXAMPLE 7.3 

Consider the case of projectile mot ion u n d e r gravity in two dimensions as was 
discussed in Example 2.6. Find the equations of motion in both Cartesian and 
polar coordinates. 

Solution. We use Figure 2-7 to describe the system. In Cartesian coordinates, we 
use x (horizontal) and y (vertical). In polar coordinates we use r (in radial direc-
tion) and 6 (elevation angle f rom horizontal). First, in Cartesian coordinates we 
have 

T = — mx2 H— my5 

2 2 
U = mgy 

(7.19) 

where U = 0 at y = 0. 

L = T — U = - mx2 + — my2 

2 2 
mgy (7.20) 

We find the equations of mot ion by using Equation 7.18: 

x: 
dL _ d^dL _ 
dx dtdx 

0 mx = 0 
dt 

x = 0 (7.21) 

T-
dL _ d_dL 
dy dt dy 

= 0 

-mg - —(my) = 0 
dt 

y = (7.22) 
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By using the initial conditions, Equations 7.21 and 7.22 can be integrated to 
determine the appropriate equations of motion. 

In polar coordinates, we have 

T= ~mr2 H—m(rd)2 

2 2 
U = mgr sin 0 

where U = 0 for 0 = 0. 

L = T - U= ^mr2 + ^mr202 - mgr sin 6 (7.23) 

dL _ didL_ 
dr dt dr 

mrd2 — mg sin 0 (mr) = 0 
dt 

rd2 - g sin0 - r = 0 (7.24) 

0: 

dL d dL 
r = 0 

d0 dtdd 

d 
— mgr cos 0 — — (mrz6) = 0 

-gr cos 0 - 2rr0 - r20 = 0 (7.25) 

The equations of motion expressed by Equations 7.21 and 7.22 are clearly 
simpler than those of Equations 7.24 and 7.25. We should choose Cartesian co-
ordinates as the generalized coordinates to solve this problem. The key in 
recognizing this was that the potential energy of the system only depended on the 
y coordinate. In polar coordinates, the potential energy depended on both r and 0. 

EXAMPLE 7.4 

A particle of mass m is constrained to move on the inside surface of a smooth 
cone of half-angle a (see Figure 7-2). The particle is subject to a gravitational 
force. Determine a set of generalized coordinates and determine the con-
straints. Find Lagrange's equations of motion, Equation 7.18. 

Solution. Let the axis of the cone correspond to the z-axis and let the apex of 
the cone be located at the origin. Since the problem possesses cylindrical sym-
metry, we choose r, 0, and z as the generalized coordinates. We have, however, 
the equation of constraint 

z = rcot a (7.26) 
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generalized coordinates. 

so there are only two degrees of f r eedom for the system, and therefore only two 
proper generalized coordinates. We may use Equadon 7.26 to eliminate either the 
coordinate z or r ; we choose to do the former. T h e n the square of the velocity is 

= fi + + £2 

= r2 + r 2 0 2 + f 2 c o t 2 a 

= f 2 csc 2 a + r 20 2 (7.27) 

T h e potent ia l energy (if we choose U = 0 at z = 0) is 

U = mgz = mgr cot a 

so the Langrangian is 

L = —m ( f 2 csc 2 a + r202) — mgr cot a (7.28) 

We note first that L does n o t explicidy contain 8. T h e r e f o r e 3L/36 = 0, and 
the Lagrange equat ion fo r the coordina te 8 is 

d dL 
r = 0 

dtd8 
H e n c e 

dL 
— = mrz8 = constant (7.29) 
38 

But mr28 = mr2w is jus t the angular m o m e n t u m abou t the z-axis. There fo re , 
Equat ion 7.29 expresses the conservation of angular m o m e n t u m abou t the axis 
of symmetry of the system. 

T h e Lagrange equat ion for r is 
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Calculating the derivatives, we find 

f — rd2 s i n 2 a + g sin a cos a = 0 (7.31) 

which is the equation of mot ion for the coordinate r. 
We shall re turn to this example in Section 8.10 and examine the motion in 

more detail. 

EXAMPLE 7.5 

The point of support of a simple pendu lum of length b moves on a massless rim 
of radius a rotating with constant angular velocity &>. Obtain the expression for 
the Cartesian components of the velocity and acceleration of the mass m. 
Obtain also the angular acceleration for the angle 6 shown in Figure 7-3. 

Solution. We choose the origin of our coordinate system to be at the center of 
the rotating rim. T h e Cartesian components of mass m become 

x = a cos cot + b sin 6 
y = a sin cot — b cos 6 

The velocities are 

x = —aa) sin tat + bd cos 6 
y = aw cos cot + bd sin 0 

(7.32) 

(7.33) 

FIGURE 7-3 Example 7.5. A simple pendulum is attached to a rotating rim. 
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Taking the time derivative once again gives the acceleration: 

x = —ao)2 cos cot + b(9 cos 9 — 0 2s in 9) 

y = —aco2 sin cot + b(9 sin 9 + 0 2 cos 9) 

It should now be clear that the single generalized coordinate is 9. The kinetic and 
potential energies are 

T = —m(x2 + y2) 

U = mgy 

where U = 0 at y = 0. The Lagrangian is 

7YI • • 
L= T - U= ~[a2co2 + b292 + 2b9aco sin (9 - cot)] 

— mg(a sin cot — b cos 9) (7.34) 

The derivatives for the Lagrange equat ion of mot ion for 9 are 

d dL 
— — = mb29 + mbaoo(9 — co) cos(9 — cot) 
dt dd 

dL 
— = mb9aco cos(9 — cot) — mgb sin 9 
d9 

which results in the equation of mot ion (after solving for 9) 

co2a g 
0 = cos(0 - cot) - - sin 9 (7.35) 

b b 

Notice that this result reduces to the well-known equation of motion for a sim-
ple p e n d u l u m if co = 0. 

EXAMPLE 7.6 

Find the f requency of small oscillations of a simple p e n d u l u m placed in a rail-
road car that has a constant acceleration a in the x-direction. 

Solution. A schematic diagram is shown in Figure 7-4a for the pendulum of 
length I, mass m, and displacement angle 9. We choose a fixed cartesian coordi-
nate system with x = 0 and k = vn at. t = 0. The position and velocity of m become 

x = v0t + - a t 2 + € sin 6 

y = — € cos 9 
x = v0 + at + €0 cos 9 
y = (.9 sin 9 
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(a) 

(b) 

FIGURE 7-4 Example 7.6. (a) A simple pendulum swings in an accelerating railroad 
car. (b) The angle 6e is the equilibrium angle due to the car's 
acceleration a and acceleration of gravity g. 

T h e kinetic and potent ia l energies are 

T = |m(x2 + f ) U = - mg€ cos 0 

and the Lagrangian is 

L = T - U = ~m{v0 + at + tO cos 6)2 + sin 0)2 + mgicos 6 

T h e angle 6 is the only general ized coordinate , and sifter taking the deriva-
tives for Lagrange 's equat ions and suitable collection of terms, the equa t ion of 
mot ion becomes (Problem 7-2) 

g a 
6 = — - sin 6 — - cos 6 

-£ Kj 

We de te rmine the equi l ibr ium angle 6 = 6e by sett ing 0 = 0, 

0 = gs in 6 e + a cos 6e 

T h e equi l ibr ium angle 6e, shown in Figure 7-4b, is ob ta ined by 

a tan 9e = -
g 

(7.36) 

(7.37) 

(7.38) 

Because the oscillations are small a n d are abou t the equi l ibr ium angle, let 
0 = 6e + r], where TJ is a small angle. 

g a 
0 = iq = - - sin(0c + 17) - - cos(0e + TJ) (7.39) 
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We expand the sine and cosine terms and use the small angle approximation 
for sin 17 and cos TJ, keeping only the first terms in the Taylor series expansions. 

g a 
?) = — - ( s i n 0 e cos TJ + cos 6e sin 17) — - ( c o s 8e cos TJ — sin 9e sin TJ) 

g d 
= — - ( s i n 9e + 77 cos 6e) — ~(cos 9e — TJ sin 9e) 

= ~ ^ [ ( g s i n ee + « cos 8e) + TJ(g cos 9e - a sin 0e)] 

The first te rm in the brackets is zero because of Equat ion 7.37, which leaves 

V = ~ ^ ( g cos 6e - a sin 0e)r) (7.40) 

We use Equation 7.38 to de termine sin 6e and cos 0e and after a little manipula-
tion (Problem 7-2), Equation 7.40 becomes 

V « 2 + g 1 

r j = j - ^ - V (7-41) 

Because this equat ion now represents simple harmonic motion, the frequency 
a> is de te rmined to be 

v V + £ 
w = ^ (7.42) 

This result seems plausible, because w —> V g / € for a = 0 when the railroad car 
is at rest. 

EXAMPLE 7.7 

A bead slides along a smooth wire ben t in the shape of a parabola z = cr2 

(Figure 7-5). T h e bead rotates in a circle of radius R when the wire is rotating 
about its vertical symmetry axis with angular velocity a>. Find the value of c. 

Solution. Because the problem has cylindrical symmetry, we choose r, 6, a n d z as 
the generalized coordinates. The kinetic energy of the bead is 

f f l • 
T = —[f2 + z2 + (r0 2)] (7.43) 

If we choose U= 0 at z = 0, the potential energy term is 

U= mgz (7.44) 

But r, z, and 9 are not independent . The equation of constraint for the parabola is 

z = cr2 (7.45) 

£ = 2 err (7.46) 
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FIGURE 7-5 Example 7.7. A bead slides along a smooth wire that rotates about the z-axis. 

We also have an explicit t ime d e p e n d e n c e of the angular rotat ion 

6 = cot 

e = a> (7.47) 
We can now construct the Lagrangian as be ing d e p e n d e n t only on r, because 
there is no direct 6 d e p e n d e n c e . 

L=T- U 
m. 

= - ( f 2 + 4c2r2r2 + r2w2) 
2 

mgcr* (7.48) 

T h e p rob lem stated tha t t he bead moved in a circle of radius R. T h e r e a d e r 
migh t be t e m p t e d at this po in t to let r = R = const, a n d f = 0. It would be a 
mistake to d o this now in the Lagrangian . First, we shou ld find the equa t ion 
of mot ion fo r the variable r a n d t h e n let r = R as a cond i t ion of the par t icular 
mot ion . This de te rmines the par t icular value of c n e e d e d fo r r = R. 

- = —(2f + 8 c V f ) 
dr 2 

- — = —(2f + 16c 2 r f 2 + 8 c V f ) 
dt dr 2 

dL 
— = rre(4c2rr2 + r« 2 — 2gcr) 
dr 

Lagrange's equat ion of mot ion becomes 

r ( l + 4c2r2) + f2(4c2r) + r(2gc - w2) = 0 (7.49) 
which is a complicated result. If, however, the bead rotates with r= R = constant, 
t hen f = f = 0, and Equat ion 7.49 becomes 

R(2gc - w2) = 0 
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and 

c = — (7.50) 
2 g 

is die result we wanted. 

EXAMPLE 7.8 

Consider the double pulley system shown in Figure 7-6. Use the coordinates in-
dicated, and determine the equations of motion. 

Solution. Consider the pulleys to be massless, and let and 4 be the lengths of 
rope hanging freely f rom each of the two pulleys. The distances x and y are 
measured f rom the center of the two pulleys. 

wtj: 

vi = x (7.51) 

m 

v2 = -j-U - x + y) = -x + y (7.52) 
at 

FIGURE 7-6 Example 7.8. The double pulley system. 
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Wj: 

T 

Let the potential energy U = 0 at * = 0. 

U = t / j + t/2 + J73 

= — JKjgx - m2g{li - x + y) - m%g(li — x + l2 - y) (7.55) 
Because T and U have been de te rmined , the equat ions of mo t ion can be ob-
tained using Equat ion 7.18. T h e results are 

mi'x + m2{x — y) + m3(x + y) = {mx — m2 — m3)g (7.56) 
— m2(x — y) + m3(x + y) = (wi2 — m3)g (7.57) 

Equations 7.56 and 7.57 can be solved for x and y. 

Examples 7.2-7.8 indicate the ease a n d usefulness of using Lagrange 's equa-
tions. It has been said, probably unfairly, tha t Lagrangian techniques are simply 
recipes to follow. T h e a r g u m e n t is that we lose track of the "physics" by their use. 
Lagrangian methods , o n the contrary, are extremely powerfu l a n d allow us to 
solve problems that otherwise would lead to severe complications using Newtonian 
methods . Simple p rob lems can perhaps be solved ju s t as easily using Newtonian 
methods , but the Lagrangian techniques can be used to attack a wide range of 
complex physical situations ( including those occurr ing in q u a n t u m mechanics*) . 

7.5 Lagrange's Equations with Undetermined 
Multipliers 

Constraints that can be expressed as algebraic relations a m o n g the coordinates 
are ho lonomic constraints. If a system is subject only to such constraints, we can 
always f ind a p r o p e r set of general ized coordinates in terms of which the equa-
tions of mot ion are f ree f r o m explicit r e fe rence to the constraints. 

Any constraints tha t mus t be expressed in terms of the velocities of the parti-
cles in the system are of the f o r m 

/(*«,;, 0 = 0 (7.58) 

d 
= -jih ~ x + l2 - y) = -x - y 

dt 

1 u 1 u 1 2 = 2W i v i + 2 m s 

= ^wijx2 + Kn2{y - x)2 + ^ w 3 ( - x - y)2 

(7.53) 

(7.54) 

*See Feynman and Hibbs (Fe65). 
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and constitute nonholonomic constraints unless the equations can be integrated 
to yield relations among the coordinates.* 

Consider a constraint relation of the form 

^jA^ + B = 0, i = 1, 2, 3 (7.59) 
i 

In general, this equat ion is nonintegrable, and therefore the constraint is non-
holonomic. But if Ai and B have the forms 

df df 

then Equation 7.59 may be written as 

df dx, df 

But this is jus t 

V1 "/ ax. o 
' dx: dt at 

df 
— = 0 
dt 

which can be integrated to yield 

f{xb t) - constant = 0 (7.62) 

so the constraint is actually holonomic. 
From the preceding discussion, we conclude that constraints expressible in 

differential fo rm as 

V dfk dfk 
Z f d q j + f d t = 0 (7.63) 

j dqj ' dt 

are equivalent to those having the fo rm of Equation 7.9. 
If the constraint relations for a problem are given in differential fo rm ra ther 

than as algebraic expressions, we can incorporate them directly into Lagrange's 
equations by using the Lagrange unde te rmined multipliers (see Section 6.6) 
without first pe r fo rming the integrations; that is, for constraints expressible as in 
Equation 6.71, 

X f d,= 0 (7.64) j dqj 1 \k= 1,2, ... , m 

the Lagrange equations (Equation 6.69) are 

dL d dL v dfk 
dq, dtdqj * da 

In fact, because the variation process involved in Hamilton's Principle holds the 
time constant at the endpoints, we could add to Equation 7.64 a term ( d f k / d t ) d t 

*Such constraints are sometimes called "semiholonomic." 
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without affecting the equations of motion. Thus constraints expressed by Equation 
7.63 also lead to the Lagrange equations given in Equation 7.65. 

The great advantage of the Lagrangian formulat ion of mechanics is that the 
explicit inclusion of the forces of constraint is no t necessary; that is, the empha-
sis is placed on the dynamics of the system ra ther than the calculation of the 
forces acting on each componen t of the system. In certain instances, however, it 
might be desirable to know the forces of constraint. For example, f rom an engi-
neer ing standpoint, it would be useful to know the constraint forces for design 
purposes. It is therefore worth point ing out that in Lagrange's equations ex-
pressed as in Equation 7.65, the undetermined multipliers A*(f) are closely re-
lated to the forces of constraint.* The generalized forces of constraint are 
given by 

V dfk = (7.66) 

EXAMPLE 7.9 

Let us consider again the case of the disk rolling down an inclined plane (see 
Example 6.5 and Figure 6-7). Find the equations of motion, the force of con-
straint, and the angular acceleration. 

Solution. The kinetic energy may be separated into translational and rotational 
terms+ 

T = I My* + I Id2 

2 2 

= \ My2 + 7 MR2 82 

2 4 

where M i s the mass of the disk and Ris the radius; I = | MR2 is the m o m e n t of 
inertia of the disk about a central axis. T h e potential energy is 

U = Mg(l- y) sin a (7.67) 

where I is the length of the inclined surface of the plane and where the disk is 
assumed to have zero potential energy at the bot tom of the plane. T h e 
Lagrangian is therefore 

L= T - U 

= ^Mf + ^MR282 + Mg(y - I) sin a (7.68) 

*See, for example, Goldstein (Go80, p. 47). Explicit calculations of the forces of constraint in some 
specific problems are carried out by Becker (Be54, Chapters 11 and 13) and by Symon (Sy71, 
p. 372ff). 
fWe anticipate here a well-known result from rigid-body dynamics discussed in Chapter 11. 
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T h e equa t ion of constraint is 

f ( y , 6) = y - R0 = 0 (7.69) 

T h e system has only o n e degree of f r e e d o m if we insist that the rolling takes 
place without slipping. We may the re fore choose e i ther y or 9 as the p r o p e r co-
ord ina te a n d use Equat ion 7.69 to el iminate the other. Alternatively, we may 
con t inue to consider both y and d as general ized coordinates and use the 
m e t h o d of u n d e t e r m i n e d multipliers. T h e Lagrange equat ions in this case are 

dL d dL df 
+ A— = 0 

dy dt dy dy 
dL d dL df 

r + A— = 0 
dO dtdd dd 

(7.70) 

Pe r fo rming the differentiat ions, we obtain, fo r the equat ions of mot ion, 

Mg sin a - My + A = 0 (7.71a) 

- ^ MR2d - AR = 0 (7.71b) 

Also, f r o m the constraint equat ion, we have 

y = Rd (7.72) 

These equat ions (Equations 7.71 a n d 7.72) consti tute a soluble system for the 
three unknowns y, d, A. Different iat ing the equa t ion of constraint (Equation 
7.72), we obtain 

0 = | (7.73) 

Combin ing Equat ions 7.71b and 7.73, we f ind 

A = - ^My (7.74) 

and then using this expression in Equat ion 7.71a the re results 

2 g sin a 

with 

so that Equat ion 7.71b yields 

(7.75) 

Mg sin a 
A = (7.76) 

2g sin a 
6 = (7.77) 

Thus, we have th ree equat ions for the quanti t ies y, d, a n d A that can be imme-
diately integrated. 
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We note that if the disk were to slide without friction down the plane, we 
would have y = g sin a. Therefore , the rolling constraint reduces the accelera-
don to | of the value of frictionless sliding. The magni tude of the force of fric-
tion producing the constraint is jus t A—that is, (Mg/3) sin a . 

T h e generalized forces of constraint, Equat ion 7.66, are 

df ^ Mg sin a 

dy 
Qy= A f . = A = 

df MgR sin a 
Qb = A = "Ar t = — ^ dd 3 

Note that Qy and Q e are a force and a torque, respectively, and they are the gen-
eralized forces of constraint required to keep the disk rolling down the plane 
without slipping. 

Note that we may eliminate 6 f rom the Lagrangian by substituting 0 = y / R 
f rom the equation of constraint: 

3 
L = - Mf + Mg(y - I) sin a (7.78) 

The Lagrangian is then expressed in terms of only one proper coordinate, and 
the single equation of motion is immediately obtained f rom Equat ion 7.18: 

3 
Mg sin a - - My = 0 (7.79) 

which is the same as Equation 7.75. Although this p rocedure is simpler, it can-
no t be used to obtain the force of constraint. 

EXAMPLE 7.10 

A particle of mass m starts at rest on top of a smooth fixed hemisphere of radius 
а. Find the force of constraint, and de termine the angle at which the particle 
leaves the hemisphere . 

Solution. See Figure 7-7. Because we are considering the possibility of the parti-
cle leaving the hemisphere, we choose the generalized coordinates to be r a n d 

б. The constraint equat ion is 

f ( r , 6 ) = r - a = 0 (7.80) 

The Lagrangian is de termined f rom the kinetic and potential energies: 
tn • 

T=^(r2 + rW) 

U = mgr cos 6 

L = T - U 

L = -(r2 + r-202) - mgr cos 6 (7.81) 
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FIGURE 7-7 Example 7.10. A particle of mass m moves on the surface of a fixed 
smooth hemisphere. 

where the potent ia l energy is zero at the b o t t o m of the hemisphere . T h e 
Lagrange equations, Equat ion 7.65, are 

dL d dL 
+ A -

dr dr dt dr 
+ A -

dr 

dL d dL df 
+ A— 

dd dd dtdd 

df 
+ A— 

dd 

Per fo rming the different iat ions o n Equat ion 7.80 gives 

0 dd = -
a 

(7.82) 

(7.83) 

df df 

Equat ions 7.82 a n d 7.83 become 

mrb2 - mg cos 0 - mr + A = 0 (7.85) 

mgr sin 0 - mr26 - 2mrr0 = 0 (7.86) 

Next, we apply the constraint r = a to these equat ions of mot ion: 

r = a, f = 0 = r 

Equat ions 7.85 a n d 7.86 then b e c o m e 

mad2 - mg cos 0 + A = 0 (7.87) 

mga sin 0 . - m<?6 = 0 (7.88) 

From Equat ion 7.88, we have 

0 = - sin 0 (7.89) 
a 

We can integrate Equat ion 7.89 to de t e rmine 02. 

d dd dd dd dd -dd 
8 = = — = = 0 — (7.90) 

dt dt dt dd dt dd 

We integrate Equat ion 7.89, 

sin 0 dd (7.91) 
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which results in 

2 a 
—- cos 9 + — 

a 
(7.92) 

where the integrat ion constant is g/a, because 9 = 0 at t = 0 when 0 = 0. 
Substituting 9 2 f r o m Equat ion 7.92 into Equat ion 7.87 gives, a f ter solving for A, 

A = mg(3 cos 9 - 2 ) (7.93) 

which is the force of constraint . T h e particle falls off the hemisphe re at angle 9tj 

when A = 0. 

As a quick check, not ice tha t the constraint force is A = mgat 9 = 0 when the 
particle is pe r ched o n top of the hemisphere . 

T h e usefulness of the m e t h o d of u n d e t e r m i n e d multipliers is twofold: 

1. T h e Lagrange multipliers are closely rela ted to the forces of constraint that 
are of ten needed . 

2. W h e n a p r o p e r set of general ized coordinates is n o t desired or too difficult 
to obtain, the m e t h o d may be used to increase the n u m b e r of general ized 
coordinates by including constraint relations between the coordinates . 

7.6 Equivalence of Lagrange's 
and Newton's Equations 

As we have emphasized f r o m the outset, the Lagrangian and Newtonian formu-
lations of mechanics are equivalent: T h e viewpoint is di f ferent , b u t the con ten t 
is the same. We now explicitly demons t ra te this equivalence by showing that the 
two sets of equat ions of mot ion are in fact the same. 

In Equat ion 7.18, let us choose the general ized coordinates to be the rectan-
gular coordinates. Lagrange 's equat ions (for a single particle) t h e n become 

A = 0 = mg{3 cos 90 - 2) (7.94) 

(7.95) 

dXj dtdxj 
(7.96) 

or 

= 0 
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But in rectangular coordinates and fo r a conservative system, we have T = T( x,) 
and U = £/(*;), so 

dT dU 
— = 0 a n d — = 0 
dx, dx, 

Lagrange's equat ions the re fore b e c o m e 

dU_ d^dT 
dx; dtdXi 

(7.97) 

We also have (for a conservative system) 

dU 
= F, 

dXi 

and 

J AT // ^ / JU 1 
mxf I = — (mx,) = p, 

ddT d d / v 1 9\ d 
= ——- Z j — mxf = — 

dtdibj dtdx:\j= i2 V dt 

so Equat ion 7.97 yields the Newtonian equations, as required: 

F, = k (7.98) 

Thus, the Lagrangian and Newtonian equat ions are identical if the general ized 
coordinates are the rectangular coordinates . 

Now let us derive Lagrange 's equat ions of mot ion using Newtonian con-
cepts. Consider only a single particle fo r simplicity. We n e e d to t ransform f r o m 
the x r coord ina tes to the general ized coordinates q}. F rom Equat ion 7.5, we have 

= x,(qr t) (7.99) 

v dx, dx, x i = 2 - ' « j + - ! (7.100) j dqj J dt 

and 

dXi d x , 

dqi dqt 

A general ized m o m e n t u m pj associated with q} is easily d e t e r m i n e d by 

dT 
dfy 

(7.101) 

Pj = j r (7.102) 

For example, for a particle moving in plane polar coordinates, T = ( f 2 + r2(?2) m/2, 
we have pr = mr for coordinate r and pe = mr26 for coordinate 6. Obviously pr is a 
linear m o m e n t u m and pe is an angular m o m e n t u m , so our generalized momen-
tum definition seems consistent with Newtonian concepts. 
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We can de te rmine a general ized force by consider ing the virtual work 8 W 
d o n e by a varied path 8x, as described in Section 6.7. 

8 W = 2 FM = 2 ^; 8qj (7.103) 
• y dqj 

s 2 (7.104) i 
so that the general ized force Qj associated with qj is 

V dx{ 
Q i = l i F i - 1 (7.105) 

« ad-
j u s t as work is always energy, so is the p roduc t of Qq. If q is length, Qis force; if q 
is an angle, (I is torque. For a conservative system, is derivable f r o m the po-
tential energy: 

dU 
Q} = ~ — (7.106) 

dqj 
Now we are ready to obtain Lagrange 's equations: 

* dT 9 fyl 
Pi = ^ = ^ ^ o mx 

dqj dqj\ • 2 

Y . dx; 
= Z j m k i — 

i dqj 

V dXj 
pj=2,mxi-1 (7.107) 

dqj 

where we use Equat ion 7.101 for the last step. Taking the time derivative of 
Equat ion 7.107 gives 

V ( ..dxi , . d dx,\ 
P> = + mX>Jt^qJ < 7 - 1 0 8 > 

Expanding the last t e rm gives 

d dXj "V d2Xj d2Xj 
= Z j qk + 

dtdqj k dqkdqj dqjdt 

and Equat ion 7.108 becomes 

dx{ s?' d2x{ d2x{ 
pj = Zj mxi 1- Zj mki qk + Zj mxi (7.109) 1 ' dqj ',k dqkdqj > dqjdt 

The first te rm on the r ight side of Equat ion 7.109 is jus t Qj(Fj = r»i, and 
Equat ion 7.105). The sum of the o the r two terms is dT/dqj\ 

dT v dx{ — = Z j m k i — 

dqj i dqj 

d dXi dXi 
dq\ * dqk q k + Hi, 

where we have used T = 2 ; 1/2 mx2 and Equat ion 7.100 

"V o / OX; OX; \ 
= + —' (7.110) 

dqj\ k dqk dt) 
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Equat ion 7.109 can now be written as 

dT 

H 
PJ = + 

i 

dT 
. • — = C, 

dt\dfy) dqj 1 dqj 

or, using Equations 7.102 and 7.106, 

± ( d j \ _ dT _ _ _ dU 

(7.111) 

(7.112) 

Because U does no t d e p e n d on the general ized velocities fy, Equat ion 7.112 can 
be written 

A 
dt 

d(T- U) d(T- U) 
dq, 

= 0 

and using L = T — U, 

_dfdL\ _ dL _ 
dt\dfy) dq} 

(7.113) 

(7.114) 

which are Lagrange's equat ions of mot ion . 

7.7 Essence of Lagrangian Dynamics 

In the preceding sections, we m a d e several general a n d impor tan t s tatements 
concern ing the Lagrange formula t ion of mechanics. Before p roceed ing fur ther , 
we should summarize these points to emphasize the differences between the 
Lagrange and Newtonian viewpoints. 

Historically, the Lagrange equat ions of mot ion expressed in general ized co-
ordinates were derived before the s ta tement of Hamil ton ' s Principle.* We 
elected to deduce Lagrange's equat ions by postulat ing Hamil ton ' s Principle be-
cause this is the most straightforward approach and is also the formal m e t h o d 
for unifying classical dynamics. 

First, we must reiterate tha t Lagrangian dynamics does no t consti tute a new 
theory in any sense of the word. T h e results of a Lagrangian analysis or a 
Newtonian analysis must be the same for any given mechanical system. The only 
di f ference is the m e t h o d used to obtain these results. 

Whereas the Newtonian approach emphasizes an outside agency acting on a 
body (the force), the Lagrangian m e t h o d deals only with quanti t ies associated 
with the body (the kinetic and potent ial energies). In fact, nowhere in the 
Lagrangian formula t ion does the concep t of force enter. This is a particularly im-
por t an t p roper ty—and for a variety of reasons. First, because energy is a scalar 
quantity, the Lagrangian func t ion fo r a system is invariant to coordinate transfor-
mations. Indeed, such transformations are not restricted to be between various 

*Lagrange's equations, 1788; Hamilton's Principle, 1834. 
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orthogonal coordinate systems in ordinary space; they may also be transformations 
between ordinary coordinates and generalized coordinates . Thus, it is possible to 
pass f r o m ordinary space (in which the equat ions of mot ion may be qui te com-
plicated) to a configurat ion space that can be chosen to yield m a x i m u m simplifi-
cation for a part icular problem. We are accustomed to th inking of mechanical 
systems in terms of vector quanti t ies such as force, velocity, angular m o m e n t u m , 
and torque. But in the Lagrangian formula t ion , the equat ions of mot ion are ob-
tained entirely in terms of scalar operat ions in conf igura t ion space. 

Ano the r impor tan t aspect of the force-versus-energy viewpoint is that in cer-
tain situations it may no t even be possible to state explicitly all the forces acting 
on a body (as is sometimes the case fo r forces of constraint) , whereas it is still 
possible to give expressions fo r the kinetic a n d potent ia l energies. It is jus t this 
fact that makes Hamil ton ' s Principle useful for quantum-mechanica l systems 
where we normally know the energies bu t n o t the forces. 

The differential s ta tement of mechanics con ta ined in Newton's equat ions o r 
the integral s ta tement embod ied in Hamil ton ' s Principle (and the result ing 
Lagrangian equations) have been shown to be entirely equivalent. Hence , n o dis-
tinction exists between these viewpoints, which are based on the descript ion of 
physical effects. But f r o m a philosophical s tandpoint , we can make a distinction. In 
the Newton ian f o r m u l a t i o n , a cer ta in fo rce o n a body p r o d u c e s a de f in i t e 
m o t i o n — t h a t is, we always associate a def ini te effect with a certain cause. 
According to Hamil ton ' s Principle, however, the mot ion of a body results f r o m 
the a t t empt of na tu re to achieve a certain purpose, namely, to minimize the t ime 
integral of the d i f ference between the kinetic and potent ia l energies. T h e opera-
tional solving of problems in mechanics does n o t d e p e n d on adop t ing o n e o r 
the o the r of these views. But historically such considerat ions have had a pro-
f o u n d inf luence on the deve lopment of dynamics (as, fo r example, in 
Maupertuis 's principle, m e n t i o n e d in Sect ion 7.2). T h e in te res ted r e a d e r is re-
f e r r e d to Margenau ' s excel lent book for a discussion of these matters.* 

7.8 A Theorem Concerning the Kinetic Energy 

If the kinetic energy is expressed in fixed, rec tangular coordinates, the result is a 
h o m o g e n e o u s quadrat ic func t ion of 

We now wish to consider in m o r e detail the d e p e n d e n c e of T o n the general ized 
coordinates and velocities. For many particles, Equat ions 7.99 a n d 7.100 become 

(7.115) 

(7.117) 

(7.116) 

*Margenau (Ma77, Chapter 19). 
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Evaluat ing the square of x a w e ob ta in 

()flk j,k d^ dqk 

a n d the kinet ic ene rgy b e c o m e s 

'Ifh 

. 9 v dxa i dxai _ _ dxa<i dxa i _ 
xii = 2j — — q<qk +2 2j~ — qj + j dqj dt 11 \ dt 

dx A 2 

1 dxa idxa i _ _ X1 V dxa i dxa i _ -^i 1 
T= 2j 2j-m„ — ;— qj,, + Zj Zjm„ — q, • + Zu Zj - ma, a i l \ dt 7 2 """ a?* w ' ~ 7 j m a dqj dt 

dx \2 

Thus , we have the gene ra l result 

T = 2 ajkqjqk + 2 bjfy + c 

(7.118) 

(7.119) 

(7.120) 

A particularly impor tan t case occurs when the system is scleronomic, so that the 
time does n o t appea r explicitly in the equat ions of t ransformat ion (Equation 7.116); 
t h e n the par t ia l t ime derivatives vanish: 

dx(Y j 
— L = 0, b,: = 0, c = 0 

dt 1 

T h e r e f o r e , u n d e r these condi t ions , t he kinet ic ene rgy is a homogeneous quadratic 
function of t he genera l ized velocities: 

T = 2 a, 
j,k kWk (7.121) 

Next , we d i f fe ren t ia te Equa t ion 7.121 with respec t to qt: 

77 = 2 alkqk + 2 djflj dqt k j 

Multiplying this e q u a t i o n by % a n d s u m m i n g over I, we have 

In this case, all t he indices are d u m m i e s , so b o t h t e rms o n the r igh t -hand side 
a re identical : 

V dT 
i dqt 

22 ajkqjqk =2 T 
j'k 

(7.122) 

This i m p o r t a n t resul t is a special case of Euler's theorem, which states tha t if f(yk) is 
a h o m o g e n e o u s f u n c t i o n of t h e yk t ha t is of d e g r e e n, t h e n 

y df
 f 

k fyk 
(7.123) 
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7.9 Conservation Theorems Revisited 

Conservation of Energy 
We saw in our previous arguments* that time is homogeneous within an inertial 
reference frame. Therefore , the Lagrangian that describes a closed system (i.e., a 
system no t interacting with anything outside the system) cannot d e p e n d explic-
idy on t i m e / that is, 

dL 
- - 0 (7.124) 

so that the total derivative of the Lagrangian becomes 

dL -v dL x1 dL 
- ^ Z - q j + Z - q j (7.125) 
dt j dqj v j dqj 11 

where the usual term, dL/dt, does no t now appear. But Lagrange's equations are 

dL ddL 
— = — — (7.126) 
dqj at dqj 

Using Equation 7.126 to substitute for dL/dq} in Equation 7.125, we have 

dL Y . d dL Y dL 
dt j 11 dtdqj j dqj " 

or 

= 0 
dt j dtydqjJ 

so that 

The quantity in the parentheses is therefore constant in time; deno te this con-
stant by —H: 

v dL L - 2j a — = ~H = constant (7.128) 
j 

If the potential energy U does no t d e p e n d explicidy on the velocities or the 
time t, then U= U(xaj). The relations connect ing the rectangular coordinates 
and the generalized coordinates are of the fo rm xaj = xa l(qj) or q} = qj(xa i), 

*See Section 2.3. 
f T h e Lagrangian is likewise independent of the time if the system exists in a uniform force field. 



7.9 CONSERVATION THEOREMS REVISITED 261 

where we exclude the possibility of an explicit time dependence in the transfor-
mation equations. Therefore , U = XJ{qj), and dU/dqj = 0. Thus 

dL _ d(T- U) _ dT 
dq} dq} dqj 

Equation 7.128 can then be written as 

d T 
(T- U) - ^ q j — = -H (7.129) 

] Jdqj 

and, using Equation 7.122, we have 

(T— U) - 2T= -H 

or 

T+ U= E= H= constant (7.130) 

The total energy £ is a constant of the mot ion for this case. 
The funct ion H, called the Hamiltonian of the system, may be def ined as in 

Equation 7.128 (but see Section 7.10). It is important to note that the Hamiltonian 
H is equal to the total energy £ only if the following conditions are met: 

1. T h e equations of the t ransformation connect ing the rectangular and gen-
eralized coordinates (Equation 7.116) must be i n d e p e n d e n t of the time, 
thus ensuring that the kinetic energy is a homogeneous quadrat ic func t ion 
of the qy 

2. The potential energy must be velocity independent , thus allowing the elimi-
nation of the terms dU/dqj f rom the equation for H (Equation 7.129). 

The questions "Does H = E for the system?" and "Is energy conserved for the sys-
tem?," then, pertain to two different aspects of the problem, and each question 
must be examined separately. We may, for example, have cases in which the 
Hamiltonian does no t equal the total energy, but nevertheless, the energy is con-
served. Thus, consider a conservative system, and let the description be made in 
terms of generalized coordinates in mot ion with respect to fixed, rectangular 
axes. The transformation equations then contain the time, and the kinetic en-
ergy is not a homogeneous quadratic funct ion of the generalized velocities. The 
choice of a mathematically convenient set of generalized coordinates cannot 
alter the physical fact that energy is conserved. But in the moving coordinate sys-
tem, the Hamiltonian is no longer equal to the total energy. 

Conservation of Linear Momentum 
Because space is homogeneous in an inertial reference f rame, the Lagrangian of 
a closed system is unaffected by a translation of the entire system in space. Consider 
an infinitesimal translation of every radius vector r„ such that ra —> ra + dr; this 
amounts to translating the entire system by dr. For simplicity, let us examine a 
system consisting of only a single particle (by including a summation over a we 
could consider an re-particle system in an entirely equivalent manne r ) , and let us 
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write the Lagrangian in terms of rectangular coordinates L = L(x„ x,). T h e 
change in L caused by the infinitesimal d isplacement 8r = 2 ; 8xiei is 

v dL v dL _ 
8L = Z — 8x,; + 2 , — Sx, ;= 0 (7.131) 

> 3x,- i dXi 
We consider only a varied displacement, so tha t the 8xt are n o t explicit or implicit 
func t ions of the time. Thus, 

dx, d 
Sxf = 8 — = — 8xi = 0 (7.132) 

At dt 
Therefore , 8L becomes 

^ ^ J 

8L=1* — 8xi = 0 (7.133) 
• dx{ 

Because each of the 8x, is an i n d e p e n d e n t displacement , 8L vanishes identically 
only if each of the partial derivatives of L vanishes: 

dL 
— = 0 (7.134) 
dx,-

T h e n , according to Lagrange 's equat ions, 

d dL 
= 0 (7.135) 

dtdXj 
and 

dL 
— = constant (7.136) 
dx, 

or 

d(T- U) dT d (I 
= —- = —-(- toSX; 

dkj dx, dx\2 j 3 

= mxi = pi = constant (7.137) 

Thus, the homogenei ty of space implies tha t the l inear m o m e n t u m p of a closed 
system is constant in time. 

This result may also be in te rp re ted according to the following s ta tement: If 
the Lagrangian of a system (not necessarily closed) is invariant with respect to 
translation in a certain direct ion, t h e n the l inear m o m e n t u m of the system in 
that direct ion is constant in time. 

Conservation of Angular Momentum 
We stated in Section 2.3 that one characteristic of an inertial reference f rame is that 
space is isotropic—that is, that the mechanical propert ies of a closed system are un-
affected by the orientation of the system. In particular, the Lagrangian of a closed 
system does not change if the system is rotated through an infinitesimal angle.* 

*We limit the rotation to an infinitesimal angle because we wish to be able to represent the rotation 
by a vector; see Section 1.15. 
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If a system is rotated about a certain axis by an infinitesimal angle 80 (see 
Figure 7-8), the radius vector r to a given point changes to r + <5r, where (see 
Equation 1.106) 

8r = S6 X r (7.138) 

The velocity vectors also change on rotation of the system, and because the 
transformation equat ion for all vectors is the same, we have 

5r = 50 X f (7.139) 

We consider only a single particle and express the Lagrangian in rectangular 
coordinates. The change in L caused by the infinitesimal rotat ion is 

v dL v dL _ 
8L= Z — 8Xi + 2j— 8xt= 0 (7.140) 

' dx, • dx, 

Equations 7.136 and 7.137 show that the rectangular components of the mo-
men tum vector are given by 

dL 
P, = ~ (7.141) 

Lagrange's equations may then be expressed by 

dL 
= ~ (7.142) 

Hence, Equation 7.140 becomes 

8L = 2 pM + S piSxi = 0 (7.143) 
i i 

or 

p • 5r + p • 5r = 0 (7.144) 
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Using Equations 7.138 and 7.139, this equat ion may be written as 

p • (88 X r) + p • (50 X r) = 0 (7.145) 

We may permute in cyclic order the factors of a triple scalar p roduc t without al-
tering the value. Thus, 

50 • (r x p ) + 50 • (r X p ) = 0 

or 

50 • [(r X p) + (r X p) ] = 0 (7.146) 

The terms in the brackets are jus t the factors that result f rom the differentiation 
with respect to time of r X p: 

50 • (r X p) = 0 (7.147) 
ft i 

Because 50 is arbitrary, we must have 

y (r X p) = 0 (7.148) 
at 

so 

r X p = constant (7.149) 

But r X p = L; the angular m o m e n t u m of the particle in a closed system is there-
fore constant in time. 

An impor tant corollary of this theorem is the following. Consider a system in 
an external force field. If the field possesses an axis of symmetry, then the 
Lagrangian of the system is invariant with respect to rotations about the symme-
try axis. Hence, the angular m o m e n t u m of the system about the axis of symmetry 
is constant in time. This is exacdy the case discussed in Example 7.4; the vertical 
direction was an axis of symmetry of the system, and the angular m o m e n t u m 
about that axis was conserved. 

The importance of the connection between symmetry properties and the invari-
ance of physical quantities can hardly be overemphasized. The association goes be-
yond momen tum conservation—indeed beyond classical systems—and finds wide 
application in modern theories of field phenomena and elementary particles. 

We have derived the conservation theorems for a closed system simply by 
considering the propert ies of an inertial reference f rame. T h e results, summa-
rized in Table 7-1, are generally credited to Emmy Noether.* 

There are then seven constants (or integrals) of the mot ion for a closed sys-
tem: total energy, l inear m o m e n t u m (three components) , and angular momen-
tum (three components ) . These and only these seven integrals have the prop-
erty that they are additive for the particles composing the system; they possess 
this property whether or no t there is an interaction among the particles. 

*Emmy Noether (1882-1935), one of the first female German mathematical physicists, endured 
poor treatment by German mathematicians early in her career. She is the originator of Noether's 
Theorem, which proves a relationship between symmetries and conservation principles. 
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TABLE 7-1 
Characteristic 
of inertial frame Property of Lagrangian Conserved quantity 

Time homogeneous Not explicit function of time Total energy 
Space homogeneous Invariant to translation Linear momentum 
Space isotropic Invariant to rotation Angular momentum 

7.10 Canonical Equations of Motion—Hamiltonian 
Dynamics 

In the previous section, we found that if the potential energy of a system is veloc-
ity independent , then the linear m o m e n t u m components in rectangular coordi-
nates are given by 

dL 
P, = Z7 (7.150) 

dXi 
By analogy, we extend this result to the case in which the Lagrangian is expressed 
in generalized coordinates and define the generalized momenta* according to 

(7.151) 

(Unfortunately, the customary notations for ordinary m o m e n t u m and general-
ized m o m e n t u m are the same, even though the two quantities may be quite dif-
ferent.) The Lagrange equations of motion are then expressed by 

(7.152) 

Using the definit ion of the generalized momenta , Equation 7.128 for the 
Hamiltonian may be written as 

H = 2 pflj ~ L (7.153) 

The Lagrangian is considered to be a funct ion of the generalized coordinates, 
the generalized velocities, and possibly the time. The dependence of L on the 
time may arise either if the constraints are time dependen t or if the transforma-
tion equations connecting the rectangular and generalized coordinates explicitly 
contain the time. (Recall that we d o no t consider t ime-dependent potentials.) We 
may solve Equation 7.151 for the generalized velocities and express them as 

% = PK> 0 (7.154) 

*The terms generalized coordinates, generalized velocities, and generalized momenta were introduced in 
1867 by Sir William Thomson (later, Lord Kelvin) and P. G. Tait in their famous treatise Natural 
Philosophy. 
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Thus, in Equation 7.153, we may make a change of variables f rom the qp t) 
set to the (q., p., t) set* and express the Hamiltonian as 

H{qk, pk, t) = 2 pfqj - L(qk, qk, t) (7.155) 

This equation is written in a m a n n e r that stresses the fact that the Hamiltonian is 
always considered as a function of the (qk, pk, t) set, whereas the Lagrangian is a function 
of the (qk, qk, t) set 

' ' (7.156) H = H(qk, pk, t), L = L(qk, qk, t) 

The total differential of H is therefore 

(dH dH •VI oti oti \ dH 
dH= 2 j \ — dqk + — dpJ + — dt 

k \dqk dpk J dt 

According to Equation 7.155, we can also write 

dL dL 
— dqh -
dqh dqk 

dH=y2[qk dpk + pk dqk ~ ^ dqk - ~- dqk 
dL, 
dt 

dt 

(7.157) 

(7.158) 

Using Equations 7.151 and 7.152 to substitute for dL/dqk and dL/dqk, the second 
and fourth terms in the parentheses in Equation 7.158 cancel, and there remains 

V • dL 
dH = 2j(qkdpk - pkdqk) - — dt 

* at 
(7.159) 

If we identify the coefficients^ of dqk, dpk, and dt between Equations 7.157 and 
7.159, we f ind 

dH 
qk 

~ dpk 

dH Hamilton's equations of mot ion 

and 

3L_dH 
dt dt 

(7.160) 

(7.161) 

(7.162) 

Furthermore, using Equations 7.160 and 7.161 in Equation 7.157, the term in 
the parentheses vanishes, and it follows that 

— - — 

dt ~ dt 

*This change of variables is similar to that frequently encountered in thermodynamics and falls in 
the general class of the so-called Legendre transformations (used first by Euler and perhaps even by 
Leibniz). A general discussion of Legendre transformations with emphasis on their importance in 
mechanics is given by Lanczos (La49, Chapter 6). 
fThe assumptions implicitly contained in this procedure are examined in the following section. 
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Equations 7.160 and 7.161 are Hamilton's equations of motion.* Because of 
their symmetric appearance, they are also known as the canonical equations of mo-
tion. The description of motion by these equations is termed Hamiltonian dynamics. 

Equation 7.163 expresses the fact that if H does no t explicitly contain the 
time, then the Hamiltonian is a conserved quantity. We have seen previously 
(Section 7.9) that the Hamiltonian equals the total energy T + U if the potential 
energy is velocity independent and the transformation equations between xa i and qj 
do not explicitly contain the time. Under these conditions, and if dH/dt = 0, then 
H= E = constant. 

There are 2s canonical equations and they replace the s Lagrange equations. 
(Recall that s = 3n — m is the number of degrees of f reedom of the system.) But 
the canonical equations are first-order differential equations, whereas the Lagrange 
equations are of second order:+ To use the canonical equations in solving a problem, 
we must first construct the Hamiltonian as a funct ion of the generalized coordi-
nates and momenta . It may be possible in some instances to do this direcdy. In 
more complicated cases, it may be necessary first to set u p the Lagrangian and 
then to calculate the generalized momenta according to Equation 7.151. The 
equations of motion are then given by the canonical equations. 

EXAMPLE 7.11 

Use the Hamil tonian me thod to f ind the equations of mot ion of a particle of 
mass m constrained to move on the surface of a cylinder def ined by 
xl + j1 = R2. T h e particle is subject to a force directed toward the origin and 
proport ional to the distance of the particle f r o m the origin: F = — kr. 

Solution. The situation is illustrated in Figure 7-9. The potential corresponding 
to the force F is 

u = \ k r 2 = + f + 22) 

= R2 + z2) (7.164) 

We can write the square of the velocity in cylindrical coordinates (see Equation 
1.101) as 

V2 = R2 + R2e2 + z2 (7.165) 

But in this case, R is a constant, so the kinetic energy is 

T= | m(R262 + z2) (7.166) 

*This set of equations was first obtained by Lagrange in 1809, and Poisson also derived similar equa-
tions in the same year. But neither recognized the equations as a basic set of equations of motion; 
this point was first realized by Cauchy in 1831. Hamilton first derived the equations in 1834 from a 
fundamental variational principle and made them the basis for a far-reaching theory of dynamics. 
Thus the designation "Hamilton's" equations is fully deserved. 
fThis is not a special result; any set of s second-order equations can always be replaced by a set of 2s 
first-order equations. 
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z 

We may now write the Lagrangian as 

L = T - U = | m(R*02 + z2) - | k(R2 + z2) (7.167) 

The generalized coordinates are 0 and z, and the generalized m o m e n t a are 

pe = ^ = mR?6 (7.168) 
80 
dL 

pz = —= mi (7.169) 
dz 

Because the system is conservative and because the equations of t ransformation 
between rectangular and cylindrical coordinates do no t explicidy involve the 
time, the Hamiltonian H is jus t the total energy expressed in terms of the vari-
ables 0, pg, z, and pz. But 8 does no t occur explicidy, so 

H(z,pg,pz) = T + U 

Pi Pi 1 

where the constant term | kR? has been suppressed. T h e equations of mot ion 
are therefore found f rom the canonical equations: 

3EJ 

Pe=~w=0 <7-171> 

p z = - 9 - ^ = - k z (7.172) dz 
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i = ,7.174) 
dpz m 

Equat ions 7.173 and 1.174 jus t dupl icate Equat ions 7.168 a n d 7.169. Equat ions 
7.168 a n d 7.171 give 

pe = mR26 = constant (7.175) 

T h e angular m o m e n t u m abou t the z-axis is thus a constant of the mot ion . This 
result is ensured , because the z-axis is the symmetry axis of the p rob lem. 
Combin ing Equat ions 7.169 and 7.172, we find 

z + 0)lz = 0 (7.176) 

where 

(ol = k / m (7.177) 

T h e mot ion in the z d i rect ion is the re fore simple ha rmonic . 

T h e equat ions of mot ion fo r the p reced ing p rob lem can also be f o u n d by 
the Lagrangian m e t h o d using the func t ion L de f ined by Equat ion 7.167. In this 
case, the Lagrange equat ions of mo t ion are easier to obtain than are the canoni-
cal equations. In fact, it is qui te o f t en t rue that the Lagrangian m e t h o d leads 
m o r e readily to the equat ions of mo t ion tha t does the Hami l ton ian m e t h o d . But 
because we have greater f r e e d o m in choosing the variable in the Hami l ton ian 
formula t ion of a p rob lem ( the qk a n d the pk a re i n d e p e n d e n t , whereas the qk and 
the qk are not) , we often gain a certain practical advantage by using the Hamiltonian 
method . For example, in celestial mechanics—particularly in the event tha t the 
mot ions are subject to per turba t ions caused by the in f luence of o the r bodies—it 
proves convenient to fo rmula te the p rob l em in terms of Hami l ton ian dynamics. 
Generally speaking, however, the great power of the Hami l ton ian approach to 
dynamics does n o t manifes t itself in simplifying the solutions to mechanics prob-
lems; rather, it provides a base we can ex tend to o the r fields. 

T h e general ized coord ina te qk a n d the general ized m o m e n t u m pk a re canon-
ically conjugate quantities. According to Equat ions 7.160 a n d 7.161, if qk does 
n o t appea r in the Hamil tonian , t hen pk = 0, and the conjuga te m o m e n t u m pk is 
a constant of the mot ion . Coordinates n o t appear ing explicitly in the expres-
sions fo r T a n d U a re said to be cyclic. A coordina te cyclic in H is also cyclic in L. 
But, even if qk does n o t appea r in L, the general ized velocity qk re la ted to this co-
ord ina te is in general still present . Thus 

L = L(qu..., qk+1,...,qs, qx...,qs, t) 

and we accomplish n o reduct ion in the n u m b e r of degrees of f r e e d o m of the sys-
tem, even though o n e coordinate is cyclic; there are still s second-order equat ions 
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to be solved. However, in the canonical formulat ion, if qk is cyclic, ph is constant, 
Pk = ab and 

H= H(qy,..., qh-x, qk+l, ... ,qs, px, ... , pk-x, ak, pk+l,... , ps, t) 

Thus, there are 2 s — 2 first-order equations to be solved, and the problem has, in 
fact, been reduced in complexity; there are in effect only s — 1 degrees of f reedom 
remaining. The coordinate qh is completely separated, and it is ignorable as far as the 
remainder of the problem is concerned. We calculate the constant a k by applying 
the initial conditions, and the equation of motion for the cyclic coordinate is 

dH m „ 
qk = — = wk (7.178) 

dah 

which can be immediately integrated to yield 

qk(t) = tokdt (7.179) 

The solution for a cyclic coordinate is therefore trivial to reduce to quadrature . 
Consequently, the canonical formulat ion of Hamil ton is particularly well suited 
for dealing with problems in which one or more of the coordinates are cyclic. 
The simplest possible solution to a problem would result if the problem could 
be formulated in such a way that all the coordinates were cyclic. Then , each co-
ordinate would be described in a trivial m a n n e r as in Equation 7.179. It is, in 
fact, possible to f ind transformations that r ende r all the coordinates cyclic,* and 
these procedures lead naturally to a formulat ion of dynamics particularly useful 
in constructing mode rn theories of matter. The general discussion of these top-
ics, however, is beyond the scope of this b o o k / 

EXAMPLE 7.12 

Use the Hamiltonian me thod to f ind the equations of mot ion for a spherical 
pendu lum of mass m and length b (see Figure 7-10). 

Solution. The generalized coordinates are 6 and 4>. The kinetic energy is 

T = - mb262 + - mb2 sin2 662 

2 2 

The only force acting on the pendu lum (other than at the point of support) is 
gravity, and we define the potential zero to be at the pendulum's point of 
attachment. 

U= — m,pb cos 6 

•"Transformations of this type were derived by Carl Gustav Jacob Jacobi (1804-1851). Jacobi's investi-
gations greatly extended the usefulness of Hamilton's methods, and these developments are known 
as Hamilton-Jacobi theory. 
fSee, for example, Goldstein (Go80, Chapter 10). 
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u= o 

q > 

FIGURE 7-10 Example 7.12. A spherical pendulum with generalized coordinates 
6 and <f>. 

The generalized momen ta are then 

dL 
pe = — = mb26 (7.180) 

de 

dL 
ptf, — —r — rnb2 sin2 6>4> (7.181) 

d<f> 

We can solve Equations 7.180 and 7.181 for 0 and <j> in terms of pg and prl>. 
We determine the Hamiltonian f rom Equation 7.155 or f rom H = 

T+ U (because the conditions for Equat ion 7.130 apply). 

H= T+ U 

1 i> ^ . 1 ^ 2 S i " 2 dPl = —mbi-—— H -—- — meb cos e 
2 (mb2)2 2 (mb2 sin2 8)2 s 

(.2 Pi , PI 
2mb2 2mb2sin29 

The equations of motion are 

dpe mb2 

^ = an = 

+ O„A2 - m S b COS 6 

dp$ mb2 sin2 8 

dH Pi cos e 
de mb2 sin3 0 

mgb sin 6 

dH 

Because 4> is cyclic, the m o m e n t u m p^ about the symmetry axis is constant. 
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7.11 Some Comments Regarding Dynamical Variables 
and Variational Calculations in Physics 

We originally obtained Lagrange's equations of mot ion by stating Hamilton's 
Principle as a variational integral and then using the results of the preceding 
chapter on the calculus of variations. Because the me thod and the application 
were thereby separated, it is perhaps worthwhile to restate the a rgument in an 
orderly but abbreviated way. 

Hamilton's Principle is expressed by 
ru 

8 j L(qp qjt t) dt = 0 (7.182) 

Applying the variational procedure specified in Section 6.7, we have 

P2/AL dL 
\dqj

 q j + d^ 
Next, we assert that the 8qj and the 8qt are not independent , so the variation op-
eration and the time differentiation can be interchanged: 

= 

dt) dt 

' 8qj + — 8qj J dt = 0 

H = 8 b ; <7-183> 
The varied integral becomes (after the integration by parts in which the 8q} are 
set equal to zero at the endpoints) 

dL d dL\ „ 
r - T — 8 q j d t = 0 (7.184) 
dqj dtdqj) 3 

The requi rement that the dqj be independen t variations leads immediately to 
Lagrange's equations. 

In Hamilton's Principle, expressed by the variational integral in Equation 
7.182, the Lagrangian is a funct ion of the generalized coordinates and the gen-
eralized velocities. But only the qj are considered as i ndependen t variables; the 
generalized velocities are simply the time derivatives of the qj. When the integral 
is reduced to the form given by Equation 7.184, we state that the Sqt are inde-
penden t variations; thus the integrand must vanish identically, and Lagrange's 
equations result. We may therefore pose this question: Because the dynamical 
motion of the system is completely de termined by the initial conditions, what is 
the meaning of the variations 8q~? Perhaps a sufficient answer is that the vari-
ables are to be considered geometrically feasible within the limits of the given 
constraints—although they are no t dynamically possible; that is, when using a 
variational procedure to obtain Lagrange's equations, it is convenient to ignore 
temporarily the fact that we are dealing with a physical system whose mot ion is 
completely de termined and subject to no variation and to consider instead only 
a certain abstract mathematical problem. Indeed, this is the spirit in which any 
variational calculation relating to a physical process must be carried out. In 
adopting such a viewpoint, we must no t be overly concerned with the fact that 
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the variational p rocedure may be contrary to certain known physical properties 
of the system. (For example, energy is generally no t conserved in passing f rom 
the true path to the varied path.) A variational calculation simply tests various 
possible solutions to a problem and prescribes a me thod for selecting the correct 
solution. 

The canonical equations of mot ion can also be obtained directly f rom a vari-
ational calculation based on the so-called modified Hamilton's Principle. The 
Lagrangian funct ion can be expressed as (see Equation 7.153): 

L = 2 p,q} - H( qr p}, t) (7.185) 

and the statement of Hamilton's Principle contained in Equation 7.182 can be 
modified to read 

(7.186) 

Carrying out the variation in the standard manner , we obtain 
ch— ' dH „ SH, V / o o 0 t l c I 

i l PiH + iisPj - ^ sij - ^ 8P,)dt (7.187) 

In the Hamiltonian formulat ion, the qj and the pj are considered to be inde-
pendent . The qj are again not i ndependen t of the qj, so Equation 7.183 can be 
used to express the first term in Equation 7.187 as 

' k v P2 V d 

2 s p j 8 q j d t = 2 j pj— 8qt dt 

J t , J Jt, J dt 

Integrating by parts, the integrated term vanishes, and we have 

2 pjSfydt = — 2 pj8qj dt 

Equation 7.187 then becomes 

(7.188) 

(7.189) 

If 8q} and 8pj represent independent variations, the terms in the parentheses must 
separately vanish and Hamilton's canonical equations result. 

In the preceding section, we obtained the canonical equations by writing 
two different expressions for the total differential of the Hamiltonian 
(Equations 7.157 and 7.159) and then equating the coefficients of dqj and dpj. 
Such a procedure is valid if the qj and the pj are i ndependen t variables. 
Therefore, both in the previous derivation and in the preceding variational cal-
culation, we obtained the canonical equations by exploring the i ndependen t na-
ture of the generalized coordinates and the generalized momenta . 

The coordinates and momen ta are not actually " independent" in the ulti-
mate sense of the word. For if the time dependence of each of the coordinates is 
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known, q} = qj(t), the problem is completely solved. The generalized velocities 
can be calculated f rom 

and the generalized m o m e n t a are 

d 
Pj = — L(qP % t) 

The essential point is that, whereas the q} and the c/; are related by a simple time 
derivative independent of the manner in which the system behaves, the connect ion be-
tween the qt and the pj are the equations of motion themselves. Finding the relations 
that connect the qj and the pj (and thereby eliminating the assumed independ-
ence of these quantities) is therefore tan tamount to solving the problem. 

7.12 Phase Space and Liouville's Theorem (Optional) 
We pointed out previously that the generalized coordinates ^ can be used to de-
fine an s- dimensional configuration space with every point represent ing a certain 
state of the system. Similarly, the generalized momenta pj def ine an s-dimensional 
momentum space with every point representing a certain condit ion of motion of 
the system. A given point in configuration space specifies only the position of 
each of the particles in the system; noth ing can be inferred regarding the mo-
tion of the particles. The reverse is true for m o m e n t u m space. In Chapter 3, we 
found it profitable to represent geometrically the dynamics of simple oscillatory 
systems by phase diagrams. If we use this concept with more complicated dynam-
ical systems, then a 2 s-dimensional space consisting of the qt and the pj allows us 
to represent both the positions and the m o m e n t a of all particles. This general-
ization is called Hamiltonian phase space or, simply, phase space.* 

EXAMPLE 7.13 

Construct the phase diagram for the particle in Example 7.11. 

Solution. The particle has two degrees of f r eedom (6, z), so the phase space for 
this example is actually four dimensional: d, pe, z, pz. But pe is constant and 
therefore may be suppressed. In the z direction, the mot ion is simple harmonic, 
and so the projection onto the z-pz plane of the phase path for any total energy 
/ / i s just an ellipse. Because 6 = constant, the phase path must represent motion 
increasing uniformly with 6. Thus, the phase pa th on any surface H = constant 
is a uniform elliptic spiral (Figure 7-11). 

*We previously plotted in the phase diagrams the position versus a quantity proportional to the ve-
locity. In Hamiltonian phase space, this latter quantity becomes the generalized momentum. 
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Pz 

If, at a given t ime, the posi t ion a n d m o m e n t a of all the particles in a sys-
t em are known, t h e n with these quant i t ies as initial condi t ions, the subsequen t 
mo t ion of the system is completely d e t e r m i n e d ; tha t is, s tar t ing f r o m a po in t 
qj(0),pj(0) in phase space, the representa t ive po in t descr ib ing the system 
moves a long a u n i q u e phase pa th . In pr inciple , this p r o c e d u r e can always be 
followed a n d a solution ob ta ined . But if the n u m b e r of degrees of f r e e d o m of 
the system is large, the set of equa t ions of m o t i o n may be too compl ica ted to 
solve in a reasonable t ime. Moreover, fo r complex systems, such as a quant i ty 
of gas, it is a practical impossibility to d e t e r m i n e the initial condi t ions fo r each 
cons t i tuent molecule . Because we c a n n o t ident i fy any par t icular po in t in phase 
space as r ep resen t ing the actual condi t ions at any given t ime, we mus t devise 
some alternative app roach to study the dynamics of such systems. We the r e fo re 
arrive at the po in t of depa r tu r e of statistical mechanics . T h e Hami l ton ian for-
mula t ion of dynamics is ideal fo r the statistical study of complex systems. We 
demons t r a t e this in par t by now proving a t h e o r e m that is f u n d a m e n t a l fo r 
such investigations. 

For a large collection of particles—say, gas molecules—we are unab le to 
identify the part icular po in t in phase space correctly represen t ing the system. 
But we may fill the phase space with a collection of points, each represen t ing a 
possible condi t ion of the system; tha t is, we imagine a large n u m b e r of systems 
(each consistent with the known constraints) , any of which could conceivably 
be the actual system. Because we are unab le to discuss the details of the parti-
cles' mot ion in the actual system, we substitute a discussion of an ensemble of 
equivalent systems. Each representat ive po in t in phase space cor responds to a 
single system of the ensemble , a n d the mo t ion of a par t icular po in t represents 
the i n d e p e n d e n t mot ion of tha t system. Thus , n o two of the phase pa ths may 
ever intersect. 

We may consider the representative points to be sufficiently n u m e r o u s that 
we can def ine a density in phase space p. T h e volume elements of the phase space 
def in ing the density must be sufficiendy large to contain a large n u m b e r of rep-
resentative points, b u t they must also be sufficiently small so tha t the density 
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FIGURE 7-12 An element of area dA = dqkdpk in the qk-pk plane in phase space. 

varies continuously. The n u m b e r N of systems whose representative points lie 
within a volume dv of phase space is 

where 

N= pdv 

dv = dqx dq% ••• dqs dpi dpl ••• dps 

(7.190) 

(7.191) 

As before, s is the number of degrees of f reedom of each system in the ensemble. 
Consider an element of area in the qk-pk plane in phase space (Figure 7-12).. 

The number of representative points moving across the left-hand edge into the 
area per uni t time is 

dqh 
P dpk = pqk dpk 

and the n u m b e r moving across the lower edge into the area per uni t t ime is 

dph 
P ~dt dqk= d(lk 

so that the total n u m b e r of representative points moving into the area dqk dpk per 
uni t time is 

p(qkdph + pk dqk) (7.192) 

By a Taylor series expansion, the n u m b e r of representative points moving out of 
the area per uni t time is (approximately) 

P% + —(Pqk)dqk °qk 
dpk Pfa + —(Ppk)dpk dPk 

dqk (7.193) 

Thus, the total increase in density in dqk dpk pe r uni t t ime is the difference be-
tween Equations 7.192 and 7.193: 

dp 
dt dqk dpk = ~ 

d d . 
r-(pqk) + Tr(ppk) 

3qk dpk 
dqk dpk (7.194) 
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After dividing by dqk dpk and summing this expression over all possible values of 
k, we find 

dP , y fdP . , . dP . m) _ o (7.195) 

From Hamilton's equations (Equations 7.160 and 7.161), we have (if the second 
partial derivatives of H are continuous) 

^ + d-h = o 
dqk dpk 

so Equation 7.195 becomes 

dp , ^ f dp dqk , dp dpk + 2 J \ — — + — — ) = 0 
dt * \dqh dt dpk dty 

(7.196) 

(7.197) 

But this is just the total time derivative of p, so we conclude that 

dp 

dt 
= 0 (7.198) 

This impor tant result, known as Liouville's theorem,* states that the density of 
representative points in phase space corresponding to the mot ion of a system of 
particles remains constant dur ing the motion. It must be emphasized that we 
have been able to establish the invariance of the density p only because the prob-
lem was formulated in phase space-, an equivalent theorem for configuration 
space does not exist. Thus, we must use Hamil tonian dynamics (rather than 
Lagrangian dynamics) to discuss ensembles in statistical mechanics. 

Liouville's theorem is impor tant no t only for aggregates of microscopic par-
ticles, as in the statistical mechanics of gaseous systems and the focusing proper-
ties of charged-particle accelerators, bu t also in certain macroscopic systems. For 
example, in stellar dynamics, the problem is inverted and by studying the distri-
but ion funct ion p of stars in the galaxy, the potential U of the galactic gravita-
tional field may be inferred. 

7.13 Virial Theorem (Optional) 

Another impor tant result of a statistical na ture is worthy of ment ion. Consider a 
collection of particles whose position vectors ra and m o m e n t a p a are both 
b o u n d e d (i.e., remain finite for all values of the time). Define a quantity 

P o . r 0 (7.199) 

* Published in 1838 by Joseph Liouville (1809-1882). 
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The time derivative of S is 

^ = 2 ( p a . r a + p 0 . r a ) (7.200) 
at a 

If we calculate the average value of dS/ dt over a time interval T, we find 

dt T dt 

If the system's mo t ion is per iodic—and if r is some in teger mul t ip le of the 
p e r i o d — t h e n S(t) = S(0), and (S) vanishes. But even if the system does no t ex-
hibit any periodicity, then—because S is by hypothesis a bounded function—we 
can make (S) as small as desired by allowing the time T to become sufficiently 
long. Therefore, the time average of the right-hand side of Equation 7.201 can al-
ways be made to vanish (or at least to approach zero). Thus, in this limit, we have 

' P « - 0 = " ( 2 p a T . ) (7.202) 

O n the left-hand side of this equation, pa • ra is twice the kinetic energy. O n the 
right-hand side, pa is jus t the force Fa on the a t h particle. Hence, 

2 2 r a \ = - / 2 F a . r a \ (7.203) 

The sum over Ta is the total kinetic energy T of the system, so we have the gen-
eral result 

( T ) = - ^ 2 F „ T „ ) (7.204) 

The right-hand side of this equat ion was called by Clausius* the virial of the sys-
tem, and the virial theorem states that the average kinetic energy of a system of particles 
is equal to its virial. 

EXAMPLE 7.14 

Consider an ideal gas containing TV atoms in a container of volume V, pressure 
P, and absolute temperature Tx (not to be confused with the kinetic energy T). 
Use the virial theorem to derive the equation of state for a perfec t gas. 

Solution. According to the equiparti t ion theorem, the average kinetic energy 
of each atom in the ideal gas is 3 / 2 hi], where k is the Boltzmann constant. T h e 
total average kinetic energy becomes 

(T) = ^MTj (7.205) 

* Rudolph Julius Emmanuel Clausius (1822-1888), a German physicist and one of the founders of 
thermodynamics. 
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The right-hand side of the virial t heo rem (Equation 7.204) contains the 
forces Fa. For an ideal perfect gas, no force of interact ion occurs between 
atoms. The only force is represented by the force of constraint of the walls. 
T h e atoms bounce elastically off the walls, which are exert ing a pressure on the 
atoms. 

Because the pressure is force per uni t area, we f ind the instantaneous dif-
ferential force over a differential area to be 

= - n PdA (7.206) 

where n is a uni t vector normal to the surface dA and point ing outward. The 
right-hand side of the virial theorem becomes 

P 
•r„} = n-rdA (7.207) 

We use the divergence theorem to relate the surface integral to a volume integral. 

n-rdA = 

The virial theorem result is 

V • r dV = 3 dV= 3 V (7.208) 

2 2 
NkT = PV (7.209) 

which is the ideal gas law. 

If the forces Fa can be derived f rom potentials Ua, Equation 7.204 may be 
rewritten as 

<r> = VE/a) (7.210) 

Of particular interest is the case of two particles that interact according to a cen-
tral power-law force: F cx r™. Then , the potential is of the fo rm 

U= krn+1 (7.211) 

Therefore 

r - V U = — = k(n + l)rn+l = (n + 1)U (7.212) 
dr 

and the virial theorem becomes 

j? + 1 
(T) = (7.213) 
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If the particles have a gravitational interact ion, t h e n n = — 2, and 

{T)=~\(U), n = —2 

This relation is useful in calculating, fo r example , the energetics in planetary 
mot ion . 

PROBLEMS 

7-1. A disk rolls without slipping across a horizontal plane. The plane of the disk re-
mains vertical, but it is free to rotate about a vertical axis. What generalized coordi-
nates may be used to describe the motion? Write a differential equation describing 
the rolling constraint. Is this equation integrable? Justify your answer by a physical 
argument. Is the constraint holonomic? 

7-2. Work out Example 7.6 showing all the steps, in particular those leading to 
Equations 7.36 and 7.41. Explain why the sign of the acceleration a cannot affect 
the frequency a>. Give an argument why the signs of a2 and g2 in the solution of to2 

in Equation 7.42 are the same. 

7-3. A sphere of radius p is constrained to roll without slipping on the lower half of the 
inner surface of a hollow cylinder of inside radius R. Determine the Lagrangian 
function, the equation of constraint, and Lagrange's equations of motion. Find the ' 
frequency of small oscillations. 

7-4. A particle moves in a plane under the influence of a force / = — Ar""1 directed to-
ward the origin; A and a (> 0) are constants. Choose appropriate generalized co-
ordinates, and let the potential energy be zero at the origin. Find the Lagrangian 
equations of motion. Is the angular momentum about the origin conserved? Is the 
total energy conserved? 

7-5. Consider a vertical plane in a constant gravitational field. Let the origin of a coor-
dinate system be located at some point in this plane. A particle of mass m moves in 
the vertical plane under the influence of gravity and under the influence of an ad-
ditional force / = —Ara~l directed toward the origin (r is the distance from the 
origin; A and a [=£ 0 or 1] are constants). Choose appropriate generalized coordi-
nates, and find the Lagrangian equations of motion. Is the angular momentum 
about the origin conserved? Explain. 

7-6. A hoop of mass m and radius R rolls without slipping down an inclined plane of 
mass M, which makes an angle a with the horizontal. Find the Lagrange equations 
and the integrals of the motion if the plane can slide without friction along a hori-
zontal surface. 

7-7. A double pendulum consists of two simple pendula, with one pendulum suspended 
from the bob of the other. If the two pendula have equal lengths and have bobs of 
equal mass and if both pendula are confined to move in the same plane, find 
Lagrange's equations of motion for the system. Do not assume small angles. 
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7-8. Consider a region of space divided by a plane. The potential energy of a particle in 
region 1 is U^ and in region 2 it is U2. If a particle of mass m and with speed t^ in re-
gion 1 passes from region 1 to region 2 such that its path in region 1 makes an 
angle 01 with the normal to the plane of separation and an angle 02 with the normal 
when in region 2, show that 

7-9. A disk of mass M and radius R rolls without slipping down a plane inclined from 
the horizontal by an angle a . The disk has a short weightless axle of negligible ra-
dius. From this axis is suspended a simple pendulum of length I < R arid whose bob 
has a mass m. Consider that the motion of the pendulum takes place in the plane of 
the disk, and find Lagrange's equations for the system. 

7-10. Two blocks, each of mass M, are connected by an extensionless, uniform string of 
length I. One block is placed on a smooth horizontal surface, and the other block 
hangs over the side, the string passing over a frictionless pulley. Describe the mo-
tion of the system (a) when the mass of the string is negligible and (b) when the 
string has a mass m. 

7-11. A particle of mass m is constrained to move on a circle of radius R The circle rotates 
in space about one point on the circle, which is fixed. The rotation takes place in 
the plane of the circle and with constant angular speed (o. In the absence of a gravi-
tational force, show that the particle's motion about one end of a diameter passing 
through the pivot point and the center of the circle is the same as that of a plane 
pendulum in a uniform gravitational field. Explain why this is a reasonable result. 

7-12. A particle of mass m rests on a smooth plane. The plane is raised to an inclination 
angle 9 at a constant rate a (6 = 0 at t = 0), causing the particle to move down the 
plane. Determine the motion of the particle. 

7-13. A simple pendulum of length b and bob with mass m is attached to a massless sup-
port moving horizontally with constant acceleration a. Determine (a) the equations 
of motion and (b) the period for small oscillations. 

7-14. A simple pendulum of length b and bob with mass m is attached to a massless sup-
port moving vertically upward with constant acceleration a. Determine (a) the 
equations of motion and (b) the period for small oscillations. 

7-15. A pendulum consists of a mass m suspended by a massless spring with unextended 
length b and spring constant k. Find Lagrange's equations of motion. 

7-16. The point of support of a simple pendulum of mass m and length b is driven hori-
zontally by x = a sin (at. Find the pendulum's equation of motion. 

7-17. A particle of mass m can slide freely along a wire AB whose perpendicular distance 
to the origin Ois h (see Figure 7-A, page 282). The line OC rotates about the origin 

where Tt = \.mv\. What is the optical analog of this problem? 
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at a constant angular velocity 0 = co. The position of the particle can be described 
in terms of the angle 0 and the distance q to the point C. If the particle is subject to 
a gravitational force, and if the initial conditions are 

0(0) = 0 , ?(0) = 0 , q( 0) = 0 

show that the time dependence of the coordinate q is 

g 
q(t) = —- (coshwi — cos u>t) 

lut 

Sketch this result. Compute the Hamiltonian for the system, and compare with the 
total energy. Is the total energy conserved? 

7-18. A pendulum is constructed by attaching a mass m to an extensionless string of 
length L The upper end of the string is connected to the uppermost point on a ver-
tical disk of radius R (R < 1/TT) as in Figure 7-B. Obtain the pendulum's equation 
of motion, and find the frequency of small oscillations. Find the line about which 
the angular motion extends equally in either direction (i.e., 61 = S-2). 

e; X 

£ 

FIGURE 7-B Problem 7-18. 
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7-19. Two masses ml and (m, + mz) are connected by a rigid rod of length d and of 
negligible mass. An extensionless string of length l\ is attached to m, and con-
nected to a fixed point of support P. Similarly, a string of length 1^(1i ¥= /2) con-
nects in, and P. Obtain the equation describing the motion in the plane of mu m2, 
and P, and find the frequency of small oscillations around the equilibrium position. 

7-20. A circular hoop is suspended in a horizontal plane by three strings, each of length 
I, which are attached symmetrically to the hoop and are connected to fixed points 
lying in a plane above the hoop. At equilibrium, each string is vertical. Show that 
the frequency of small rotational oscillations about the vertical through the center 
of the hoop is the same as that for a simple pendulum of length I. 

7-21. A particle is constrained to move (without friction) on a circular wire rotating with 
constant angular speed (o about a vertical diameter. Find the equilibrium position 
of the particle, and calculate the frequency of small oscillations around this posi-
tion. Find and interpret physically a critical angular velocity co = wc that divides the 
particle's motion into two distinct types. Construct phase diagrams for the two cases 
a> < u>c and (t) > a»c. 

7-22. A particle of mass m moves in one dimension under the influence of a force 

F(x, <) = 4 <r((/T) 

xl 

where k and T are positive constants. Compute the Lagrangian and Hamiltonian 
functions. Compare the Hamiltonian and the total energy, and discuss the conser-
vation of energy for the system. 

7-23. Consider a particle of mass m moving freely in a conservative force field whose po-
tential function is U. Find the Hamiltonian function, and show that the canonical 
equations of motion reduce to Newton's equations. (Use rectangular coordinates.) 

7-24. Consider a simple plane pendulum consisting of a mass m attached to a string of 
length I. After the pendulum is set into motion, the length of the string is short-
ened at a constant rate 

dl 
— = — a = constant 
dt 

The suspension point remains fixed. Compute the Lagrangian and Hamiltonian 
functions. Compare the Hamiltonian and the total energy, and discuss the conser-
vation of energy for the system. 

7-25. A particle of mass m moves under the influence of gravity along the helix z = k6, r = 
constant, where k is a constant and z is vertical. Obtain the Hamiltonian equations 
of motion. 

7-26. Determine the Hamiltonian and Hamilton's equations of motion for (a) a simple 
pendulum and (b) a simple Atwood machine (single pulley). 

7-27. A massless spring of length b and spring constant k connects two particles of masses 
r«j and w2. The system rests on a smooth table and may oscillate and rotate. 
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(a) Determine Lagrange's equations of motion. 
(b) What are the generalized momenta associated with any cyclic coordinates? 
(c) Determine Hamilton's equations of motion. 

7-28. A particle of mass m is attracted to a force center with the force of magnitude k/ r2. 
Use plane polar coordinates and find Hamilton's equations of motion. 

7-29. Consider the pendulum described in Problem 7-15. The pendulum's point of sup-
port rises vertically with constant acceleration a. 
(a) Use the Lagrangian method to find the equations of motion. 
(b) Determine the Hamiltonian and Hamilton's equations of motion. 
(c) What is the period of small oscillations? 

7-30. Consider any two continuous functions of the generalized coordinates and mo-
menta g(qk, pk) and h(qk, pk). The Poisson brackets are defined by 

* * \dqkdpt dpkdqk) 

Verify the following properties of the Poisson brackets: 

(a) J = [g, H] + jf (b) q, = [q„ H], p, = [pr H] 

(c) [pi, pj\ = 0, [qh qj] = 0 (d) [q„ p,] = 8i; 

where H is the Hamiltonian. If the Poisson bracket of two quantities vanishes, the 
quantities are said to commute. If the Poisson bracket of two quantities equals unity, 
the quantities are said to be canonically conjugate, (e) Show that any quantity that 
does not depend explicidy on the time and that commutes with the Hamiltonian is 
a constant of the motion of the system. Poisson-bracket formalism is of consider-
able importance in quantum mechanics. 

7-31. A spherical pendulum consists of a bob of mass m attached to a weighdess, exten-
sionless rod of length I. The end of the rod opposite the bob pivots freely (in all di-
rections) about some fixed point. Set up the Hamiltonian function in spherical co-
ordinates. (If = 0, the result is the same as that for the plane pendulum.) 
Combine the term that depends on p^ with the ordinary potential energy term to 
define as effective potential V(6, p^). Sketch V as a function of 6 for several values of 

including /ty = 0. Discuss the features of the motion, pointing out the differ-
ences between p$ = 0 and + 0. Discuss the limiting case of the conical pendu-
lum (6 = constant) with reference to the V-6 diagram. 

7-32. A particle moves in a spherically symmetric force field with potential energy given 
by U(r) = —k/r. Calculate the Hamiltonian function in spherical coordinates, and 
obtain the canonical equations of motion. Sketch the path that a representative 
point for the system would follow on a surface H = constant in phase space. Begin 
by showing that the motion must lie in a plane so that the phase space is four di-
mensional (r, 6, pr, pe, but only the first three are nontrivial). Calculate the projec-
tion of the phase path on the r-pr plane, then take into account the variation with 6. 
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7-33. Determine the Hamiltonian and Hamilton's equations of motion for the double 
Atwood machine of Example 7.8. 

7-34. A particle of mass m slides down a smooth circular wedge of mass M as shown in 
Figure 7-C. The wedge rests on a smooth horizontal table. Find (a) the equation of 
motion of m and Af and (b) the reaction of the wedge on m. 

FIGURE 7-C Problem 7-34. 

7-35. Four particles are directed upward in a uniform gravitational field with the follow-
ing initial conditions: 

(1) z(0) — z0; ft(0) = ft 

(2) z(0) = z0 + Azo; A(0) = ft 

(3) z(0) = z0> PA 0) = ft + A ft 
(4) z(0) = z0 + Azoi ft(0) = ft + A ft 

Show by direct calculation that the representative points corresponding to these 
particles always define an area in phase space equal to Az<) Ap0. Sketch the phase 
paths, and show for several times t > 0 the shape of the region whose area remains 
constant. 

7-36. Discuss the implications of Liouville's theorem on the focusing of beams of 
charged particles by considering the following simple case. An electron beam of 
circular cross section (radius R0) is directed along the z-axis. The density of elec-
trons across the beam is constant, but the momentum components transverse to 
the beam (px and py) are distributed uniformly over a circle of radius p0 in momen-
tum space. If some focusing system reduces the beam radius from R0 to Ru find the 
resulting distribution of the transverse momentum components. What is the physi-
cal meaning of this result? (Consider the angular divergence of the beam.) 

7-37. Use the method of Lagrange undetermined multipliers to find the tensions in both 
strings of the double Atwood machine of Example 7.8. 

7-38. The potential for an anharmonic oscillator is U = kx2/2 + bx4/4 where k and b are 
constants. Find Hamilton's equations of motion. 

7-39. An extremely limber rope of uniform mass density, mass m and total length b lies on 
a table with a length z hanging over the edge of the table. Only gravity acts on the 
rope. Find Lagrange's equation of motion. 
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7-40. A double pendulum is attached to a cart of mass 2 m that moves without friction on 
a horizontal surface. See Figure 7-D. Each pendulum has length b and mass bob m. 
Find the equations of motion. 

FIGURE 7-D Problem 7-40. 

7-41. A pendulum of length b and mass bob m is oscillating at small angles when the 
length of the pendulum string is shortened at a velocity of a (db/dt = —a). Find 

• Lagrange's equations of motion. 



CHAPTER 

Central-Force Motion 

8.1 Introduction 

The mot ion of a system consisting of two bodies affected by a force directed 
a long the line connec t ing the centers of the two bodies (i.e., a central force) is an 
extremely impor tan t physical p r o b l e m — o n e we can solve completely. T h e im-
por tance of such a p rob lem lies in large measure in two qui te d i f ferent realms of 
physics: the mot ion of celestial bodies—planets , moons , comets, double stars, 
and the l ike—and certain two-body nuclear interactions, such as the scattering 
of a particles by nuclei. In the p requan tum-mechan ics days, physicists also de-
scribed the hydrogen a tom in terms of a classical two-body central force. 
Al though such a description is still useful in a qualitative sense, the quan tum-
theoret ical approach must be used fo r a detai led description. In addi t ion to 
some general considerat ions regard ing mot ion in central-force fields, we discuss 
in this and the following chapter several of the p rob lems of two bodies encoun-
tered in celestial mechanics and in nuclear and particle physics. 

8.2 Reduced Mass 
Describing a system consisting of two particles requires the specification of six 
quantities; fo r example, the three componen t s of each of the two vectors r j and 
r2 for the particles.* Alternatively, we may choose the three componen t s of the 
center-of-mass vector R and the three components of r = r, — r2 (see Figure 8-la) . 
Here , we restrict our a t tent ion to systems without fr ict ional losses and for which 

*The orientation of the particles is assumed to be unimportant ; that is, they are spherically symmet-
ric (or are point particles). 

287 
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R = 0 

(a) (b) 

FIGURE 8-1 Two methods to describe the position of two particles, (a) From an 
arbitrary coordinate system origin, and (b) from the center of mass. 
The position vectors are r! and r2, the center-of-mass vector is R, and 
the relative vector r = r, - r2. 

the potential energy is a funct ion only of r = | rx — r21. The Lagrangian for such 
a system may be written as 

L = I f j l 2 + ^ m 2 | r 2 
2 _ U(r) (8.1) 

Because translational motion of the system as a whole is uninterest ing f rom 
the standpoint of the particle orbits with respect to one another, we may choose 
the origin for the coordinate system to be the particles' center of mass—that is, 
R = 0 (see Figure 8- lb) . T h e n (see Section 9.2) 

mxr\ + »?2r2 = 0 

This equation, combined with r = — r2, yields 

(8.2) 

m9 

mx + m2 

m,i 
(8.3) 

m\ + wi2 

Substituting Equation 8.3 into the expression for the Lagrangian gives 

L = - f i | r | 2 - U(r) (8.4) 

where jx is the reduced mass, 

M = m1 + m2 
(8.5) 

We have therefore formally reduced the problem of the mot ion of two bod-
ies to an equivalent one-body problem in which we must de termine only the mot ion 
of a "particle" of mass /A in the central field described by the potential funct ion 



8.3 CONSERVATION THEOREMS—FIRST INTEGRALS OF THE MOTION 289 

U(r). O n c e we obta in the solution fo r r(/) by applying the Lagrange equa t ions to 
Equa t ion 8.4, we can find the individual mot ions of t he particles, r^(t) a n d r 2 ( t ) , 
by us ing Equa t ion 8.3. This lat ter s tep is n o t necessary if only t he orbits relative 
to o n e a n o t h e r are requ i red . 

8.3 Conservation Theorems— 
First Integrals of the Motion 

T h e system we wish to discuss consists of a part icle of mass /x moving in a central-
force field descr ibed by the po ten t ia l f u n c t i o n U( r). Because the po ten t ia l en-
ergy d e p e n d s only o n the distance of t he part icle f r o m the force cen te r a n d n o t 
on the or ien ta t ion , the system possesses spherical symmetry; tha t is, the system's 
ro ta t ion abou t any fixed axis t h r o u g h the c e n t e r of fo rce c a n n o t affect t he equa-
tions of mot ion . We have already shown (see Section 7.9) that u n d e r such condi-
tions the angula r m o m e n t u m of t he system is conserved: 

F rom this relat ion, it should be clear tha t b o t h t he radius vector a n d the l inear 
m o m e n t u m vector of the part icle lie always in a p l a n e n o r m a l to the angu la r mo-
m e n t u m vector L, which is fixed in space (see Figure 8-2). The re fo re , we have 
only a two-dimensional p rob l em, a n d the Lagrang ian may t hen be convenient ly 
expressed in p l ane po la r coordinates : 

Because the Lagrangian is cyclic in 6, the angu la r m o m e n t u m con juga te to 
t he coo rd ina t e 6 is conserved: 

L = r X p = cons tan t (8.6) 

L = ^ f JL(r 2 + r202) - U(r) (8.7) 

Pe 
dL d dL 
dd dt dO 

(8.8) 

L 

FIGURE 8-2 The motion of a particle of mass /jl moving in a central-force field is 
described by the position vector r, linear momentum p, and constant 
angular momentum L. 
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^ 1 
rd6 \ 

— \ ^ ^ ^ I 
r« 2 ) 

r (t) 

FIGURE 8-3 The path of a particle is described by r (t). The radius vector sweeps out 
an area dA = | r2dff in a time interval dt. 

or 

dL 
pn = —r = u r O = constant 
™ 86 

(8.9) 

The system's symmetry has therefore permit ted us to integrate immediately 
one of the equations of motion. The quantity pe is a first integral of the motion, 
and we denote its constant value by the symbol I: 

I = fjir26 = constant (8.10) 

Note that I can be negative as well as positive. Tha t I is constant has a simple 
geometric interpretation. Referring to Figure 8-3, we see that in describing the 
path r ( t ) , the radius vector sweeps out an area | r 2 d d in a t ime interval dt: 

dA = - r2d0 2 (8.11) 

= ^ ' dt 2 

constant (8.12) 

On dividing by the time interval, the areal velocity is shown to be 

dA 
dt 2' 

_ J_ 
~ 2 fJL 

Thus, the areal velocity is constant in time. This result was obtained empirically 
by Kepler for planetary motion, and it is known as Kepler's Second Law.* It is 
impor tant to note that the conservation of the areal velocity is no t limited to an 
inverse-square-law force (the case for planetary motion) bu t is a general result 
for central-force motion. 

Because we have eliminated f rom consideration the uninterest ing uni form 
motion of the system's center of mass, the conservation of l inear m o m e n t u m 
adds nothing new to the description of the motion. T h e conservation of energy 
is thus the only remaining first integral of the problem. T h e conservation of the 

""Published by Johannes Kepler (1571-1630) in 1609 after an exhaustive study of the compilations 
made by Tycho Brahe (1546-1601) of the positions of the planet Mars. Kepler's First Law deals with 
the shape of planetary orbits (see Section 8.7). 
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total energy E is automatically ensured because we have limited the discussion to 
nondissipative systems. Thus, 

and 

T + U = E = constant 

E = -fji(r2 + r202) + U{r) 

(8.13) 

or 

1 1 I2 
E = + o — + U(r) 

2 2 jxr1 (8.14) 

8.4 Equations of Motion 

When U(r) is specified, Equation 8.14 completely describes the system, and the 
integration of this equation gives the general solution of the problem in terms of 
the parameters £ and I. Solving Equation 8.14 for f, we have 

. dr 2 12 

This equation can be solved for dt and integrated to yield the solution t = t(r). 
An inversion of this result then gives the equation of mot ion in the standard 
form r = r(t). At present, however, we are interested in the equation of the path 
in terms of r a n d 8. We can write 

dd dt 8 
d6 = dr = - dr (8.16) 

dt dr r 

Into this relation, we can substitute 6 = l/pur2 (Equation 8.10) and the expres-
sion for f f rom Equation 8.15. Integrating, we have 

f ± (l/r2)dr 
e ( r ) = I ; , ^ (8-17) 

E - U -M \ 2 f i r ' 

Fur thermore, because I is constant in time, 8 cannot change sign and there-
fore 8(t) must increase or decrease monotonically with time. 

Although we have reduced the problem to the formal evaluation of an inte-
gral, the actual solution can be obtained only for certain specific forms of the 
force law. If the force is proport ional to some power of the radial distance, 
F(r) oc r", then the solution can be expressed in terms of elliptic integrals for 
certain integer and fractional values of n. Only for n = 1, —2, and —3 are the so-
lutions expressible in terms of circular functions (sines and cosines).* The case 

*See, for example, Goldstein (Go80, pp. 88-90). 
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n = 1 is jus t that of the harmonic oscillator (see Chapter 3), and the case n = — 2 
is the impor tant inverse-square-law force treated in Sections 8.6 a n d 8.7. These 
two cases, n = 1, —2, are of pr ime impor tance in physical situations. Details of 
some other cases of interest will be f o u n d in the problems at the e n d of this 
chapter. 

We have therefore solved the problem in a formal way by combining the 
equations that express the conservation of energy and angular m o m e n t u m into 
a single result, which gives the equat ion of the orbit 6 = 9(r). We can also attack 
the problem using Lagrange's equat ion for the coordinate r: 

dL _ dL _ 
dr dt dr 

Using Equation 8.7 for L, we find 

H(r- rd2) = = F(r) (8.18) 
dr 

Equation 8.18 can be cast in a fo rm more suitable for certain types of calcu-
lations by making a simple change of variable: 

1 
u = — 

r 

First, we compute 

du _ 1 dr _ 1 dr dt _ I f 
~d0~ ~ ~ ^~dt~d0~ ~ r2]) 

But f rom Equation 8.10, 6 = l /f ir2 , so 

Next, we write 

du _ /J<. 
~d0~ ~ 1T 

d2u _ d ( n• A _ dt d I 
Hb2 ~ dd \ 7v dedt\ 17 w r 

and with the same substitution for 6, we have 

d2U _ fJb2 g .. 

— - ~jr*r 

Therefore , solving for f and rO2 in terms of u, we find 

dd2 

rd2 = — w 
12 3 

(8.19) 
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Substituting Equat ion 8.19 in to Equat ion 8.18, we obtain the t ransformed 
equation of motion: 

d?u 
dB2 + u 

IX 1 
P u2 F ( l / U ) 

which we may also write as 

(8.20) 

(8.21) 

This fo rm of the equation of mot ion is particularly useful if we wish to f ind the 
force law that gives a particular known orbit r = r(6). 

EXAMPLE 8.1 

Find the force law for a central-force field that allows a particle to move in a 
logarithmic spiral orbit given by r = kea9, where k and a are constants. 

Solution. We use Equation 8.21 to de termine the force law F( r). First, we 
determine 

A (eZle 

dd\k 
A (I 
dd \r 

AL (l 
dO2 \r 

From Equation 8.21, we now determine F(r). 

F(r) = —s(a2+\) 
fxr3 

Thus, the force law is an attractive inverse cube. 

(8.22) 

EXAMPLE 8.2 

Determine r(t) and 9(t) for the problem in Example 8.1. 

Solution. From Equation 8.10, we f ind 

I I 
e 

Rearranging Equation 8.23 gives 

H.r2 n,k2e ,2 aB 
(8.23) 

e2aed6 = —vdt 
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and integrating gives 

„2 aS 

2 a /u,*2 + C' 

where C' is an integration constant. Multiplying by 2a and letting C = 2aC' 
gives 

9 « Zalt 

We solve for 6(t) by taking the natural logari thm of Equation 8.24: 

1 2 alt 

We can similarly solve for r(t) by examining Equations 8.23 and 8.24: 

2 alt 
ft2 

r(t) = 

+ C 

1/2 

(8.24) 

(8.25) 

(8.26) 

The integration constant C and angular m o m e n t u m I needed for Equations 
8.25 and 8.26 are de termined f rom the initial conditions. 

EXAMPLE 8.3 

What is the total energy of the orbit of the previous two examples? 

Solution. The energy is found f rom Equat ion 8.14. In particular, we need r 
and U(r). 

U(r) = -
+ /2 

Fdr= (a2 + 1) | r~3dr 
f 1 

l2(a2 + 1) 1 
u<r) = ~ 1 " i 2/x rl 

where we have let f/(°°) = 0. 
We rewrite Equation 8.10 to de termine f: 

6 
dB _ dB dr _ 1 
dt dr dt /AT2 

dr I I al 
r = : = akeM—- = — 

dd fir2 fir2 fir 

(8.27) 

(8.28) 
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Subst i tu t ing Equa t ions 8.27 a n d 8.28 in to E q u a t i o n 8.14 gives 

2 " " W 2/xr2 r2 

E = 0 (8.29) 

T h e total ene rgy of the orb i t is zero if U(r = 00) = 0. 

8.5 Orbits in a Central Field 
T h e radial velocity of a par t ic le moving in a cen t ra l f ie ld is given by Equa t ion 
8.15. This e q u a t i o n indicates tha t f vanishes at t h e roo ts of t h e radical , tha t is, at 
points fo r which 

E ~ U{r) ~ 2 ^ = ° (8'30) 

T h e vanish ing of f implies tha t a turning point in the m o t i o n has b e e n r e a c h e d 
(see Sect ion 2.6). In genera l , Equa t ion 8.30 possesses two roots: rmax a n d rmin. 
T h e m o t i o n of t h e par t ic le is t h e r e f o r e c o n f i n e d to the a n n u l a r r eg ion specif ied 
by rmax > r S rmin. Cer ta in combina t i ons of t h e po ten t i a l f u n c t i o n U(r) and. t he 
p a r a m e t e r s £ a n d I p r o d u c e only a single r o o t f o r Equa t ion 8.30. In such a case, 
f = 0 fo r all values of t h e time; h e n c e , r = cons tan t , a n d t h e o rb i t is circular. 

If t he m o t i o n of a par t ic le in the po ten t i a l U(r) is per iodic , t h e n the orb i t is 
closed,-, tha t is, a f t e r a f in i te n u m b e r of excurs ions be tween the radial limits rmin 

a n d rmax, t he m o t i o n exactly repea t s itself. But if t h e o rb i t does n o t close o n itself 
af ter a finite n u m b e r of oscillations, t h e o rb i t is said to be open (Figure 8-4). 
F rom Equa t ion 8.17, we can c o m p u t e t h e c h a n g e in t h e ang le Q tha t results f r o m 
o n e c o m p l e t e transit of r f r o m rmin to rmax a n d back to rmln. Because t h e m o t i o n is 

FIGURE 8-4 An orbit that does not close on itself after a finite number of oscillations 
is said to be open. 
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symmetr ic in t ime, this angu l a r c h a n g e is twice t ha t which would result f r o m t h e 
passage f r o m rmin to rmax; t hus 

(l/r2) dr 
AO = 2 (8.31) 

T h e p a t h is c losed only if A6 is a ra t iona l f r ac t ion of 2TT—that is, if AO = 2TT • 
( a / b ) , w h e r e a a n d b a r e integers . U n d e r these condi t ions , a f t e r b pe r iods the 
radius vector of t h e par t ic le will have m a d e a c o m p l e t e revolu t ions a n d will have 
r e t u r n e d to its or ig inal pos i t ion. We can show (see P r o b l e m 8-35) tha t if t h e po-
tential varies with s o m e in t ege r power of t h e radia l d is tance, U(r) oc r m + 1 , t h e n a 
closed nonc i r cu l a r p a t h can resul t only* if n = —2 o r + 1 . T h e case n = — 2 cor-
r e sponds to a n inverse-square-law f o r c e — f o r example , t h e gravitat ional o r elec-
trostatic force . T h e n — +1 case c o r r e s p o n d s to t h e h a r m o n i c oscillator po ten -
tial. For the two-dimensional case discussed in Sect ion 3.4, we f o u n d tha t a 
closed p a t h fo r t h e m o t i o n resul ted if t h e ra t io of the angu l a r f r equenc i e s f o r 
the x a n d y m o t i o n s were ra t ional . 

8.6 Centrifugal Energy and the Effective Potential 
In the p r eced ing expressions fo r f, Ad, a n d so fo r th , a c o m m o n t e rm is the radical 

I2 

£ - U-
2\xrl 

T h e last t e rm in t h e radical has t h e d imens ions of ene rgy a n d , a cco rd ing to 
Equa t ion 8.10, can also b e wri t ten as 

12 1 
— = - f J i ^ d 2 

2 fir2 2' 

If we i n t e r p r e t this quant i ty as a "potent ia l energy," 

2/JLT2 

t h e n the "force" tha t m u s t be associated with Ur is 

= (8.32) 

9UC 12 

Fc = - — c = — = iird2 (8.33) 
or fjur3 

*Certain fractional values of n also lead to closed orbits, but in general these cases are uninteresting 
from a physical standpoint. 
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This quantity is traditionally called the centrifugal force,* a l though it is not a 
force in the ordinary sense of the word.* We shall, however, cont inue to use this 
unfor tuna te terminology, because it is customary and convenient. 

We see that the term P/2fJbr2 can be in terpre ted as the centrifugal potential en-
ergy of the particle and, as such, can be included with U(r) in an effective potential 
energy def ined by 

(8.34) 

V(r) is therefore a fictitious potential that combines the real potential funct ion 
U(r) with the energy term associated with the angular mot ion about the center 
of force. For the case of inverse-square-law central-force motion, the force is 
given by 

F(r) = - 4 (8-35) 

f rom which 

U(r) = - j F(r) dr = -~r (8.36) 

The effective potential funct ion for gravitational attraction is therefore 

yW = - \ + <8-37) r 2[xr2 

This effective potential and its components are shown in Figure 8-5. The value of 
the potential is arbitrarily taken to be zero at r = (This is implicit in Equation 
8.36, where we omitted the constant of integration.) 

We may now draw conclusions similar to those in Section 2.6 on the motion 
of a particle in an arbitrary potential well. If we plot the total energy E of the par-
ticle on a diagram similar to Figure 8-5, we may identify three regions of interest 
(see Figure 8-6). If the total energy is positive or zero (e.g., ^ 0), then the mo-
tion is unbounded ; the particle moves toward the force center (located at r = 0) 
f rom infinitely far away until it "strikes" the potential barrier at the turning point 
r = r x and is reflected back toward infinitely large r. Note that the height of the 
constant total energy line above V(r) at any r, such as r5 in Figure 8-6, is equal to 
i/nr2. Thus the radial velocity r vanishes and changes sign at the turning point 
(or points). 

*The expression is more readily recognized in the form Fc = mrui2. The first real appreciation of cen-
trifugal force was by Huygens, who made a detailed examination in his study of the conical pendu-
lum in 1659. 
fSee Section 10.3 for a more critical discussion of centrifugal force. 
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the real potential —k/rterm and the centrifugal potential energy 
/2/2/xr2. 

FIGURE 8-6 We can tell much about motion by looking at the total energy £ on a 
potential energy plot. For example, for energy El the particle's motion 
is unbounded. For energy £ 2 the particle is bounded with r2 < r < r4. 
For energy E3 the motion has r = r3 and is circular. 
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- 1 0 
6 8 10 12 14 

Distance between nuclei centers (10-15 m) 
FIGURE 8-7 The total potential (coulomb, nuclear, and centrifugal) for scattering 28Si 

nuclei from 12C for various angular momentum / values as a function of 
distance between nuclei. For I = 20h a shallow pocket exists where the 
two nuclei may be bound together for a short time. For I = 25h the 
nuclei are not bound together. 

If the total energy is negative* and lies between zero and the min imum 
value of V(r), as does £ 2 , then the mot ion is bounded , with r2 < r < r4. The val-
ues r2 and r4 are the turning points, or the apsidal distances, of the orbit. If E 
equals the min imum value of the effective potential energy (see £ 3 in Figure 8-6), 
then the radius of the pardcle's pa th is limited to the single value r3, and then 
f = 0 for all values of the time; hence the mot ion is circular. 

Values of E less than Vmin = — (fi$/2l2) do no t result in physically real mo-
tion; for such cases f 2 < 0 and the velocity is imaginary. 

The methods discussed in this section are of ten used in present-day research 
in general fields, especially atomic, molecular, and nuclear physics. For example, 
Figure 8-7 shows effective total nucleus-nucleus potentials for the scattering of 
28Si and 12C. The total potential includes the coulomb, nuclear, and the centrifu-
gal contributions. The potential for I = Oh indicates the potential with no cen-
trifugal term. For a relative angular m o m e n t u m value of I = 20h, a "pocket" ex-
ists where the two scattering nuclei may be b o u n d together (even if only for a 
short time). For I = 25h, the centrifugal "barrier" dominates, and the nuclei can-
not form a b o u n d state at all. 

*Note that negative values of the total energy arise only because of the arbitrary choice of V(r) = 0 at 
r = 
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8.7 Planetary Motion—Kepler's Problem 
The equation for the pa th of a particle moving u n d e r the inf luence of a central 
force whose magni tude is inversely proport ional to the square of the distance be-
tween the particle and the force center can be obtained (see Equation 8.17) f rom 

(l/r2) dr 
0(r) + constant 

2fi[E + 

(8.38) 

The integral can be evaluated if the variable is changed t o a = l/r (see Problem 
8-2). If we define the origin of 6 so that the min imum value of r is at 6 = 0, we 
find 

cos 6 
4 - i - i fxk r 

1 + 
2 El2 

pk 2 

(8.39) 

Let us now define the following constants: 

I2 

a = 
/jik 

1 + 
2 El2 

(JL& , 

(8.40) 

Equation 8.39 can thus be written as 

— = 1 + e cos 6 
r (8.41) 

This is the equation of a conic section with one focus at the origin.* T h e quan-
tity e is called the eccentricity, and 2a is termed the latus rectum of the orbit. 
Conic sections are fo rmed by the intersection of a plane and a cone. A conic sec-
tion is formed by the loci of points ( formed in a plane) , where the ratio of the 
distance f rom a fixed point ( the focus) to a fixed line (called the directrix) is a 
constant. The directrix for the parabola is shown in Figure 8-8 by the vertical 
dashed line, drawn so that r/r' = 1. 

The minimum value for r in Equation 8.41 occurs when 6 = 0, or when cos 6 
is a maximum. Thus the choice of the integration constant in Equation 8.38 cor-
responds to measuring 6 f rom rmin, which position is called the pericenter; rmax 

corresponds to the apocenter. The general term for turning points is apsides. 
The corresponding terms for mot ion about the Sun are perihelion and aphelion, 
and for motion about Earth, perigee and apogee. 

•Johann Bernoulli (1667-1748) appears to have been the first to prove that all possible orbits of a 
body moving in a potential proportional to 1 / r are conic sections (1710). 
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eccentricities e. 

Various values of the eccentricity (and hence of the energy E) classify the or-
bits according to different conic sections (see Figure 8-8): 

8 > 1, E > 0 Hyperbola 
e = 1, E = 0 Parabola 
0 < b < 1, Vmin< E< 0 Ellipse 
e = 0, E = Circle 

For planetary motion, the orbits are ellipses with major and minor axes 
(equal to 2a and 2b, respectively) given by 

a k 
(8.42) 

1 — e2 2 | £ | 

a I 

V l - s 2 V 2 M 
(8.43) 

Thus, the major axis depends only on the energy of the particle, whereas the 
minor axis is a funct ion of both first integrals of the motion, £ a n d I. The geometry 
of elliptic orbits in terms of the parameters a, e, a, and b is shown in Figure 8-9; P 
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FIGURE 8-9 The geometry of elliptic orbits is shown in terms of parameters a, e, a, 
and b. Pand P' are the foci. 

and P' are the foci. From this diagram, we see that the apsidal distances (rmin and 
rmax as measured f rom the foci to the orbit) are given by 

rmm = «(1 - s) = 

'max = «(1 + e) = 

a 
1 + e 

a 
1 - e 

(8.44) 

To find the period for elliptic motion, we rewrite Equation 8.12 for the areal 
velocity as 

2(JL 
dt = — dA 

Because the entire area A of the ellipse is swept out in one complete period T, 

2/A 
dt = ~~ 

o I 
dA 

^ A 
t = T a (8.45) 

The area of an ellipse is given by A = 7Tab, and using a and b f rom Equations 
8.42 and 8.43, we find 

2 ijl 2 [1. k I 
T — — • 7Tab — — • TT • —;—7 • —. 

I I 2 | £ | V 2 M 

= TTk^ / — • | £ | ~ 3 / 2 (8.46) 

We also note f rom Equations 8.42 and 8.43 that the semiminor axis* can be 
written as 

= V aa (8.47) 

*The quantities a and b are called semimajor and semiminor axes, respectively. 
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Therefore , because a = P/fik, the per iod r can also be expressed as 

4-7T2/X 
(8.48) 

This result, that the square of the per iod is proport ional to the cube of the 
semimajor axis of the elliptic orbit, is known as Kepler's Third Law.* Note that 
this result is concerned with the equivalent one-body problem, so account must 
be taken of the fact that it is the reduced mass /x that occurs in Equation 8.48. 
Kepler actually concluded that the squares of the periods of the planets were 
proport ional to the cubes of the major axes of their orbits—with the same pro-
portionality constant for all planets. In this sense, the statement is only approxi-
mately correct, because the reduced mass is different for each planet. In particu-
lar, because the gravitational force is given by 

Gm^ k 
F(r) = - = - -

we identify k = Gml m2. The expression for the square of the per iod therefore 
becomes 

477-V 4 7 r V _ „ _ 
r2 = — = , Ad « m2 (8.4-9) 

G(wj + m2) Gm2 

and Kepler's s tatement is correct only if the mass m1 of a planet can be neglected 
with respect to the mass w2 of the Sun. (But note, for example, that the mass of 
Jupi ter is about 1 /1000 of the mass of the Sun, so the depar ture f rom the ap-
proximate law is no t difficult to observe in this case.) 

Kepler's laws can now be summarized: 

I. Planets move in elliptical orbits about the Sun with the Sun at one focus. 

II. The area per unit time swept out by a radius vector from the Sun to a planet is 
constant. 

III. The square of a planet's period is proportional to the cube of the major axis of the 
planet's orbit. 

See Table 8-1 for some properties of the principal objects in the solar system. 

*Published by Kepler in 1619. Kepler's Second Law is stated in Section 8.3. The First Law (1609) dic-
tates that the planets move in elliptical orbits with the Sun at one focus. Kepler's work preceded by 
almost 80 years Newton's enunciation of his general laws of motion. Indeed, Newton's conclusions 
were based to a great extent on Kepler's pioneering studies (and on those of Galileo and Huygens). 
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TABLE 8-1 Some Properties of the Principal Objects in the Solar System 

Semimajor axis of orbit Mass (in units of 
Name (in astronomical units") Period (yr) Eccentricity Earth's mass6) 

Sun — 332,830 
Mercury 0.3871 0.2408 0.2056 0.0552 
Venus 0.7233 0.6152 0.0068 0.814 
Earth 1.0000 1.0000 0.0167 1.000 
Eros (asteroid) 1.4583 1.7610 0.2229 2 X 10"9 (?) 
Mars 1.5237 1.8809 0.0934 0.1074 
Ceres (asteroid) c 4.6035 0.0789 1/8000 (?) 
Jupiter 5.2028 c 0.0483 317.89 
Saturn 9.5388 29.456 0.0560 c 
Uranus 19.191 84.07 0.0461 14.56 
Neptune 30.061 164.81 0.0100 17.15 
Pluto 39.529 248.53 0.2484 0.002 
Halley (comet) 18 76 0.967 ~io- ] 0 

a One astronomical unit (A.U.) is the length of the semimajor axis of Earth's orbit. O n e A.U. = 1.495 X 1011 m = 
93 X 106 miles. 
b Earth's mass is approximately 5.976 X 1024 kg. 
f See Problem 8-19. 

EXAMPLE 8.4 

Halley's comet, which passed a round the sun early in 1986, moves in a highly el-
liptical orbit with an eccentricity of 0.967 and a period of 76 years. Calculate its 
min imum and maximum distances f rom the Sun. 

Solution. Equation 8.49 relates the period of mot ion with the semimajor axes. 
Because m (Halley's comet) <sC mSun, 

Gm Sun ' 
•2\ 1/3 

4tt2 

6.67 X 10 , -n Nm 2 

kg2 (1.99 X 1030 kg) I 76 yr 
365 day 24 h r 3600 s 

yr day h r 

1/3 

4tt2 

a = 2.68 x 1012 m 

Using Equation 8.44, we can determine rmin and rmax. 

rmin = 2.68 X 1012 m ( l - 0.967) = 8.8 X 1010 m 
rmax = 2.68 X 1012 m ( l + 0.967) = 5.27 X 1012 m 

This orbit takes the comet inside the path of Venus, almost to Mercury's orbit, 
and out past even the orbit of Neptune and sometimes even to the moderately 
eccentric orbit of Pluto. Edmond Halley is generally given the credit for bringing 
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Newton's work on gravitational and central forces to the at tention of the world. 
After observing the comet personally in 1682, Halley became interested. Partly 
as a result of a bet between Christopher Wren and Robert Hooke, Halley asked 
Newton in 1684 what paths the planets must follow if the Sun pulled them with 
a force inversely proport ional to the square of their distances. To the astonish-
ment of Halley, Newton replied, "Why, in ellipses, of course." Newton had 
worked it out 20 years previously but had no t published the result. With 
painstaking effort, Halley was able in 1705 to predict the next occurrence of the 
comet, now bearing his name, to be in 1758. 

8.8 Orbital Dynamics 
The use of central-force motion is nowhere more useful, important , and inter-
esting than in space dynamics. Although space dynamics is actually quite com-
plex because of the gravitational attraction of a spacecraft to various bodies and 
the orbital motion involved, we examine two ra ther simple aspects: a proposed 
trip to Mars and flybys past comets and planets. 

Orbits are changed by single or multiple thrusts of the rocket engines. The 
simplest maneuver is a single thrust applied in the orbital p lane that does not 
change the direction of the angular m o m e n t u m bu t does change the eccentric-
ity and energy simultaneously. T h e most economical m e t h o d of interplanetary 
transfer consists of moving f rom one circular heliocentric (Sun-oriented mo-
tion) orbit to another in the same plane. Earth and Mars represent such a system 
reasonably well, and a H o h m a n n transfer (Figure 8-10) represents the path of 
min imum total energy expenditure.* Two engine burns are required: (1) the 
first bu rn injects the spacecraft f rom the circular Earth orbit to an elliptical 
transfer orbit that intersects Mars' orbit; (2) the second b u r n transfers the space-
craft f rom the elliptical orbit into Mars' orbit. 

We can calculate the velocity changes needed for a H o h m a n n transfer by 
calculating the velocity of a spacecraft moving in the orbit of Earth a round the 
Sun (rj in Figure 8-10) and the velocity needed to "kick" it into an elliptical 
transfer orbit that can reach Mars' orbit. We are considering only the gravita-
tional attraction of the Sun and no t that of Earth and Mars. 

For circles and ellipses we have, f rom Equation 8.42, 

For a circular path a round the Sun, this becomes 

E = 
2n 

(8.50) 

*See Kaplan (Ka76, Chapter 3) for the proof. Walter Hohmann, a German pioneer in space travel 
research, proposed in 1925 the most energy-efficient method of transferring between elliptical 
(planetary) orbits in the same plane using only two velocity changes. 
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Mars at arrival 

where we have E = T+ U. We solve Equat ion 8.50 fo r i^: 

vi = J — (8.51) 
V 

We deno te the semimajor axis of the t ransfer ellipse by at: 

2 at - rx + r2 

If we calculate the energy at the per ihel ion fo r the transfer ellipse, we have 

= = (8.52) rj + r2 2 n 

where % is the per ihel ion t ransfer speed. T h e direct ion of vn is a long v, in 
Figure 8-10. Solving Equat ion 8.52 for vn gives 

v mrv + r 2 / 

T h e speed transfer Lvx n e e d e d is jus t 

At̂  = vn - V, (8.54) 

Similarly, for the t ransfer f r o m the ellipse to the circular orbi t of radius r2, 
we have 

Av2 = v2 — vt2 (8.55) 
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where 

v9 
k 

mr2 

and 

Vtl 
r% 

V»= l 2 k 

mr2 \ rx + r2 

(8.56) 

(8.57) 

The direction of vn is along v2 in Figure 8-10. The total speed increment can be 
de termined by adding the speed changes, Av = A ^ + A«2. 

The total time required to make the transfer Tt is a half-period of the trans-
fer orbit. From Equation 8.48, we have 

T, = 

m 
Tt= TTj-ar (8.58) 

EXAMPLE 8.5 

Calculate the time needed for a spacecraft to make a H o h m a n n transfer f rom 
Earth to Mars and the heliocentric transfer speed required assuming both 
planets are in coplanar orbits. 

Solution. We need to insert the appropriate constants in Equation 8.58. 

m m 
k GmM<. 

1 

Sun GM 'Sun 

(6.67 x 1 0 ^ n m3/s2 • kg) (1.99 x 1030kg) 

= 7.53 x 10"21 s2 /m3 (8.59) 

Because k/ m occurs so often in solar system calculations, we write it as well. 

- = 1.33 X 1020 m3/s2 

m 

at ~ ^ ^ E a r t h - S u n + r M a r s - S u n ) 

= ^(1.50 X 1011 m + 2.28 X 1 0 n m ) 

= 1.89 X 1011 m 
T, = 7r(7.53 x 10^21 s2 /m3)1 / 2(1.89 x 1 0 n m ) 3 / 2 

= 2.24 X 107s 
= 259 days (8.60) 
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T h e hel iocentr ic speed ne ed ed for the t ransfer is given in Equat ion 8.53. 

vt\ = 
2(1.33 x 10 2 0m 3 / s 2 ) (2 .28 X 1 0 n m ) " 1/2 

(1.50 x 1011 m) (3.78 X 1 0 n m ) 

= 3.27 X 104 m / s = 32.7 k m / s 

We can compare vn with the orbital speed of Ear th (Equat ion 8.51). 

1.33 X 1020 m3/s2~ 
Vl 1.50 X 1011 m 

1/2 

= 29.8 km/s 

For transfers to the ou te r planets, the spacecraft should be l aunched in the 
direction of Earth 's orbi t in o rder to gain Earth 's orbital velocity. To transfer to 
the inne r planets (e.g., to Venus), the spacecraft should be l aunched opposi te 
Earth 's mot ion . In each case, it is the relative velocity A that is impor tan t to the 
spacecraft (i.e., relative to Ear th) . 

Al though the H o h m a n n transfer pa th represents the least energy expendi-
ture, it does n o t represen t the shortest time. For a r o u n d trip f r o m Ear th to 
Mars, the spacecraft would have to r emain o n Mars fo r 460 days unti l Ear th a n d 
Mars were posi t ioned correctly fo r the r e tu rn trip (see Figure 8-1 l a ) . T h e total 
trip (259 + 460 + 259 = 978 days = 2.7 yr) would probably be too long. O t h e r 
schemes ei ther use m o r e fue l to gain speed (Figure 8-1 l b ) or use the slingshot 
effect of flybys. Such a flyby mission past Venus (see Figure 8-1 l c ) could be d o n e 
in less than 2 years with only a few weeks nea r (or on) Mars. 

Several spacecraft in recent years have escaped Earth 's gravitational attrac-
tion to explore ou r solar system. Such interplanetary transfer can be divided 
into three segments: (1) the escape f r o m Earth, (2) a hel iocentr ic t ransfer to the 
area of interest, and (3) an encoun te r with a n o t h e r body—so far, e i ther a p lane t 
or a comet . T h e spacecraft fuel r equ i red for such missions can be enormous , bu t 
a clever trick has b e e n designed to "steal" energy f r o m o the r solar system bodies. 
Because the mass of a spacecraft is so m u c h smaller t han the planets (or their 
moons) , the energy loss of the heavenly body is negligible. 

We examine a simple version of this flyby or slingshot effect that utilizes 
gravity assist. A spacecraft coming f r o m infinity approaches a body (labeled B), 
interacts with B, and recedes. The pa th is a hyperbola (Figure 8-12). T h e initial 
and final velocities, with respect to B, are d e n o t e d by v\ a n d v'j, respectively. T h e 
ne t effect on the spacecraft is a deflect ion angle of 8 with respect to B. 

If we examine the system in some inertial f r a m e in which the mot ion of B oc-
curs, the velocities of the spacecraft can be qui te d i f fe ren t because of the motion of 
B. T h e initial velocity v{ is shown in Figure 8-13a, and b o t h v{ and vf a re shown in 
Figure 8-13b. Notice tha t the spacecraft has increased its speed as well as 
changed its direct ion. An increase in velocity occurs when the spacecraft passes 
behind B's d i rect ion of mot ion. Similarly, a decrease in velocity occurs when the 
spacecraft passes in front of B's mot ion . 

Dur ing the 1970s, scientists at the J e t Propuls ion Laboratory of the National 
Aeronautics and Space Administrat ion (NASA) realized that the fou r largest 
planets of ou r solar system would be in a for tui tous posit ion to allow a spacecraft 
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1. Earth departure 

1. Earth departure 
2. Mars arrival 
3. Mars departure 
4. Venus passage 
5. Earth arrival 

(c) 
FIGURE 8-11 Round trips from Earth to Mars, (a) The minimum energy mission 

(Hohmann transfer) requires a long stopover on Mars before returning 
to Earth, (b) A shorter mission to Mars requires more fuel and a closer 
orbit to the Sun. (c) The fuel required for the shorter mission of (b) can 
be further improved if Venus is positioned for a gravity assist during flyby. 

to fly past t h e m a n d many of their 32 known m o o n s in a single, relatively shor t 
"Grand Tour" mission using the gravity-assist m e t h o d jus t discussed. This oppor-
tunity of the planets ' a l ignment would n o t occur again fo r 175 years. Because of 
budge t constraints, the re was n o t time to develop the new technology needed , 
and a mission to last only 4 years to visit jus t Jup i t e r a n d Saturn was approved 
and p lanned . N o special e q u i p m e n t was pu t on board the twin Voyager space-
crafts for an encoun te r with Uranus and Nep tune . Voyagers 1 and 2 were 
l aunched in 1977 for visits to Jup i t e r in 1979 and Saturn in 1980 (Voyager 1) and 

{Voyager 2). Because of the success of these visits to Jup i t e r a n d Saturn, 
f u n d i n g was later approved to ex tend Voyager 2 's mission to include Uranus and 
Neptune . T h e Voyagers a re now o n their way ou t of ou r solar system. 

The path of Voyager 2 is shown in Figure 8-14. The slingshot effect of gravity al-
lowed the path of Voyager 2 to be redirected, for example, toward Uranus as it 
passed Saturn by the me thod shown in Figure 8-12. The gravitational attraction 
f rom Saturn was used to pull the spacecraft off its straight pa th and redirect it at a 
different angle. The effect of the orbital motion of Sa tum allows an increase in the 
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FIGURE 8-12 A spacecraft flies by a large body B (like a planet) and gains speed when 
it flies behind B's direction of motion. Similarly, the spacecraft loses 
speed when it passes in front of B's direction of motion. The direction 
of the spacecraft also changes. 

(a) 

(b) 

FIGURE 8-13 The vectors v,' and v'/ are the initial and final velocities of the spacecraft 
with respect to B. The vectors v, and \f are the velocities in an inertial 
frame, (a) v, = vB + v,'. (b) Vy = vB + vj. 

spacecraft's speed. It was only by using this gravity-assist technique that the spectac-
ular mission of Voyager 2-was made possible in only a brief 12-year period. Voyager 2 
passed Uranus in 1986 and Nep tune in 1989 before proceeding into interstellar 
space in one of the most successful space missions ever under taken. Most planetary 
missions now take advantage of gravitational assists; for example, the Galileo satel-
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FIGURE 8-14 Voyager 2 was launched in 1977 and passed by Jupiter, Saturn, Uranus, 
and Neptune. Gravitational assists were used in the mission. 

FIGURE 8-15 The NASA spacecraft initially called ISEE-3 was reprogrammed to be the 
International Cometary Explorer and was sent on a spectacular three-year 
journey utilizing gravity assists on its way by the Comet Giacobini-Zinner. 

lite, which pho tographed the spectacular collisions of the Shoemaker-Levy comet 
with Jupi ter in 1994 and reached Jupi ter in 1995, was launched in 1989 but went by 
Earth twice (1990 and 1992) as well as Venus (1990) to gain speed and redirection. 

A spectacular display of flybys occur red in the years 1982-1985 by a space-
craft initially called the In ternat ional Sun-Earth Explorer 3 (ISEE-3). L a u n c h e d 
in 1978, its mission was to moni to r the solar wind between the Sun and Earth. 
For 4 years, the spacecraft circled in the ecliptical p lane abou t 2 million miles 
f r o m Earth. In 1982—because the Uni ted States had dec ided no t to part icipate 
in a j o i n t European , Japanese , and Soviet spacecraft investigation of Halley's 
comet in 1986—NASA decided to r ep rogram the ISEE-3, r e n a m e d it the 
International Cometary Explorer (ICE), and sent it t h rough the Giacobini-Zinner 
comet in Sep tember 1985, some 6 m o n t h s be fo re the flybys of o ther spacecraft 
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with Halley's comet . T h e subsequent three-year j o u r n e y of ICE was spectacular 
(Figure 8-15). The pa th of ICE inc luded two close trips to Ear th and five flybys of 
the m o o n a long its billion-mile trip to the comet . Dur ing o n e flyby, the satellite 
came within 75 miles of the lunar surface. T h e ent ire pa th could be p l anned 
precisely because the force law is very well known. The eventual interact ion with 
the comet , some 44 million miles f r o m Earth, inc luded a 20-minute trip t h rough 
the comet—about 5,000 miles b e h i n d the comet 's nucleus. 

8.9 Apsidal Angles and Precession (Optional) 
If a particle executes bounded , noncircular mot ion in a central-force field, then the 
radial distance f rom the force center to the particle must always be in the range 
rmax — r — rmin! that is, r must be b o u n d e d by the apsidal distances. Figure 8-6 indi-
cates that only two apsidal distances exist for b o u n d e d , noncircular mot ion . But 
in executing one complete revolution in 6, the particle may n o t r e tu rn to its orig-
inal position (see Figure 8-4). T h e angular separation between two successive val-
ues of r = rmax depends on the exact na tu re of the force. T h e angle between any 
two consecutive apsides is called the apsidal angle, and because a closed orbit 
must be symmetric about any apsis, it follows that all apsidal angles for such mot ion 
mus t be equal . T h e apsidal ang le fo r elliptical mo t ion , fo r example , is j u s t TT. 
If the orbit is no t closed, the particle reaches the apsidal distances at d i f ferent 
points in each revolution; the apsidal angle is n o t then a rat ional f ract ion of 2TT, 
as is requi red for a closed orbit. If the orbit is almost closed, the apsides precess, or 
rotate slowly in the plane of the motion. This effect is exactly analogous to the slow 
rotation of the elliptical mot ion of a two-dimensional ha rmonic oscillator whose 
natural frequencies for the x and y motions are almost equal (see Section 3.3). 

Because an inverse-square-law force requires that all elliptical orbits be ex-
actly closed, the apsides must stay fixed in space fo r all t ime. If the apsides move 
with time, however slowly, this indicates that the force law u n d e r which the body 
moves does n o t vary exactly as the inverse square of the distance. This impor t an t 
fact was realized by Newton, who po in ted ou t that any advance o r regression of a 
planet 's per ihel ion would require the radial d e p e n d e n c e of the force law to be 
slightly d i f ferent f r o m l / r 2 . Thus , Newton argued, the observation of the t ime 
d e p e n d e n c e of the per ihel ia of the planets would be a sensitive test of the valid-
ity of the fo rm of the universal gravitation law. 

In poin t of fact, fo r planetary mot ion within the solar system, o n e expects 
that, because of the per turba t ions in t roduced by the existence of all the o the r 
planets, the force exper ienced by any p lane t does no t vary exactly as l / r 2 , if r is 
measured f r o m the Sun. This effect is small, however, and only slight variations 
of planetary perihelia have been observed. The perihelion of Mercury, for example, 
which shows the largest effect, advances only about 574" of arc per century.* 
Detailed calculations of the influence of the other planets on the mot ion of 

*This precession is in addition to the general precession of the equinox with respect to the "fixed" 
stars, which amounts to 5025.645" ± 0.050" per century. 
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Mercury predict that the rate of advance of the perihelion should be approximately 
531" per century. The uncertainties in this calculation are considerably less than 
the difference of 43" between observation and calculation,* and for a considerable 
time, this discrepancy was the outstanding unresolved difficulty in the Newtonian 
theory. We now know that the modification introduced into the equation of motion 
of a planet by the general theory of relativity almost exactly accounts for the differ-
ence of 43". This result is one of the irayor triumphs of relativity theory. 

We next indicate the way the advance of the perihel ion can be calculated 
f rom the modif ied equation of motion. To pe r fo rm this calculation, it is conven-
ient to use the equation of mot ion in the fo rm of Equation 8.20. If we use the 
universal gravitational law for F(r), we can write 

cPu m 1 

GnPM 
= — (8.61) 

where we consider the motion of a body of mass m in the gravitational field of a 
body of mass M. The quantity u is therefore the reciprocal of the distance be-
tween m and M. 

The modification of the gravitational force law required by the general the-
ory of relativity introduces into the force a small componen t that varies as 
l / r 4 ( = w4). Thus, we have 

iPu Gm2M 3GM 9 

where c is the velocity of propagat ion of the gravitational interaction and is iden-
tified with the velocity of light.+ To simplify the notat ion, we def ine 

8 = 

GnfM 
P 

3 GM 
(8.63) 

*In 1845, the French astronomer Urbain Jean Joseph Le Verrier (1811-1877) first called attention to 
the irregularity in the motion of Mercury. Similar studies by Le Verrier and by the English astronomer 
John Couch Adams of irregularities in the motion of Uranus led to the discovery of the planet Neptune 
in 1846. An interesting account of this episode is given by Turner (Tu04, Chapter 2). We must note, in 
this regard, that perturbations may be either periodic or secular (i.e., ever increasing with time). Laplace 
showed in 1773 (published, 1776) that any perturbation of a planet's mean motion that is caused by 
the attraction of another planet must be periodic, although the period may be extremely long. This is 
the case for Mercury; the precession of 531" per century is periodic, but the period is so long that the 
change from century to century is small compared with the residual effect of 43". 
fOne half of the relativistic term results from effects understandable in terms of special relativity, 
viz., time dilation (1/3) and the relativistic momentum effect (1/6); the velocity is greatest at peri-
helion and least at aphelion (see Chapter 14). The other half of the term arises from general rela-
tivistic effects and is associated with the finite propagation time of gravitational interactions. Thus, 
the agreement between theory and experiment confirms the prediction that the gravitational propa-
gation velocity is the same as that for light. 



314 8 / CENTRAL-FORCE MOTION 

and we can write Equation 8.62 as 

d2u 
+ u = - + 8u2 

dd2 OL 
(8.64) 

This is a nonl inear equation, and we use a successive approximation procedure 
to obtain a solution. We choose the first solution to be the solution of Equation 
8.64 in the case that the term 8u2 is neglected*: 

Mj = — (1 + e cos 0) (8.65) 

This is the familiar result for the pure inverse-square-law force (see Equation 8.41). 
Note that a is he re the same as that def ined in Equation 8.40 except that /ll has 
been replaced by m. If we substitute this expression into the right-hand side of 
Equation 8.64, we find 

d2u 
dd2 + u 

1 8 
= — + 

a a 2 

1 8 
= — + 

a a2 1 + 2s cos 9 + — (1 + cos 2d) (8.66) 

where cos2 d has been expanded in terms of cos 2d. The first trial funct ion ux, 
when substituted into the left-hand side of Equation 8.64, reproduces only the 
first term on the right-hand side: 1 / a . We can therefore construct a second trial 
funct ion by adding to w, a term that reproduces the remainder of the right-hand 
side (in Equation 8.66). We can verily that such a particular integral is 

u„ 
a' 

1 + + ed sin d cos 2d 
6 (8.67) 

The second trial funct ion is therefore 

«2 — Ml + Up 

If we stop the approximation procedure at this point, we have 

u = u< '2 — "I" Up 

1 8s 
- ( 1 + e cos d) + — 0 s i n d 

o r 

+ -Al+^r ~ 
8s2 

2 J 6a2 

where we have regrouped the terms in % and up. 

cos 29 (8.68) 

*We eliminate the necessity of introducing an arbitrary phase into the argument of the cosine term 
by choosing to measure 0 from the position of perihelion; i.e., ui is a maximum (and hence rx is a 
minimum) at 9 = 0. 
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Consider the terms in the second set of brackets in Equation 8.68: the first 
of these is jus t a constant, and the second is only a small and periodic distur-
bance of the normal Keplerian motion. Therefore , on a long time scale nei ther 
of these terms contributes, on the average, to any change in the positions of the 
apsides. But in the first set of brackets, the term propor t ional to 0 produces sec-
ular and therefore observable effects. Let us consider the first set of brackets: 

^secular 
1 
a 

8e 
1 + e c o s 6 + — 0 s i n 0 

a 
(8.69) 

Next, we can expand the quantity 

1 + e cos | 0 0 ] = 1 + e( cos0 cos — 0 + sin 0 sin — 0 
a J \ a a 

8s 
= 1 + e cos 0 + — e sin 0 a 

where we have used the fact that 8 is small to approximate 

8 8 8 
cos — 0 = 1 , sin— 6 = — 9 

a a a 

Hence, we can write wsecular as 

(8.70) 

^ secular 1 + e cos | 0 6 
a (8.71) 

We have chosen to measure 0 f rom the position of perihelion at t = 0. 
Successive appearances at perihelion result when the a rgument of the cosine 
term in w seCuiar increases to 27T, 4 7 r , . . . , and so forth. But an increase of the argu-
men t by 277 requires that 

0 - - 0 = 2tt 
a 

or 

0 = 
2tt 

1 (8/a) 
2 * 1 1 + -

Therefore , the effect of the relativistic term in the force law is to displace the 
perihel ion in each revolution by an amoun t 

A = 
2 77-<5 

a (8.72a) 

that is, the apsides rotate slowly in space. If we refer to the definitions of a and 8 
(Equations 8.63), we find 

„ / G o t M V 
677* ( — 1 (8.72b) 
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TABLE 8-2 Precessional Rates for the Perihelia of Some Planets 

Planet 

Precessional rate (seconds of arc/century) 

Calculated Observed 

Mercury 43.03 ± 0.03 43.11 ± 0.45 
Venus 8.63 8.4 ± 4.8 
Earth 3.84 5.0 ± 1.2 
Mars 1.35 — 

Jupiter 0.06 — 

From Equations 8.40 and 8.42, we can write P = /xka( 1 — e2): then , because k = 
GmM and /j,= m, we have 

(8.72c) 

We see therefore that the effect is e n h a n c e d if the semimajor axis a is small and 
if the eccentricity is large. Mercury, which is t he p lane t neares t the sun and 
which has the most eccentr ic orbit of any p lane t (except Pluto), provides the 
most sensitive test of the theory.* T h e calculated value of the precessional rate 
fo r Mercury is 45.03" ± 0.03" of arc p e r century. T h e observed value (corrected 
for the inf luence of the o the r planets) is 43.11" ± 0.45",+ so the predic t ion of 
relativity theory is conf i rmed in striking fashion. T h e precessional rates fo r some 
of the planets are given in Table 8-2. 

8.10 Stability of Circular Orbits (Optional) 
In Section 8.6, we po in ted out that the orbi t is circular if the total energy equals 
the min imum value of the effective potential energy, E = More generally, 
however, a circular orbit is allowed for any attractive potential , because the attrac-
tive force can always be m a d e to jus t balance the centrifugal force by the p r o p e r 
choice of radial velocity. Al though circular orbits are therefore always possible in 
a central, attractive force field, such orbits are n o t necessarily stable. A circular 
orbit at r=p exists if f | r = p = 0 fo r all t; this is possible if (dV/dr) | r = p = 0. But only 
if the effective potential has a true minimum does stability result. All o ther equilib-
r ium circular orbits are unstable. 

Let us consider an attractive central force with the f o r m 

F{r) = -yn (8.73) 

•Alternatively, we can say that the relativistic advance of the perihelion is a maximum for Mercury 
because the orbital velocity is greatest for Mercury and the relativistic parameter v/c largest. 
+R. L. Duncombe, Astron. J. 61,174(1956); see also G. M. Clemence, Rev. Mod. Phys. 19, 361 (1947). 
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The potential for such a force is 

U{r) = 

and the effective potential funct ion is 

V(r) = -

n— 1 r ( n _ 1 ) 

1 12 
+ 

(8.74) 

(8.75) 
n ~ 1 r^'1* 2/JLT3 

The conditions for a min imum of V(r) and hence for a stable circular orbit with 
a radius p are 

(8.76) 

Applying these criteria to the effective potential of Equation 8.75, we have 

dV 
dr 

= 0 
r=p MP 

or 

and 

so 

dr2 
r=p 

,<»-s) = th p 

nk M2 

~ "TTTT + 2 > 0 p (M+1) ^ p 4 

nk 312 

+ — > 0 

(8.77) 

p(n-3) ^ 

Substituting pin 3> f rom Equation 8.77 into Equation 8.78, we have 

I2 

(3 - n ) - > 0 

(8.78) 

(8.79) 

The condition that a stable circular orbit exists is thus n < 3. 
Next, we apply a more general p rocedure and inquire about the frequency 

of oscillation about a circular orbit in a general force field. We write the force as 

F(r) = -Aig(r) = - ^ (8.80) 
3r 

Equation 8.18 can now be written as 

r — rd2 = —g(r) 

Substituting for 6 f rom Equation 8.10, 

I2 

r — -g(x) 

(8.81) 

(8.82) 
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We now consider the particle to be initially in a circular orbit with radius p and 
apply a per turbat ion of the form r—> p + x, where x is small. Because p = con-
stant, we also have r —> x. Thus 

P 
= ~g(p + *) (8.83) 

1 + ( X / P ) ] 5 

But by hypothesis (x/p) <SC 1, so we can expand the quantity: 

[1 + (x /p ) ] " 3 = 1 - 3(x/p) + ••• (8.84) 

We also assume that g(r) = g(p + x) can be expanded in a Taylor series about 
the point r = p : 

g(p + *) = g{p) + xg'(p) + ••• (8.85) 

where 

dg 
dr r=p 

If we neglect all terms in x2 and higher powers, then the substitution of 
Equations 8.84 and 8.85 into Equation 8.83 yields 

- 3 (x /p) ] = -[g(p) + xg'(p)] (8.86) 
P-P 

Recall that we assumed the particle to be initially in a circular orbit with r = p. 
Unde r such a condition, no radial motion occurs—that is, r\r=P = 0. Then , also, 
r\r=p

 = o. Therefore , evaluating Equation 8.82 at r = p , we have 

g(p) = A (8.87) 
MP 

Substituting this relation into Equation 8.86, we have, approximately, 

x- g(p)[ 1 - 3 (x /p ) ] = ~ [ g ( p ) + xg'{p)] 

or 

x + 

If we define 

+ g'(p) x = 0 (8.88) 

3 g{p) 
0 ) 1 s p + S ' i p ) ( 8 > 8 9 ) 

then Equation 8.88 becomes the familiar equat ion for the u n d a m p e d harmonic 
oscillator: 

X + U>1 X = 0 (8.90) 

The solution to this equation is 

x(t) = Ae^"' + (8.91) 
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If <Uq < 0, so that O)Q is imaginary, then the second term becomes B exp( | COQ \ t), 
which clearly increases without limit as t ime increases. The condit ion for oscilla-
tion is therefore col > 0, or 

3 g(p) 
+ g'(p) > 0 (8.92a) 

Because g(p) > 0 (see Equation 8.87), we can divide through by g(p) and write 
this inequality as 

g(p) P 
(8.92b) 

or, because g(r) and F(r) are related by a constant multiplicative factor, stability 
results if 

F'(p) 3 
— — + - > 0 
F(p) P 

(8.93) 

We now compare the condition on the force law imposed by Equation 8.93 
with that previously obtained for a power-law force: 

F(r) = (8.94) 

Equation 8.93 becomes 

or 

nkp~ 3 
— + - > 0 

-kp~n p 

(3 - n) •- > 0 
P 

(8.95) 

and we are led to the same condit ion as before—that is, n < 3. (We must note, 
however, that the case n = 3 needs fu r the r examination; see Problem 8-22.) 

EXAMPLE 8.6 

Investigate the stability of circular orbits in a force field described by the 
potential func t ion 

U(r) = —<r<r/a> r (8.96) 

where k > 0 and a > 0. 

Solution. This potential is called the screened Coulomb potential (when 
k = Ze2/4irs0, where Zis the atomic n u m b e r and e is the electron charge) 
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because it falls off with distance m o r e rapidly than 1 / r and h e n c e approximates 
the electrostatic potent ial of the atomic nucleus in the vicinity of the nucleus by 
taking into account the partial "cancellation" or "screening" of the nuc lear 
charge by the atomic electrons. T h e force is f o u n d f r o m 

F(r) = - — = - * ( - + K ' dr \ar r l ) 

a n d 
d F , 1 2 2 , , , , 
dr \a r ari r > 

T h e condi t ion fo r stability (see Equat ion 8.93) is 

F'(p) 
3 + p — ^ > 0 P F{p) 

There fo re 

which simplifies to 

We may write this as 

1 | 2 | 2 
KcPp ap2 p3j 3 + X h H / > Q 

\ap + p2 

a2 + ap - p2 > 0 

- + - - 1 > 0 p2 p 

Stability thus results fo r all q = a/p that exceed the value satisfying the equat ion 

q2 + q - 1 = 0 

The positive (and the re fore the only physically meaningfu l ) solution is 

= V 5 - 1) = 0.62 q 2 

If, then, the angular m o m e n t u m and energy allow a circular orbi t at r = p, the 
mot ion is stable if 

a 
- S 0 . 6 2 
P 

or 

p S 1.62a (8.97) 

T h e stability condi t ion for orbits in a screened potent ia l is i l lustrated graph-
ically in Figure 8-16, which shows the potent ial V(r) for various values of p/a. 
T h e force constant k is t he same for all the curves, b u t has b e e n adjusted 
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V(r) 

Curve p/a /*/2fi 
1 0.09 1.93 V0 

2 0.40 1.82V0 

3 0.61 1.75V0 

4 0.92 1.50V„ 
5 1.62 ill 

6 3.40 0.59 V0 

FIGURE 8-16 Example 8.7. Potentials 1-4 produce a stable, circular orbit for values of 
p/a S 1.62. 

to main ta in the m i n i m u m of t he potent ia l at the same value of the radius as a is 
changed . For p/a< 1.62, a t rue m i n i m u m exists f o r the potent ia l , indicat ing 
that the circular orbi t is stable with respect to small oscillations. For p/a > 1.62, 
the re is n o m i n i m u m , so circular orbits c a n n o t exist. For p/a= 1.62, the poten-
tial has zero slope at the posi t ion tha t a circular o rb i t would occupy. T h e orbi t is 
unstable at this posi t ion, because wfj is zero in Equa t ion 8.90 a n d the displace-
m e n t x increases linearly with t ime. 

An in teres t ing f ea tu re of this potent ia l f u n c t i o n is that u n d e r cer ta in condi-
tions the re can exist b o u n d orbits fo r which the total energy is positive (see, fo r 
example , curve 4 in Figure 8-16). 

EXAMPLE 8.7 

De t e rmine w h e t h e r a part icle moving on the inside sur face of a c o n e u n d e r the 
in f luence of gravity (see Example 7.4) can have a stable circular orbit . 
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Solution. In Example 7.4, we found that the angular m o m e n t u m about the 
z-axis was a constant of the motion: 

I = mr2Q = constant 

We also found the equation of motion for the coordinate r: 

r — rd2 sin2 a + g sin a cos a = 0 (8.98) 

If the initial conditions are appropriately selected, the particle can move in 
a circular orbit about the vertical axis with the plane of the orbit at a constant 
height z0 above the horizontal plane passing th rough the apex of the cone. 
Although this problem does not involve a central force, certain aspects of the 
motion are the same as for the central-force case. Thus we may discuss, for ex-
ample, the stability of circular orbits for the particle. To do this, we pe r fo rm a 
per turbat ion calculation. 

First, we assume that a circular orbit exists for r= p. Then , we apply the 
per turbat ion r—»p + x. The quantity rO2 in Equation 8.98 can be expressed as 

P P rQ2 = r-

P P 
= — ( p + x)~3 = 2 3 m p 

1 - 3 -
m2p3 I p 

where we have re ta ined only the first te rm in the expansion, because x/p is by 
hypothesis a small quantity. 

Then , because p = 0, Equation 8.98 becomes, approximately, 

P sin2 a ( x \ 
x —— 1 — 3— + g sin a cos a = 0 

w2p3 V PJ 

or 

(SP sin2 a | P sin a x + \ —— jx ——I- g sin a cos a = 0 (8.99) 

V mp / mp 

If we evaluate Equation 8.98 at r = p, then r = 0, and we have 

g sin a cos a = p&2 sin2 a P • 2 = —— sin'1 a m2p 

In view of this result, the last two terms in Equation 8.99 cancel, and there remains 

/3Z2 sin2 a \ 
x = 0 (8.100) 

\ wrp4 / 
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T h e solut ion to this e q u a t i o n is j u s t a h a r m o n i c oscillation with a f r e q u e n c y w, 
w h e r e 

Vii 
co = - s i n a (8.101) 

Thus , t he circular o rb i t is stable. 

P R O B L E M S 

8-1. In section 8.2, we showed that the motion of two bodies interacting only with each 
other by central forces could be reduced to an equivalent one-body problem. Show 
by explicit calculation that such a reduction is also possible for bodies moving in an 
external uniform gravitational field. 

8-2. Perform the integration of Equation 8.38 to obtain Equation 8.39. 

8-3. A particle moves in a circular orbit in a force field given by 

F(r) = -k/r2 

Show that, if k suddenly decreases to half its original value, the particle.'s orbit be-
comes parabolic. 

8-4. Perform an explicit calculation of the time average (i.e., the average over one com-
plete period) of the potential energy for a particle moving in an elliptical orbit in a 
central inverse-square-law force field. Express the result in terms of the force constant 
of the field and the semimajor axis of the ellipse. Perform a similar calculation for the 
kinetic energy. Compare the results and thereby verify the virial theorem for this case. 

8-5. Two particles moving under the influence of their mutual gravitational force de-
scribe circular orbits about one another with a period r . If they are suddenly 
stopped in their orbits and allowed to gravitate toward each other, show that they 
will collide after a time 

8-6. Two gravitating masses mt and m2(ml + m2 = M) are separated by a distance r0 and 
released from rest. Show that when the separation is r(< r0), the speeds are 

/2G7! TV /2G?i T\ 

8-7. Show that the areal velocity is constant for a particle moving under the influence of 
an attractive force given by F(r) = —kr. Calculate the time averages of the kinetic 
and potential energies and compare with the results of the virial theorem. 

8-8. Investigate the motion of a particle repelled by a force center according to the law 
F(r) = kr. Show that the orbit can only be hyperbolic. 
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8-9. A communications satellite is in a circular orbit around Earth at radius R and veloc-
ity v. A rocket accidentally fires quite suddenly, giving the rocket an outward radial 
velocity v in addition to its original velocity. 
(a) Calculate the ratio of the new energy and angular momentum to the old. 
(b) Describe the subsequent motion of the satellite and plot T(r), V(r), l!(r), and 

E(r) after the rocket fires. 

8-10. Assume Earth's orbit to be circular and that the Sun's mass suddenly decreases by 
half. What orbit does Earth then have? Will Earth escape the solar system? 

8-11. A particle moves under the influence of a central force given by F(r) = — k/r". If 
the particle's orbit is circular and passes through the force center, show that ra = 5. 

8-12. Consider a comet moving in a parabolic orbit in the plane of Earth's orbit. If the 
distance of closest approach of the comet to the Sun is f3rE, where rE is the radius of 
Earth's (assumed) circular orbit and where f3 < 1, show that the time the comet 
spends within the orbit of Earth is given by 

V 2 ( L - /3) • (1 + 2 jS)/3 t t X 1 year 

If the comet approaches the Sun to the distance of the perihelion of Mercury, how 
many days is it within Earth's orbit? 

8-13. Discuss the motion of a particle in a central inverse-square-law force field for a su-
perimposed force whose magnitude is inversely proportional to the cube of the dis-
tance from the particle to the force center; that is, 

Show that the motion is described by a precessing ellipse. Consider the cases 
A < P//x, A = P/p, and A > l2//j.. 

8-14. Find the force law for a central-force field that allows a particle to move in a spiral 
orbit given by r = kO2, where k is a constant. 

8-15. A particle of unit mass moves from infinity along a straight line that, if continued, 
would allow it to pass a distance bV2 from a point P. If the particle is attracted to-
ward P with a force varying as k/r5, and if the angular momentum about the point 
P is \Tk/b, show that the trajectory is given by 

r = o co t h (0 /V2) 

8.16. A particle executes elliptical (but almost circular) motion about a force center. At 
some point in the orbit a tangential impulse is applied to the particle, changing the 
velocity from » t o i / + 8 v. Show that the resulting relative change in the major and 
minor axes of the orbit is twice the relative change in the velocity and that the axes 
are increased if 8v > 0. 

8-17. A particle moves in an elliptical orbit in an inverse-square-law central-force field. If 
the ratio of the maximum angular velocity to the minimum angular velocity of the 
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particle in its orbit is n, then show that the eccentricity of the orbit is 

_ V n - 1 

Vn + 1 
8-18. Use Kepler's results (i.e., his first and second laws) to show that the gravitational 

force must be central and that the radial dependence must be l / r 2 . Thus, perform 
an inductive derivation of the gravitational force law. 

8-19. Calculate the missing entries denoted by c in Table 8-1. 

8-20. For a particle moving in an elliptical orbit with semimajor axis a and eccentricity e, 
show that 

{(a/r)4 cos 6) = e / ( l - e2)5/2 

where the angular brackets denote a time average over one complete period. 

8-21. Consider the family of orbits in a central potential for which the total energy is a 
constant. Show that if a stable circular orbit exists, the angular momentum associ-
ated with this orbit is larger than that for any other orbit of the family. 

8-22. Discuss the motion of a particle moving in an attractive central-force field de-
scribed by F(r) = — k/r3.* Sketch some of the orbits for different values of the total 
energy. Can a circular orbit be stable in such a force field? 

8-23. An Earth satellite moves in an elliptical orbit with a period r , eccentricity e, and 
semimajor axis a. Show that the maximum radial velocity of the satellite is 
27rae/(rVl - e2). 

8-24. An Earth satellite has a perigee of 300 km and an apogee of 3,500 km above Earth's 
surface. How far is the satellite above Earth when (a) it has rotated 90° around 
Earth from perigee and (b) it has moved halfway from perigee to apogee? 

8-25. An Earth satellite has a speed of 28,070 k m / h r when it is at its perigee of 220 km 
above Earth's surface. Find the apogee distance, its speed at apogee, and its period 
of revolution. 

8-26. Show that the most efficient way to change the energy of an elliptical orbit for a sin-
gle short engine thrust is by firing the rocket along the direction of travel at 
perigee. 

8-27. A spacecraft in an orbit about Earth has the speed of 10,160 m / s at a perigee of 
6,680 km from Earth's center. What speed does the spacecraft have at apogee of 
42,200 km? 

8-28. What is the minimum escape velocity of a spacecraft from the moon? 

T h i s particular force law was extensively investigated by Roger Cotes (1682-1716), and the orbits 
are known as Cotes' spirals. 
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8-29. The minimum and maximum velocities of a moon rotating around Uranus are 
vmin = v ~ vo and vmax = v + v0. Find the eccentricity in terms of v and vn. 

8-30. A spacecraft is placed in orbit 200 km above Earth in a circular orbit. Calculate the 
minimum escape speed from Earth. Sketch the escape trajectory, showing Earth 
and the circular orbit. What is the spacecraft's trajectory with respect to Earth? 

8-31. Consider a force law of the form 

* *' 
F(r) = —£ - -j r r 

Show that if p2k > k', then a particle can move in a stable circular orbit at r = p. 

8-32. Consider a force law of the form F(r) = — (&/r2)exp( —r/a). Investigate the stability 
of circular orbits in this force field. 

8-33. Consider a particle of mass m constrained to move on the surface of a paraboloid 
whose equation (in cylindrical coordinates) is r2 = 4az. If the particle is subject to a 
gravitational force, show that the frequency of small oscillations about a circular 
orbit with radius p = \/4az0 is 

2 g 
a + z0 

8-34. Consider the problem of the particle moving on the surface of a cone, as discussed 
in Examples 7.4 and 8.7. Show that the effective potential is 

P 
V(r) = ^—5 + mpr cot a 

2 m r 
(Note that here r is the radial distance in cylindrical coordinates, not spherical co-
ordinates; see Figure 7-2.) Show that the turning points of the motion can be found 
from the solution of a cubic equation in r. Show further that only two of the roots 
are physically meaningful, so that the motion is confined to lie within two horizon-
tal planes that cut the cone. 

8-35. An almost circular orbit (i.e., e <SC 1) can be considered to be a circular orbit to 
which a small perturbation has been applied. Then, the frequency of the radial mo-
tion is given by Equation 8.89. Consider a case in which the force law is 
F(r) = —k/r" (where n is an integer), and show that the apsidal angle is i r / V 3 — n. 
Thus, show that a closed orbit generally results only for the harmonic oscillator 
force and the inverse-square-law force (if values of n equal to or smaller than —6 
are excluded). 

8-36. A particle moves in an almost circular orbit in a force field described by 
F(r) = — (k/rs)cxp( — r/a). Show that the apsides advance by an amount approxi-
mately equal to i t p / a in each revolution, where p is the radius of the circular orbit 
and where p a. 

8-37. A communication satellite is in a circular orbit around Earth at a distance above 
Earth equal to Earth's radius. Find the minimum velocity Av required to double the 
height of the satellite and put it in another circular orbit. 
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8-38. Calculate the minimum Av required to place a satellite already in Earth's heliocen-
tric orbit (assumed circular) into the orbit of Venus (also assumed circular and 
coplanar with Earth). Consider only the gravitational attraction of the Sun. What 
time of flight would such a trip take? 

8-39. Assuming a rocket engine can be fired only once from a low Earth orbit, does a 
Mars flyby or a Venus flyby require a larger Av? Explain. 

8-40. A spacecraft is being designed to dispose of nuclear waste either by carrying it out 
of the solar system or crashing into the Sun. Assume that no planetary flybys are 
permitted and that thrusts occur only in the orbital plane. Which mission requires 
the least energy? Explain. 

8-41. A spacecraft is parked in a circular orbit 200 km above Earth's surface. We want to 
use a Hohmann transfer to send the spacecraft to the Moon's orbit. What are the 
total Av and the transfer time required? 

8-42. A spacecraft of mass 10,000 kg is parked in a circular orbit 200 km above Earth's 
surface. What is the minimum energy required (neglect the fuel mass burned) to 
place the satellite in a synchronous orbit (i.e., r = 24 hr)? 

8-43. A satellite is moving in circular orbit of radius R about Earth. By what fraction must 
its velocity v be increased for the satellite to be in an elliptical orbit with rmin = R 
and rmalt = 2R? 

8-44. The Yukawa potential adds an exponential term to the long-range Coulomb poten-
tial, which gready shortens the range of the Coulomb potential. It has great useful-
ness in atomic and nuclear calculations. 

V(r) = ^ V " * = - - e - « « 
r r 

Find a particle's trajectory in a bound orbit of the Yukawa potential to first order in 
r/a. 

8-45. A particle of mass m moves in a central force field that has a constant magnitude F0, 
but always points toward the origin, (a) Find the angular velocity tify required for 
the particle to move in a circular orbit of radius r„. (b) Find the frequency oj, of 
small radial oscillations about the circular orbit. Both answers should be in terms of 
F0, m, and r0. 

8-46. Two double stars of the same mass as the sun rotate about their common center of 
mass. Their separation is 4 light years. What is their period of revolution? 

8-47. Two double stars, one having mass 1.0 Mslm and the other 3.0 Msun, rotate about 
their common center of mass. Their separation is 6 light years. What is their period 
of revolution? 



CHAPTER 

Dynamics of a System 
of Particles 

9.1 Introduction 
Thus far, we have t rea ted our dynamical p rob lems primarily in terms of single 
particles. Even though we have considered ex tended objects such as projectiles 
and planets, we have been able to treat t h e m as single particles. Generally, we 
have no t had to deal with the internal interact ions between the many particles 
that make u p the ex tended body. 

Later, when we treat the dynamics of rigid bodies, we must describe rota-
tional as well as translational mot ion . We n e e d to p repa re the techniques that 
will allow us to do this. 

We first ex tend ou r discussion to describe the system of n particles. These 
particles may f o r m a loose aggregate—such as a pile of rocks o r a volume of gas 
molecules—or f o r m a rigid body in which the const i tuent particles are re-
strained f r o m moving relative to one another . We devote the latter par t of the 
chapter to a study of the interact ion of two particles (n = 2). For the three-body 
prob lem (n = 3), the solutions become formidable . Per turba t ion techniques 
of ten are used, a l though great progress has been m a d e th rough the use of nu-
merical me thods with high-speed computers . Finally, we shall examine rocket 
mot ion. 

Newton's Th i rd Law plays a p r o m i n e n t role in the dynamics of a system of 
particles because of the in ternal forces between the particles in the system. We 
need to make two assumptions concern ing the internal forces: 

1. T h e forces exer ted by two particles a a n d /3 on each o t h e r a re equal in mag-
n i tude and opposi te in direct ion. Let faj3 r ep resen t the force on the a t h 
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FIGURE 9-1 Example of the strong form of Newton's Third Law, where the equal and 
opposite forces between two particles must lie along a straight line 
joining the two particles. The force is attractive, as in the molecular 
attraction in a solid. 

particle due to the /3th particle. T h e so-called "weak" fo rm of Newton's 
Third Law is 

fff/3 = ~ f/3 a (9-1) 
2. The forces exerted by two particles a and fi on each other, in addit ion to 

being equal and opposite, must lie on the straight line jo in ing the two parti-
cles. This more restrictive fo rm of Newton's Third Law, of ten called the 
"strong" form, is displayed in Figure 9-1. 

We must be careful to r emember when each fo rm of Newton's Third Law ap-
plies. We recall f rom Section 2.2 that the Third Law is no t always valid for mov-
ing charged particles; electromagnetic forces are velocity dependent. For example, 
magnetic forces, those forces exerted on a moving charge q in a magnetic field 
B (F = ^v X B), obey the weak form, bu t not the strong form, of the Third Law. 

9.2 Center of Mass 
Consider a system composed of n particles, with each particle's mass described 
by ma, where a is an index f rom a = 1 to a = n. T h e total mass of the system is 
denoted by M, 

M = X m „ (9.2) a 
where the summation over a (as in all summations carried out over Greek in-
dices) runs f rom a = 1 to a = n. Such a system is displayed in Figure 9-2. 

If the vector connect ing the origin with the a t h particle is ra, then the vector 
defining the position of the system's center of mass is 

R = - J - 2 mara (9.3) 
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FIGURE 9-2 The position vectors to particles 1, 2, and 3 in the body are indicated, 
along with the center of mass position vector R. 

For a continuous distribution of mass, the summation is replaced by an integral, 

R = - j ^ j r d m (9.4) 

The location of the center of mass of a body is uniquely defined, bu t the position 
vector R depends on the coordinate system chosen. If the origin in Figure 9-2 
were chosen elsewhere, the vector R would be different. 

EXAMPLE 9.1 

Find the center of mass of a solid hemisphere of constant density. 

Solution. Let the density be p, the hemispherical mass be M, and the radius be a. 

M 

s ™ 3 

We want to choose the origin of our coord ina te system carefully (Figure 9-3) 
to make the p rob lem as simple as possible. T h e position coordinates of R are 
(X, Y, Z). From symmetry, X = 0, Z = 0. This should be obvious f r o m 
Equat ion 9.4, 

1 f 
X = — x dm 

M J-a 

1 [" 
Z = — z dm 

M j - a 
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X 

2 

X 

(a) (b) 

FIGURE 9-3 Example 9.1. (a) We choose a thin slice dy of a solid hemisphere of 
constant density to find the center of mass position value Y. 
(b) The area of the slice dy is circular. 

because we are integrating over an odd power of a variable with symmetric 
limits. For Y, however, the limits are asymmetric. 

Construct dm so it is placed at a constant value of y. A circular slice perpendicu-
lar to the y-axis suffices (see Figure 9-3). 

T h e position of the center of mass is (0, 3a /8 , 0). 

9.3 Linear Momentum of the System 
If a certain group of particles constitutes a system, then the resultant force acting 
on a particle within the system (say, the a t h particle) is in general composed of 
two parts. O n e par t is the resultant of all forces whose origin lies outside of the 
system; this is called the external force, F^e>. T h e o ther par t is the resultant of 
the forces arising f rom the interaction of all of the other n — 1 particles with the 
a t h particle; this is called the internal force, fa . Force f a is given by the vector 
sum of all the individual forces fa|8, 

dm — pdV= pTr(a2 — y2)dy 

-n-pa4 _ 3a 
4 M ~ ~8 

(9.5) 
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where fa j8 represents the force o n the a t h particle d u e to the /3th particle. T h e 
total force acting o n the a t h particle is the re fore 

F a = FW + f„ (9.6) 

Also, according to the weak s ta tement of Newton's Th i rd Law, we have 

= -*l>a 0 - 1 ) 

Newton's Second Law for the a t h particle can be written as 

p„ = ma r a = F « + f„ (9.7) 

or 

r a ) = F W + 2 f ^ (9.8) 

Summing this expression over a , we have 

= 2 F « + 2 2 f a / j (9.9) 
I T " a a j8 

where the terms a = /J do n o t enter in the second sum on the r ight-hand side, 
because faa = 0. T h e summat ion on the lef t-hand side jus t yields M R (see 
Equat ion 9.3), and the second time derivative is M R . T h e first t e rm on the right-
h a n d side is the sum of all the external forces and can be written as 

2 f W = F (9.10) 
a 

The second te rm on the r ight-hand side in Equat ion 9.9 can be expressed* as 

= 2 f ap = 2 r (fa/3 + fpa) a (i a<p 

which vanishes* accord ing to Equa t ion 9.1. Thus , we have the first i m p o r t a n t 
result 

M R = F (9.11) 

*This equation can be verified by explicitly calculating both sides for a single case (e.g., n — 3). 
fThe last summation symbol means "sum over all a and /3 subject to the restrictions a < /3." Note 
that we can prove the vanishing of 

by appealing to the following argument. Because the summations are carried out over both a and /3, 
these indices are dummies; in particular, we may interchange a and /3 without affecting the sum. 
Using the more compact notation, we have 

^ f«/3 = 2 fn„ 

But, by hypothesis, = — f^,,, so 

and if a quantity is equal to its negative, it must vanish identically. 
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which we can express as follows: 

I. The center of mass of a system moves as if it were a single particle of mass equal to the 
total mass of the system, acted on by the total external force, and independent of 
the nature of the internal forces (as long as they follow fa /3 = — fpa, the weak form of 
Newton's Third Law). 

The total l inear m o m e n t u m of the system is 

P = 2 m a r a = — ra = — (MR) = M R (9.12) 
a dt a dt 

and 

P = M R = F (9.13) 

Thus, the total linear m o m e n t u m of the system is conserved if there is no exter-
nal force. From Equations 9.12 and 9.13, we note our second and third impor-
tant results: 

II. The linear momentum of the system is the same as if a single particle of mass M were 
located at the position of the center of mass and moving in the manner the center of 
mass moves. 

III. The total linear momentum for a system free of external forces is constant and equal to 
the linear momentum of the center of mass ( the law of conservation of l inear mo-
m e n t u m for a system). 

All measurements must be made in an inertial reference system. An exam-
ple of the linear m o m e n t u m of a system is given by the explosion of an artillery 
shell above ground. Because the explosion is an internal effect, the only external 
force affecting the center of mass velocity is due to gravity. T h e center of mass of 
the artillery shell f ragments immediately after the explosion must cont inue with 
the velocity of the shell jus t before the explosion. 

EXAMPLE 9.2 

A chain of uni form linear mass density p, length b, and mass M (p = M/b) hangs 
as shown in Figure 9-4. At time t = 0, the ends A and B are adjacent, bu t end B 
is released. Find the tension in the chain at poin t A af ter end B has fallen a dis-
tance x by (a) assuming f ree fall and (b) by using energy conservation. 

Solution, (a) In the case of f ree fall, let's assume the only forces acting on the 
system at time t are the tension T acting vertically upward at point A and the 
gravitational force Mg-pulling the chain down. T h e center of mass m o m e n t u m 
reacts to these forces such that 

P = Mg — T (9.14) 

The right side of the chain, with mass p(b — x)/2, is moving at the speed x, and 
the left side of the chain is not moving. T h e total m o m e n t u m of the system is 
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A B 

• CM 

CM 

t= 0 

(a) 

time t > 0 

(b) 

FIGURE 9-4 Example 9.2. (a) A chain of uniform linear mass density hangs at points 
A and B before B is released at time t= 0. (b) At time t the end B has 
fallen a distance x. 

therefore 

P= p[—— ]x 

and 

P= + x(b ~ x)] 

For f ree fall, we have * = gfi/2, so that 

x = gt = "\/2~gx 

x= g 

and 

(9.15) 

P = gb ~ 3gx) = Mg - T 

and finally, 

,= Mg(3x 
2 \ i 

+ 1 (9.16) 

(b) Calkin and March (Am. J. Phys. 57, 154 [1989]) have found that 
chains act much like a perfectly flexible, inextensible rope that conserves 
energy when it falls, with no dissipative mechanisms. We treat the chain as one-
dimensional motion, ignoring the small horizontal mot ion. Let the potential 
energy U b e measured relative to the fixed end of the chain, so that the initial 
potential energy U( t = 0) = U() = —pgb2/4. A caref ul geometric construction 
shows that the potential energy after the chain has d ropped a distance x is 
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U = — ̂ pgii? + 2bx - x2) 

T h e kinetic energy (where we use K instead of T to avoid confusion with ten-
sion) is de te rmined f rom the speed x of the right side of the chain, so that 

K=^(b- x)x2 

Because energy is conserved, we must have K + U= UQ. 

— x)x2 — ~^pg(b2 + 2 bx — x2) = — ~^pgb2 

We solve for x2 to obtain 

g(2bx — x2) 
x2 = (9.17) 

To f ind the tension f rom Equations 9.14 and 9.15, we need to de termine x. We 
take the derivative of Equation 9.17 and f ind 

x = g + 
g(2bx — x2) 

2(b - x)2 

We now insert x2 and x f rom the two previous equations into Equation 9.15 to 
determine P a n d insert this value of P i n t o Equation 9.14. After collection of 
terms and solving for T, we obtain 

Mg 1 
T = — ( 2 + 2bx - 3x2) (9.18) 

4 b (b — x) 

Note the difference between the two results, Equations 9.16 and 9.18, for the 
f ree fall and energy conserving methods. It should be rather easy by experimen-
tation to determine which is correct, because the latter result has the tension 
rising dramatically (T—» oo) at the end when x - + b . Experiments by Calkin and 
March confirm that the tension does increase rapidly at the end to a maximum 
of about 25 times the chain's weight, and the observations as a funct ion of x 
agree well with the calculations. Real chains cannot have an infinite tension. 

For the f ree fall case, the tension in the chain is discontinuous on ei ther 
side of the bot tom bend; the tension is Tx = pk2/2 on the fixed side and T2 = 0 
on the f ree side. For the energy conserving case, the tension Tt on the f ree side 
is no t zero, and this tension helps gravity pull the chain down. The result is that 
the chain falls about 15% faster than calculated for the f ree fall case. For 
energy-conserving chains, the tension is continuous: 7\ = T2 = px2/4. We 
examine fu r the r properties of the falling chain in the problems. 
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9.4 Angular Momentum of the System 
It is often more convenient to describe a system by a position vector with respect 
to the center of mass. The position vector ra in the inertial reference system (see 
Figure 9-5) becomes 

ra = R + r; (9.19) 

where r'a is the position vector of the particle a with respect to the center of 
mass. The angular m o m e n t u m of the a t h particle about the origin is given by 
Equation 2.81: 

K = ra X pa (9.20) 

Summing this expression over a , and using Equation 9.19, we have 

L = S L a = E ( r a X p„) = 2 ( r a X m a r a ) a a cc 

= + R) X ma(K + R) a 

= S w a [ ( r ; X r;> + (r; X R) + (R X r'a) + (R X R)] (9.21) 

The middle two terms can be written as 

X R + R x 

which vanishes because 

2m a r ' a = 2 w a ( r a — R) = ra — R a a a a 

r'a = MR - MR = 0 (9.22) 

cen te r of mass. 
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This indicates tha t specifies t he pos i t ion of t he c e n t e r of mass in t he 
center-of-mass coo rd ina t e system a n d is t h e r e f o r e a nul l vector. Thus , Equa t i on 
9.21 b e c o m e s 

L = M R X R + 2 r ; X p ; = R X P + 2 r ; X p i (9.23) a a 

O u r f o u r t h i m p o r t a n t result is 

IV. The total angular momentum about an origin is the sum of the angular momentum 
of the center of mass about that origin and the angular momentum of the system about 
the position of the center of mass. 

T h e t ime derivative of the angu la r m o m e n t u m of t he a t h part icle is, f r o m 
Equa t ion 2.83, 

K = r„ X p a (9.24) 

and , us ing Equa t ions 9.7 a n d 9.8, we have 

L„ = r a x ( f W + 2 f „ ^ (9.25) 

S u m m i n g this express ion over a, we have 

L = 2 l „ = 2 ( r a x F<«>) + 2 ( r a X fa /3) (9.26) . 
a a a f p ^ a 

T h e last t e rm may be writ ten as 

2 (r a X fa /3) = 2 , [ ( r a X fa /3) + (Tp X f ^ ) ] a.jS^a ar</3 

T h e vector connec t i ng the a t h a n d /3th part icles (see Figure 9-6) is d e f i n e d to be 

rap = ra-r0 (9.27) 

a n d then , because f a / 3 = — fpa, we have 

2 (r a X faP) = 2 (r a - rp) x fap a,/3¥=a a</3 

= 2 , (rap X fa j 8) (9.28) 
a<(3 

Now we want to limit the discussion to cen t ra l in te rna l forces a n d apply the 
"strong" version of Newton 's T h i r d Law. H e n c e , f a j 3 is a long the same d i rec t ion 
as ±rap a n d 

r ap x f a p = 0 (9.29) 

a n d 

L = 2 [ r „ x F W ] (9.30) a 
T h e r ight -hand side of this express ion is j u s t t he sum of all the ex te rna l torques: 

L = 2 n W = N (e ) (9.31) 
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represented by ra(3. 

This leads to our next impor tant result: 

V. If the net resultant external torques about a given axis vanish, then the total angular 
momentum of the system about that axis remains constant in time. 

Note also that the term 

2 r a X f ^ (9.32) 

is the torque on the a t h particle due to all the internal forces—that is, it is the 
internal torque. Because the sum of this quantity over all the particles a vanishes 
(see Equation 9.28), 

2 (r« X f ^ ) = 2 (r^ X f ^ ) = 0 (9.33) a.P^a a<p 

the total internal torque must vanish, which we can state as 

VI. The total internal torque must vanish if the internal forces are central—that is, if 
fap = —tpa, and the angular momentum of an isolated system cannot be altered 
without the application of external forces. 

EXAMPLE 9.3 

A light string of length a has bobs of mass m] and m2 (m2 > mx) on its ends. The 
end with mx is held and m2 is whirled vigorously by h a n d above the head in a 
counterclockwise direction (looking down f rom above) and then released. 
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FIGURE 9-7 Example 9.3. A light string with masses mx and m2 at its ends is whirled 
around by hand above the head and released. 

Describe the subsequent motion, and f ind the tension in the string after 
release. 

Solution. The system is shown in Figure 9-7. The center of mass is a distance 
b = [ mx/(ml + m<j) ] a f rom mass m%. After being released, the only forces on the 
system are the gravitational forces on mx and m2. Assume that v0 is the initial ve-
locity of the center of mass CM. The CM will cont inue in a parabolic path 
unde r the influence of gravity as if all the mass (ml + m t) were concentra ted at 
the CM. But when released, mass w2 is rotat ing a round m{ rapidly. Because no 
external torque exists, the system will cont inue to rotate. But now both mx and 
ra2 rotate about the CM, and the angular m o m e n t u m is conserved. If mass m2 is 
traveling with the linear velocity v2 when released, then we must have v2 = bf) 
[similarly, vx = (a — b)6]. The tension in the string is, however, due 
to the centrifugal reaction of the masses rotating, which is, in this case, 

Centrifugal force 
m2{bd)2 

= Tension 

Tension = m2b02 = m2 
mxa 

m\ + m% 
62 = 

mxm2aQL2-
Wj + m% 

9.5 Energy of the System 
The final conservation theorem, that of energy, may be derived for a system of 
particles as follows. Consider the work done on the system in moving it f rom a 
Configuration 1, in which all the coordinates ra are specified, to a Configuration 
2, in which the coordinates ra have some different specification. (Note that the 
individual particles may jus t be rearranged in such a process, and that, for exam-
ple, the position of the center of mass could remain stationary.) In analogy with 
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Equation 2.84, we write 

w,2 = S Fa-dra (9.34) 

where F„ is the ne t resultant force acting on particle a . Using a p rocedure simi-
lar to that used to obtain Equat ion 2.86, we have 

w12 = X d[ ~mav2 ] = r2 - Tx 

where 

T= = m„vt 
« 2 

Using the relation (see Equation 9.19) 

*„ = * ; + R 

we have 

'«•*« = v * = ( f ; + R ) . ( f ; + R) 

= ( K - K ) + 2 ( f „ - R ) + ( R - R ) 

= v'2 + 2(f;-R) + V2 

where v' = r ' and where Vis the velocity of the center of mass. T h e n 

T = 2 ^ mavl 
" I 

= m„v'2 + m„v2 + R-4E m„ r„ 

(9.35) 

(9.36) 

(9.37) 

a 2 a " « 2 " dt " 

But, by a previous argument , ^ a maT'a = 0, and the last te rm vanishes. Thus, 

(9.38) 

2 mav'2 + -MV2 (9.39) 

which can be stated: 

VII. The total kinetic energy of the system is equal to the sum of the kinetic energy of a par-
ticle of mass M moving with the velocity of the center of mass and the kinetic energy of 
motion of the individual particles relative to the center of mass. 
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F<«> = 
" (9.41) 

(9.42) 

Next, the total force in Equat ion 9.34 can be separated as in Equat ion 9.6: 

W12 = 2 f F<" • dra + 2 \ f a r d r a (9.40) 

If the forces F ^ a n d fa / 3 a re conservative, t h e n they a re derivable f r o m potent ia l 
funct ions, and we can write 

W = ~V«U a | 

faf3 ~ ~^cfJap J 

where Ua and Ua/3 a re the potent ia l func t ions bu t which d o n o t necessarily have 
the same form. T h e nota t ion V a means tha t the grad ien t opera t ion is p e r f o r m e d 
with respect to the coordinates of the a t h particle. 

T h e first t e rm in Equat ion 9.40 becomes 

2 f FW • dra = - 2 f (VaUa) - dra 
<* Ji a Jl 

= - 2 u0 
a 

T h e second te rm* in Equat ion 9.40 is 

JLfdT*=
 {t"fdr»+ 

= 2 | fap - (dra - d^) = 2 [ f a j 8 • drap (9.43) 

where, following the def ini t ion in Equat ion 9.27, drap = dra — drp. 
Because Uafj is a func t ion only of t he distance between ma and trip, it there-

fore depends o n six quant i t ies—that is, t he three coordinates of ma ( the x a i ) a n d 
the th ree coordinates of trip ( the x^J). T h e total derivative ofU a p is the re fo re the 
sum of six partial derivatives a n d is given by 

— / dUaa dUag \ 
dUap = 2 — ! - d x a , + — ( 9 . 4 4 ) 

' \°Xa,, ,i J 

where the Xp t a re he ld constant in the first t e rm a n d the xa i a re he ld constant in 
the second. Thus, 

dUap = (VaUafi) • dra + (VpUafj) • drp (9.45) 

*Note that, unlike the term fo/3 that appears in Equation 9.9, the term 

2 fa„ • dra a, P*etJ\ ^ 
is not antisymmetric in a and p and therefore does not, in general, vanish. 
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Now 

but Uafj = Upa , so 

Therefore , 

\ U a P ~ for/3 

— VpUpa — fpa — fap 

dUap = "f«/3' ( - drp) 
= for/3' drnp 

Using this result in Equation 9.43, we have 

2 f„B • dra = - 2 dUaB = - 2 LU 

(9.46) 

(9.47) 

(9.48) 

(9.49) 

Combining Equations 9.42 and 9.49 to evaluate W12 in Equat ion 9.40, we f ind 

w12 = - 2 ua - 2 
a</3 

U„ ap (9.50) 

We obtained this equation assuming that bo th the external and internal 
forces were derivable f rom potentials. In such a case, the total potential energy 
(both internal and external) for the system can be written as 

t / = 2 t / „ + 2 un a<P ap 

Then, 

Wn = -u\l = - vt 

Combining this result with Equation 9.35, we have 

T i - T 1 = U 1 - t/2 

or 

+ Ux = T2 + U2 

so that 

(9.51) 

(9.52) 

- E2 (9.53) 

which expresses the conservation of energy for the system. This result is valid for 
a system in which all the forces are derivable f rom potentials that do no t depend 
explicitly on the time; we say that such a system is conservative. 

VIII. The total energy for a conservative system is constant. 
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In Equat ion 9.51, the term 

represents the internal potential energy of the system. If the system is a rigid body 
with the const i tuent particles restrained to maintain their relative positions, then , 
in any process involving the body, the internal potential energy remains constant . 
In such a case, the internal potential energy can be ignored when comput ing the 
total potential energy of the system. This amounts simply to redefining the position 
of zero potential energy, but this position is arbitrarily chosen anyway; that is, it is 
only the difference in potential energy that is physically significant. T h e absolute 
value of the potent ial energy is an arbitrary quantity. 

EXAMPLE 9.4 

A projectile of mass M explodes while in fl ight into three f ragments (Figure 9-8). 
O n e mass (ml = M/2) travels in the original direct ion of the projectile, mass m2 

(= M/6) travels in the opposite direct ion, a n d mass m3 (= M/3) comes to rest. 
T h e energy £ released in the explosion is equal to five times the projectile 's ki-
netic energy at explosion. What are the velocities? 

Solution. Let the velocity of the projecti le of mass M b e v. The three f ragments 
have the following masses and velocities: 

M 
ml — —, v, = k{v Forward d i r e c t i o n , kx > 0 

M ^ 
m2 = —, v2 = —k2x O p p o s i t e d i r ec t i on , k2 > 0 

M 

m s = —, v3 = 0 At res t 
3 

m V V / Before 
/ y j O ^ ^ explosion 

- K 2 

m3 
After 

p. explosion 

m l N j ! 

FIGURE 9-8 Example 9.4. A projectile of mass M explodes in flight into three 
fragments of masses Wj, m2, and m3. 
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The conservation of l inear m o m e n t u m and energy give 

M M 
Mv = —kYv - ~k2v (9.54) 

2 6 

E + l-Mv2 = + ^ ( M 8 (9.55) 

From Equation 9.54, &2
 = ~ 6, which we can insert into Equat ion 9.55: 

(\ „\ 1 , Mv2 , Mv2 

5 -Afo 2 + -Mv2 = Af + - r - ( 3 * i - 6)2 

\2 / 2 4 1 12 

which reduces to — 3/q = 0, giving the results /j, = 0 and A, = 3. For ^ = 0, 
the value of k t = —6, which is inconsistent with k2 > 0. For k} = 3, the value of 
A2 = 3. The velocities become 

Vj = 3v 

v2 = — 3v 

v3 = 0 

EXAMPLE 9.5 

A rope of un i form linear density p and mass m is wrapped one complete turn 
a round a hollow cylinder of mass M and radius R. T h e cylinder rotates freely 
about its axis as the rope unwraps (Figure 9-9). The rope ends are at * = 0 
(one fixed, one loose) when point Pis at 6 = 0, and the system is slightly dis-
placed f rom equilibrium at rest. Find the angular velocity as a funct ion of 
angular displacement 6 of the cylinder. 

(a) (b) 

FIGURE 9-9 Example 9.5. (a) A rope is wound around a cylinder. Both ends are at 
x = 0 when 6 = 0. (b) Work is done to place section dx back up next to 
the cylinder. 
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Solution. Gravity has done work on the system to unwind the rope. Consider a 
section dx of the rope located a distance x f rom where it unwinds. The mass of 
this section is p dx. If we were to pe r fo rm work by reaching u p and wrapping 
this loose end of the rope against the cylinder, how far u p would the section dx 
actually travel? The distance x would be on the c i rcumference of the cylinder 
(see Figure 9-9), and dx would be R sin ( x / R ) below x = 0. The total distance 
the section dx would move up is 

Distance dx moves R sin I ^ 

Work done = ( p d x ) g x — R sin | — (9.56) 

The total work done by gravity in unwrapping the rope through an angle 6 is, 
therefore, 

W = 
•m 

Pg x — R sin | — dx 

02 
W = pgR?[~ + cosO - 1 (9.57) 

The work done by gravity must equal the kinetic energy gained by the rope and 
the cylinder. 

T=^m{R0f + |M(RB? 

Because W= T a n d p = M/ (2TTR), 

mgR 

2 TT 
92 

+ cos 9 - 1 = ~(m + M)R2d2 

and 

62 = 
mi igiO2 + 2 cos 6 - 2) 

2tTR(M + M) 

(9.58) 

(9.59) 

9.6 Elastic Collisions of Two Particles 
For the next few sections, we apply the conservation laws to the interaction of two 
particles. When two particles interact, the mot ion of one particle relative to the 
other is governed by the force law that describes the interaction. This interaction 
may result f rom actual contact, as in the collision of two billiard balls, or the in-
teraction may take place through the intermediary of a force field. For example, 
a free object (i.e., one no t bound in a solar orbit) may "scatter" f rom the sun by a 
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gravitational interaction, or an a-particle may be scattered by the electric field of 
an atomic nucleus. We demonstrated in the previous chapter that once the force 
law is known, the two-body problem can be completely solved. But even if the 
force of interaction between two particles is not known, a great deal can still be 
learned about the relative motion by using only the results of the conservation of 
mom en t um and energy. Thus, if the initial state of the system is known (i.e., if the 
velocity vector of each of the particles is specified), the conservation laws allow us 
to obtain information regarding the velocity vectors in the final state.* 

O n the basis of the conservation theorems alone, it is not possible to predict, 
for example, the angle between the initial and final velocity vectors of one of the 
particles; knowledge of the force law is required for such details. In this section 
and the next, we derive those relationships that require only the conservation of 
m o m e n t u m and energy. Then , we examine the features of the collision process, 
which d e m a n d that the force law be specified. We limit our discussion primarily 
to elastic collisions, because the essential features of two-particle kinematics are 
adequately demonst ra ted by elastic collisions. T h e results obta ined u n d e r the 
assumption only of m o m e n t u m and energy conservation are valid (in the non-
relativistic velocity region) even for q u a n t u m mechanical systems, because 
these conservation theorems are applicable to q u a n t u m as well as to classical 
systems. 

We demonstrated on several occasions that the description of many physical 
processes is considerably simplified if one chooses coordinate systems at rest 
with respect to the system's center of mass. In the problem we now discuss—the 
elastic collision of two particles—the usual situation (and the one to which we 
confine our attention) is one in which the collision is between a moving particle 
and a particle at rest.* Although it is indeed simpler to describe the effects of the 
collision in a coordinate system in which the center of mass is at rest, the actual 
measurements are made in the laboratory coordinate system in which the ob-
server is at rest. In this system, one of the particles is normally moving, and the 
struck particle is normally at rest. We here refer to these two coordinate systems 
simply as the CM and the LAB systems. 

We wish to take advantage of the simplifications that result by describing an 
elastic collision in the CM system. It is therefore necessary to derive the equa-
tions connect ing the CM and LAB systems. 

*The "initial state" of the system is the condition of the particles when they are not yet sufficiently 
close to interact appreciably; the "final state" is the condition after the interaction has taken place. For 
a contact interaction, these conditions are obvious. But if the interaction takes place by a force field, 
then the rate of decrease of the force with distance must be taken into account in specifying the initial 
and final states. 
+A collision is elastic if no change in the internal energy of the particles results; thus, the conserva-
tion of energy may be applied without regard to the internal energy. Notice that heat may be gener-
ated when two mechanical bodies collide inelastically. Heat is just a manifestation of the agitation of 
a body's constituent particles and may therefore be considered a part of the internal energy. The 
laws governing the elastic collision of two bodies were first investigated by John Wallis (1668), Wren 
(1668), andHuygens (1669). 
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We use the following notat ion: 

m\ = 
m2 = 

[moving] 
Mass of the < > particle 

I struck J 

In general , p r imed quantit ies refer to the CM system: 

Uj = Initial] 
_ p. > velocity of m1 in the LAB system 

u( = Initial] 
, _ p. > velocity of mx in the CM system 

and similarly fo r u2, v2, u2 , and v 2 (but u2 = 0): 

T0 = [LAB] 
„ _ Total initial kinetic energy in s ^ ^ > system 

T; 0 

T} = , [LAB] 
y,, _ Final kinetic energy of ml in > system 

and similarly fo r T2 and T2, 

V = velocity of the center of mass in the LAB system 
ij/ = angle t h r o u g h which wi, is def lec ted in the LAB system 
I = angle t h r o u g h which m2 is def lected in the LAB system 
6 = angle t h rough which % a n d m2 are def lected in the CM system 

Figure 9-10 illustrates the geometry of an elastic collision* in bo th the LAB 
a n d CM systems. T h e final state in the LAB and CM systems for the scattered par-
ticle mx may be conveniently summar ized by the diagrams in Figure 9-11. We can 
in terpre t these diagrams in the following manner . To the velocity V of the CM, 
we can add the final CM velocity v j of the scattered particle. D e p e n d i n g on the 
angle 6 at which the scattering takes place, the possible vectors v[ lie on the cir-
cle of radius v[ whose center is at the terminus of the vector V. T h e LAB velocity 
v, and LAB scattering angle ift are t h e n obta ined by connec t ing the po in t of ori-
gin of V with the te rminus of v{. 

If V < v\, only o n e possible relat ionship exists between V, v h vj and 6 (see 
Figure 9-1 l a ) . But if V > v\, t hen fo r every set V, v[, the re exists two possible 
scattering angles a n d laboratory velocities: Vj 0b and v ^ , 0 j (see Figure 9-1 l b ) , 
where the designations b and f s tand for backward and forward. This situation re-
sults f r o m the fact tha t if the final CM velocity v j is insufficient to overcome the 
velocity V of the center of mass, then , even if ml is scattered into the backward 
direct ion in the CM system (6 > tt/2), the particle will a p p e a r at a forward angle 

*We assume throughout that the scattering is axially symmetric so that no azimuthal angle need be 
introduced. However, axial symmetry is not always found in scattering problems; this is particularly 
true in certain quantum mechanical systems. 
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Laboratory System Center-of-Mass System 

mi rti2 

u2 = 0 

OTj 
U 2 

TTU) 

(a) Initial condition (b) Initial condition 

(c) Final condition (d) Final condition 

FIGURE 9-10 Geometry and notations of an elastic collision in the LAB and CM systems. 
(a) Initial condition with u2 = 0 in the LAB system, (b) initial condition 
in the CM system, (c) final condition in the LAB system, and (d) final 
condition in the CM system. Note carefully the scattering angles. 

(a) (b) 

FIGURE 9-11 The final state of mass mx for the elastic collision of two particles for the 
case (a) V< for which there is one trajectory and (b) V> for 
which there are two possible trajectories (b stands for backward a n d / 
for forward). 

in the LAB system (ip < 77-/2). Thus, fo r V > v{, the velocity Vj in the LAB system 
is a double-valued funct ion of v{. In an experiment , we usually measure no t 
the velocity vector Vj, so that a single value of ip can correspond to two different 
values of 9. Note, however, that a specification of the vectors V and v[ always 
leads to a unique combinat ion v lf 8; bu t a specification of V and only the direc-
tion of Vj (i.e., t/>) allows the possibility of two final vectors, v1(, and v ^ , if V > v[. 
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Having given a qualitative description of the scattering process, we now ob-
tain some of the equations relating the various quantities. 

According to the definit ion of the center of mass (Equation 9.3), we have 

mxrx + m2r2 = MR (9.60) 

Differentiating with respect to the time, we f ind 

TOjUj + m2u2 = MV (9.61) 

But u2 = 0 and M= mx + m2; the center of mass must therefore be moving (in 
the LAB system) toward m2 with a velocity 

TOiUi 
V = L J — (9.62) 

wij + m2 

By the same reasoning, because m2 is initially at rest, the initial CM speed of mt 

must jus t equal V 

OTiMi 
u'2=V = L J — (9.63) 

mx + m2 

Note, however, that the mot ion and the velocities are opposite in direction and 
that vectorially u 2 = —V. 

T h e great advantage of using the CM coordinate system is because the total 
linear m o m e n t u m in such a system is zero, so that before the collision the parti-
cles move direcdy toward each o ther and after the collision they move in exacdy 
opposite directions. If the collision is elastic, as we have specified, then the masses 
do no t change, and the conservation of linear m o m e n t u m and kinetic energy is 
sufficient to provide that the CM speeds before and after collision are equal: 

u[ = v[, u2 = v2 (9.64) 

Term ux is the relative speed of the two particles in e i ther the CM or the LAB 
system, u{ = u{ + w2. We therefore have, for the final CM speeds, 

OTiMT 
v'2 = L J — (9.65a) 

mx + m2 

m,i + m2 

m2Ui 
ux — u'2 = (9.65b) 

We have (see Figure 9-1 la ) 

v{ sin 6 = vx sin ip (9.66a) 

and 

v[ cos 6 + v= Vi cos 4> (9.66b) 

Dividing Equat ion 9.66a by Equation 9.66b, 

v[ sin 6 sin 6 
tant/f = — l - = (9.67) r v[cose+V cos 6 + (V/v[) y ' 
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According to Equations 9.62 and 9.65b, V/v[ is given by 

V miUx/(ml + m2) mx 

v[ m2Wi/(wi m2) m2 
(9.68) 

Thus, the ratio ml/m2 governs whether Figure 9-1 l a or Figure 9-1 l b describes 
the scattering process: 

Figure 9 - l l a : V< v[, m1 < m2 

Figure 9 - l l b : V> v[, m1 > m2 

If we combine Equations 9.67 and 9.68 and write 

tani/> 
sin 9 

cos 9 + (mj/wig) 
(9.69) 

we see that if m, <3C m2, the LAB and CM scattering angles are approximately 
equal; that is, the particle m2 is bu t littie affected by the collision with w, and acts 
essentially as a fixed scattering center. Thus 

ip = 9, m1 m2 (9.70) 

However, if m1 = m2, then 

sin 6 6 
tan ib = = t a n -

cos 0 + 1 2 

so that 

•A 2' 
m1 = m2 (9.71) 

and the LAB scattering angle is one half the CM scattering angle. Because the 
maximum value of 0 is 180°, Equation 9.71 indicates that for mx = m2, there can 
be no scattering in the LAB system at angles greater than 90°. 

Let us now refer to Figure 9-10c and construct a diagram for the recoil parti-
cle m2 similar to Figure 9 - l l a . The situation is illustrated in Figure 9-12, f rom 
which we f ind 

v2 sin £ = v2 sin 9 

v2 cos f = V — v2 cos 6 

Dividing Equation 9.72a by Equation 9.72b, we have 

v2 sin 6 sin 8 

(9.72a) 

(9.72b) 

t an£ = 
V-v2cos 9 (V/v2) - cos 9 

But, according to Equations 9.63 and 9.65a, V and v2 are equal. Therefore , 

sin 9 9 
tan L = = cot -b 1 - cos 9 2 

(9.73) 
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/ V 

9 

/ V 

/ » 2 
v \ 

= n-e 

FIGURE 9-12 The final state of recoil mass m2 in the elastic collision of two particles. 

which we may write as 

Thus, 

tanC = t a n ( | - | 

U = TT - 6 = (j) (9.74) 

For particles with equal mass, ml = m2, we have 6 = 2ip. Combining this result 
in Equation 9.74, we have 

TT 
I + <A = 2 ' m\ = m2 (9.75) 

Hence, the scattering of particles of equal mass always produces a final state in 
which the velocity vectors of the particles are at right angles if one of the parti-
cles is initially at rest (see Figure 9-13).* 

FIGURE 9-13 For the elastic scattering of two particles of equal mass (m1 = m2) with 
one of them initially at rest in the LAB system, the final velocities 
(trajectories) of the two masses are at right angles to each other. Two 
such possibilities are shown. 

*This result is valid only in the nonrelativistic limit; see Equation 14.131 for the relativistic expres-
sion governing this case. 
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EXAMPLE 9.6 

What is the maximum angle that if/ can attain for the case V > v{? What is i/*max 

for mx m2 and mx = m2? 

Solution. For the case of <Amax> Figure 9-1 l b becomes as shown in Figure 9-14. 
The angle between v j and v, is 90° for i// to be a maximum. 

vi 

sin i/Vax = y (9.76) 

According to Equation 9.68, this is just m2 Sin t^max = — JTvy 

f rom which 

<Amax = s i n - 1 ^ (9.77) 

For ml m2, î max = 0 ( n o scattering), and for ml = m2, ipnax = 90°- Generally, 
for mi > m'i> n o scattering of my backward of 90° can occur. 

9.7 Kinematics of Elastic Collisions 
Relationships involving the energies of the particles may be obtained as follows. 
First, we have simply 

T0 = \mlU\ (9.78) 

and, in the CM system, 

To = ^ + m2u'i) 

which, on using Equations 9.65a and 9.65b, becomes 

1 WI1W9 W?9 
To = ~ \ u\ = J T0 (9.79) 

I Wj + m2 m,\ + m2 
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This result shows that the initial kinetic energy in the CM system T'0 is always a 
fract ion m2/(m1 + m2) < 1 of the initial LAB energy. For the final CM energies, 
we f ind 

T ' - 1 '2 1 ( m '1 Y 2 ( Y T ,O a m T i = n m \ v \ = 7 Mi 7 To (9.80) 2 2 V m1 + m^j \m1 + m2 

and 

T' - 1 '2 1 ( m i Y 9 ... , O Q 1 , r 2 - ^ ^ = 2 ^ 2 «12 = , (9.81) 

To obtain Ti in terms of T0, we write 

7\ _ _ v[ 

T0 \mxui u\ 

Referr ing to Figure 9 - l l a and using the cosine law, we can write 

v[2 = v? + V2 - 2v1Vcosip 

or 

.,2 ,,'2 

(9.82) 

7i wf w? V2 wiV 
^ = 4 = - " T + 2 2 C O S * ( 9 - 8 3> i 0 Mf Mf U i U f 

From the previous definitions, we have 

v\ m2 V m, 
— = — and — = — (9.84) 
Mi wij + m2 u1 m1 + m2 

T h e squares of these quantit ies give the desired expressions fo r the first two 
terms on the r ight-hand side of Equat ion 9.83. To evaluate the third term, we 
write, using Equat ion 9.66a. 

vxV / sin d\ V 
2 - V cos tp = 2 K - — - cosift (9.85) 

wf \ sin I f /J uj 

T h e quantity of v\V/u\ can be ob ta ined f r o m the p roduc t of the equat ions in 
Equat ion 9.84, and using Equat ion 9.69, we have 

sin 0 cos i/r sin 6 ml 
= = cos 6 H 

sin y/ tan i(i m2 

so that 

v,V 2mxm2 ( m, , 
2-hr cos ip = - cos 6 + — (9.86) 

u\ r (mi + wi2)2\ m 1 y ' 
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Substituting Equations 9.84 and 9.86 into Equat ion 9.83, we obtain 

2mim2 (cos0 + ^ 
(mx + m2)2\ m2 

Wo J\ = 

T0 \M1 + M2 

which simplifies to 

w, 
mt + m2j 

2m lm2 
; ( 1 " COS 0) (9.87a) 

10 (mx + m2y 

Similarly, we can also obtain the ratio TX/T0 in terms of the LAB scattering 
angle if/: 

m\ J\ = 

T0 (MX + W2)2 COS I// ± 
wt2\2 

— — sin <1/ 
mj 

(9.87b) 

where the plus ( + ) sign for the radical is to be taken unless mx > m2—in which 
case the result is double-valued, and Equation 9.77 specifies the max imum value 
allowed for ip. 

The LAB energy of the recoil particle m2 can be calculated f rom 

T2 TX 4 mxm2 

T0 T0 (MX + M2)2 

If mx ~ m2, we have the simple relation 

cos2£, 77/2 

h 
To 

= cos2 </f, mx = m2 

(9.88) 

(9.89a) 

with the restriction noted in the discussion following Equation 9.71 that i(t ^ 90°. 
Also, 

TN 

= sin2 iff, mx = m2 

Several fu r the r relationships are 

LM\T\ 

sin £ = sin ip 

sin 2£ tan ijs = 

tan i/f = 

(mx/m2) — cos 2£ 
sin <f> 

(m1/w2) ~ cos (j) 

(9.89b) 

(9.90) 

(9.91) 

(9.92) 

As an example of applying the kinematic relations we have derived, consider 
the following situation. Suppose that we have a beam of projectiles, all with mass 
mx and energy T0. We direct this beam toward a target consisting of a g roup of 
particles whose masses m2 may not all be the same. Some of the incident parti-
cles interact with the target particles and are scattered. The incident particles all 
move in the same direction in a beam of small cross-sectional area, and we assume 
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FIGURE 9-15 Results of particles of mass m, and energy T0 being scattered from 
particles of various masses m2 at angle iji = 90°. Bottom: Histogram 
of number of particles detected within an energy range A T. 
Top: Curve giving scattered energy 1\ in terms of T0 as a function of 
the mass ratio m.,/mx. 

that the target particles are localized in space so that the scattered particles 
emerge f rom a small region. If we position a detector at, say, 90° to the incident 
beam and with this detector measure the energies of the scattered particles, we 
can display the results as in the lower port ion of Figure 9-15. This graph is a his-
togram that plots the n u m b e r of particles detected within a range of energy A T 
at the energy T. This particle histogram shows that three energy groups were ob-
served in the particles detected at if/ = 90°. The uppe r por t ion of the figure 
shows a curve giving the scattered energy Tj in terms of T0 as a funct ion of the 
mass ratio m2/m,i (Equation 9.87b). T h e curve can be used to de termine the 
mass m2 of the particle f rom which one of the incident particles was scattered to 
fall into one of the three energy groups. Thus, the energy g roup with = 0.8 70 

results f rom the scattering by target particles with mass m2 = 10wij, and the 
o ther two groups result f rom target masses 5 a n d 2mx. 

The measurement of the energies of scattered particles is therefore a me thod 
of qualitative analysis of the target material. Indeed, this me thod is useful in prac-
tice when the incident beam consists of particles (protons, say) that have been 
given high velocities in an accelerator of some sort. If the detector is capable of 
precise energy measurements, the me thod yields accurate information regarding 
the composition of the target. Quantitative analysis can also be made f rom the in-
tensities of the groups if the cross sections are known (see the following section). 
Applying this technique has been useful in determining the composition of air 
pollution. 
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EXAMPLE 9.7 

In a head-on elastic collision of two particles with masses and m2, the initial 
velocities are and u2 = oi i j (a > 0). If the initial kinetic energies of the two 
particles are equal in the LAB system, find the conditions on ui/u? and mx/m2 so 
that m,i will be at rest in the LAB system after the collision. See Figure 9-16. 

Solution. Because the initial kinetic energies are equal, we have 

u\ = ~m2u| = K)?m2u\ 

or 

— = a 2 (9.93) 
m2 

If mi i s a t r e s t af ter the collision, the conservation of energy requires 

1 2 1 2 

or 

wiiwf = —m2 v\ (9.94) 

The conservation of linear m o m e n t u m states that 

rriiUj + m2u2 = (wij 4- am2)U] = m2 \2 (9.95) 

Substituting v2 f rom Equation 9.95 into Equat ion 9.94 gives 

1 M + am2y 
™x x = 2m2[ m2 I Mf 

or 

mi = \ m 2 [ — + a ) (9.96) 
2 \m2 

- ^ - O C P -m2 

Before collision 

o O - ^ m, s
 ' m.. 

After collision 

FIGURE 9-16 Example 9.7. Velocities are indicated for two particles of different 
masses in a head-on elastic collision before and after the collision. 
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Substituting ml/m2 = a2 f rom Equation 9.93 gives 

2a 2 = (a2 + a ) 2 

with the result 

so that 

and 

a = V 2 - 1 = 0.414 

a 2 = 0.172 

^ = a 2 = 0.172 Wlo 

M2 
— = a = 0.414 

Because a > 0, bo th particles are traveling in the same direction; the collision is 
shown in Figure 9-16. 

EXAMPLE 9.8 

Particles of mass mx elastically scatter f rom particles of mass m2 at rest, (a) At 
what LAB angle should a magnetic spectrometer be set to detect particles that 
lose one-third of their momen tum? (b) Over what range ml/m2 is this possible? 
(c) Calculate the scattering angle for m1/ffl2

 = 1-

Solution. We have 

2 .i 2 
m^vj = —ml Mj and vx = — ux 

3 3 

Using Equations 9.82 and 9.87a, we have 
II = £! = f2Y = i - 2mirri2 

T0 u\ \ 3 / (mx + wi2) 
l = U = 1 - T ^ r — h i d - cos 0) (9.97) 

This equation can be solved for cos 6, yielding 

5(wi. + m2)2 

cos d — \ — = 1 - y (9.98) 
18»W1jw2 

where 

5 (m,i + m2)2 

y = 
18mlm2 

(9.99) 
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But we need t//, which can be obtained f rom Equation 9.69. 

sin 9 V 2 y - f 
tan if/ = — = J—— (9.100) 

cos 9 + ml/m2 1 — y + m1/m2 

where we have used Equation 9.98 for cos 9 and f o u n d sin 6 = V 2 y - f . 
Because tan 1ft must be a real number, only values for m^/m^ where 2 — y ^ 0 

are possible. Therefore , 

5(wi, 4- m2)2 

2 — > 0 (9.101) 
18 mxm2 

which can be reduced to 

+ 2 6 ^ — 

or 

—5x2 + 26* - 5 > 0 (9.102) 

where x = mx/m2. The solutions for x when Equat ion 9.102 is equal to zero are 
x = 1/5, 5. Substitution verifies that 

1 m1 z — — 5 
5 m2 

satisfies Equation 9.101, but values of m1/m2 outside this range do not. 
Substituting ml/m2 = 1 into Equation 9.99 gives 

+ \ 2 

5 (wij + m2)2 \m2 J 
18 wijw^ 18 m1/m2 

= 5(1 + l ) 2
 = 10 

18 9 

and substituting for y into Equation 9.100 gives i[i = 48°. 

y 

9.8 Inelastic Collisions 
When two particles interact, many results are possible, depend ing on the forces 
involved. In the previous two sections, we were restricted to elastic collisions. 
But, in general, multiparticles may be p roduced if large changes of energy are 
involved. For example, when a pro ton collides with some nuclei, energy may be 
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O Ul " — ^ x I n i t i a l 

mi TOg 

v 
* Collision 

mj m2 

— F i n a l 
mi 

FIGURE 9-17 Direct head-on collision between two bodies indicating the initial 
conditions, the collision, and the resulting situation. 

released. In addit ion, the p ro ton may be absorbed, and the collision may pro-
duce a n e u t r o n o r a lpha particle instead. All these possibilities are hand l ed with 
the same methods : conservation of energy a n d l inear m o m e n t u m . We con t inue 
to restrict ou r considerat ions to the same particles in the final system as were 
considered in the initial system. In general , the conservation of energy is 

<2 + + ~wi2«2 = + (9.103) 

whe re Q is cal led the Q-value a n d r e p r e s e n t s t he energy loss o r gain in the 
collision. 

Q = 0: Elastic collision, kinetic energy is conserved 
Q > 0: Exoergic collision, kinetic energy is gained 
Q < 0: Endoergic collision, kinetic energy is lost 

An inelastic collision is an example of an endoerg ic collision. T h e kinetic energy 
may be converted to mass-energy, as, fo r example , in a nuc lear collision. O r it 
may be lost as hea t energy, as, fo r example , by frictional forces in a collision. T h e 
collisions of all macroscopic bodies are endoerg ic (inelastic) to some degree . 
Two silly putty balls with equal masses and speeds striking head-on may come to 
a comple te stop, a totally inelastic collision. Even two billiard balls colliding do 
no t completely conserve kinetic energy; some small f ract ion of the initial kinetic 
energy is conver ted to heat . 

A measure of the inelasticity of two bodies colliding may be cons idered by 
referr ing to a direct head-on collision (see Figure 9-17) in which n o rotations are 
involved (translational kinetic energy only). Newton found experimentally that 
the ratio of the relative initial velocities to the relative final velocities was nearly 
constant for any two bodies. This ratio, called the coefficient of restitution (c), is 
de f ined by 

I th ~ V j | 
6 = ^ ^ (9.104) 

| U2 - M, | 

This is sometimes called Newton's rule. For a perfectly elastic collision, e = 1; 
and for a totally inelastic collision, e = 0. Values of e have the limits 0 and 1. 
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FIGURE 9-18 An oblique collision between two bodies. For smooth surfaces, the 
velocity components along the plane of contact bb' are hardly 
changed by the collision. 

We must be careful when applying Equat ion 9.104 to oblique collisions, be-
cause Newton's rule applies only to the velocity components along the normal 
(aa') to the plane of contact (bb') between the two bodies, as shown in Figure 
9-18. For smooth surfaces, the velocity components along the plane of contact are 
hardly changed by the collision. 

EXAMPLE 9.9 

For an elastic head-on collision described in Sections 9.6 and 9.7, show that e = 1. 
The mass m2 is initially at rest. 

Solution. Because the final velocities are along the same direction as u1; we 
state the conservation of linear m o m e n t u m and energy as 

wijMj = Wjfi + m2v2 (9.105) 

1 „ 1 9 1 -wijwf = -rtiyvi + ~m2vi (9.106) 

We solve Equation 9.105 for v2 and substitute into the equat ion for e 

m^Ui — rriiv j 
v2 — fi m2 mi w, f , Wi 

e = - = 2 = — (9.107) 
ux U\ m2 m2«! ux 

We can find the ratio v1/u1 f rom Equation 9.106 after substituting for v2 f rom 
Equation 9.105: 

1 1 9 . 1 (mxuj - m ^ 2 

-mlU\ = -mA + -m2y 

wjwf = mxv\ H -(w? + v\ — 2ujVi) 
WI2 
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Dividing by mx u{ and let t ing x = vx/u{ gives 

Wll 
1 = x2 + —(1 + x2 - 2x) 

m2 

Collecting terms, 

1 + —)x2 - —x + ( - - 1 1 = 0 
m 2 ) m2 \m,2 

Using the quadrat ic equat ion to solve fo r x, we f ind 

x = 1 

and 

mx 
1 

m 
x = 2 

Wli 
— + 1 
m2 

T h e solution * = 1 is trivial (vx = uu v2 = 0), so we substitute the o the r solution 
fo r x i n t o Equat ion 9.107: 

m2\m2 I \rric, mi 
e = — + 

m2 m i m-i 
— + 1 — + 1 
m2 m2 

m2 ^ mi m2 ^ ml m1 ^ 
m\ m2 m2 m2 

e = = 1 
w, 
— + 1 
m2 

During a collision (elastic o r inelastic), the forces involved may act over a 
very shor t pe r iod of t ime a n d are called impulsive forces. A h a m m e r striking a 
nail and two billiard balls colliding are examples of impulsive forces. Newton's 
Second Law is still valid t h r o u g h o u t the time per iod A^ of the collision: 

F = jt(mv) (9.108) 

After multiplying by dt and integrat ing, we have 

\^dt=Y (9.109) 
Jt, 

where At = t2 — tx. Equat ion 9.109 defines the term impulse P. T h e impulse may 
be measured exper imental ly by the change of m o m e n t u m . An ideal impulse 
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represented by no displacement dur ing the collision would be caused by an infi-
nite force acting dur ing an infinitesimal time. 

EXAMPLE 9.10 

Consider a rope of mass per unit length p and length a suspended jus t above a 
table as shown in Figure 9-19. If the rope is released f rom rest at the top, find 
the force on the table when a length x of the rope has d ropped to the table. 

Solution. We have a gravitational force of mg = pxg because the rope lies on 
the table, but we need to consider the impulsive force as well. 

dp 
F=— (9.110) 

dt 
During the time interval dt, the mass of rope equal to p(v dt) drops to the table. 
The change in m o m e n t u m imparted to the table is 

dp = (pvdt)v = pvsdt 

and 
dp 
dt 

The velocity v is related to * at time t by v2 = 2gx, because each par t of the re-
maining rope is u n d e r constant acceleration g. 

= P V 2 = i m p u l s e (9.111) 

i m p u l s e = PV2 = 2 pXg (9.112) 

The total force is the sum of the gravitational and impulsive forces: 

F= Fg + /"impulse = ?>pxg (9.113) 

which is equivalent to the weight of a length 3x of the rope. 

X 

FIGURE 9-19 Example 9.10. A rope of length a is released while suspended just above 
a table. We want to find the force Fon the table after the rope has 
dropped a distance x. 
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9.9 Scattering Cross Sections 
In the preceding sections, we derived various relationships connect ing the initial 
state of a moving particle with the final states of the original particle and a struck 
particle. Only kinematic relationships were involved; that is, no a t tempt was 
made to predict a scattering angle or a final velocity—only equations connecting 
these quantities were obtained. We now look more closely at the collision 
process and investigate the scattering in the event that the particles interact with 
a specified force field. Consider the situation depicted in Figure 9-20, which il-
lustrates such a collision in the LAB coordinate system when a repulsive force ex-
ists between m1 and m2. T h e particle m1 approaches the vicinity of m2 in such a 
way that if there were no force acting between the particles, m} would pass m2 

with a distance of closest approach b. The quantity b is called the impact parameter. 
If the velocity of m1 is uu then the impact paramete r b determines the angular 
m o m e n t u m I of particle mx about m2: 

1= mxuxb (9.114) 

We may express ux in terms of the incident energy T0 by using Equation 9.78: 

I = bV2mlT0 (9.115) 

Evidendy, for a given energy T0, the angular m o m e n t u m and hence the scatter-
ing angle Q (or ip) is uniquely specified by the impact parameter b if the force law 
is known. In the scattering of atomic or nuclear particles, we can nei ther choose 
nor measure directiy the impact parameter. We are therefore reduced, in such 
situations, to speaking in terms of the probability for scattering at various angles d. 

We now consider the distribution of scattering angles that result f rom colli-
sions with various impact parameters. To accomplish this, let us assume that we 
have a narrow beam of particles, each having mass mx and energy T0. We direct 
this beam toward a small region of space containing a collection of particles, each 
of which has mass m2 and is at rest (in the LAB system). We define the intensity 
(or flux density) / o f the incident particles as the n u m b e r of particles passing in 
unit time through a uni t area normal to the direction of the beam. If we assume 
that the force law between ml and m2 falls off with distance sufficiently rapidly, 

FIGURE 9-20 Particle m1 approaches m.b initially at rest, in the LAB system, and the 
repulsive force between particles results in scattering. Had m1 
continued in a straight line, its closest distance of approach to m2 
would have been b, the impact parameter. 
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then after an encounter, the motion of a scattered particle asymptotically ap-
proaches a straight line with a well-defined angle 9 between the initial and final 
directions of motion. We now define a differential scattering cross section a (6) 
in the CM system for the scattering into an e lement of solid angle dil' at a partic-
ular CM angle 6: 

(Number of interactions per target particle t h a t \ 

lead to scattering into dCl'at the angle0 / 
a(d) = 5 5 (9.116) 

Number of incident particles per uni t area 

If dN is the n u m b e r of particles scattered into dil' pe r uni t time, then the proba-
bility of scattering into dfl' for a uni t area of the incident beam is 

dN 

a(8)d£l' = y (9.117a) 

We sometimes write, alternatively, 

The fact that a (8) has the dimensions of area pe r steradian gives rise to the term 
cross section. If the scattering has axial symmetry (as for central forces), we can 
immediately pe r fo rm the integration over the azimuthal angle to obtain 2ir, and 
then the e lement of solid angle dd' is given by 

d(l'= 2ir sin 8 dd (9.118) 

If we re turn, for the moment , to the equivalent one-body problem discussed 
in the preceding chapter, we can consider the scattering of a particle of mass fi 
by a force center. For such a case, Figure 9-21 shows that the n u m b e r of particles 
with impact parameters within a range db at a distance b must correspond to the 
n u m b e r of particles scattered into the angular range dd at an angle 6. Therefore , 

I-2irbdb = -I-<r(8) •2irsm.8d8 (9.119) 

where db/dd is negative, because we assume that the force law is such that the 
amoun t of angular deflection decreases (monotonically) with increasing impact 
parameter. Hence , 

b db <r(9) = 
sin 8 d8 

(9.120) 

We can obtain the relationship between the impact parameter b and the scatter-
ing angle 0 by using Figure 9-22. In the preceding chapter, we found (in Equation 
8.31) that the change in angle for a particle of mass /jl moving in a central-force field 
was given by 

(l/r1) dr 
A e = 

, V 2 n [ E - U - (Z2/2/xr2)] 
(9.121) 
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i Scattering 
center 

~ dA = 2jibdb 

FIGURE 9-21 The equivalent one-body problem has mass fi scattered by a force center 
in the CM system. Particles within a range db around impact parameter 
b scatter into the angular range dd at the angle 0. 

The motion of a particle in a central-force field is symmetric about the point 
of closest approach to the force center (see point A in Figure 9-22). T h e angles a 
and /3 are therefore equal and, in fact, are equal to 0. Thus, 

0 = tt - 2 0 (9.122) 

For the case that rmax = oo, the angle 0 is given by 

^ f°° (b/r2)dr 
0 = . (9.123) 

k „ V l - (tfVr2) - (U/V0) 
where use has been made of the one-body equivalent of Equat ion 9.115: 

1= bVfyTo 

where, as in Equat ion 9.79, Tq = ^nwf. We have also used E = Tq because the 
total energy E must equal the kinetic energy Tq at r = oo where U = 0. T h e 
value of rmin is a roo t of the radical in the d e n o m i n a t o r in Equat ions 9.121 or 
9.123—that is, rmin is a tu rn ing po in t of the mot ion a n d cor responds to the dis-
tance of closest approach of the particle to the force center. Thus, Equat ions 
9.122 and 9.123 give the d e p e n d e n c e of the scattering angle 6 on the impact 
pa ramete r b. O n c e we know b = b(8) fo r a given potent ia l U(r) and a given 
value of Tq, we can calculate the differential scattering cross section f r o m 
Equat ion 9.120. This p rocedu re leads to the scattering cross section in the CM 
system, because we have been consider ing m2 as a f ixed force center. If 
wi2 mi, the cross section so ob ta ined is very close to the LAB system cross 

Scattering 
center 

FIGURE 9-22 The geometry of particle scattering in a central-force field. Point A is 
the distance of closest approach. 
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section; but if mx cannot be considered negligible compared with m 2, the proper 
transformation of solid angles must be made. We now obtain the general relations. 

Because the total n u m b e r of particles scattered into a uni t solid angle must 
be the same in the LAB system as in the CM system, we have 

a(6)d£l' = a-(ip)d£l 

o-(8) • 2tr sin Odd = a(ip) • 2t t sin ipdip (9.124) 

where 9 and ip represent the same scattering angle but measured in the CM or 
LAB system, respectively, and where dfl' and dil represent the same e lement of 
solid angle bu t measured in the CM or LAB system, respectively. Therefore , cr(6) 
and cr(i/f) are the differential cross sections for the scattering in the CM and LAB 
systems, respectively. Thus, 

sin 6 dd 
cr(iP) = cr{8) — - — (9.125) 

sin ip dip 

The derivative dO/dip can be evaluated by first referr ing to Figure 9-1 l a and writ-
ing, f rom the sine law (and using Equations 9.63 and 9.65b), 

sin(0 — ip) wij 
sin ip m2 

We set the differential dx = 0 and f ind 

= x (9.126) 

dx dx 
dx = 0 = —dip + —dO 

dip r 36 

which gives, after taking the partial derivatives and collecting terms, 

dd sin(0 — ip) cos ip 
— = — + 1 
dip cos(8 — ip) sin ip 

Expanding sin(0 — ip) and simplifying, we have 

d8 sin 8 
dip cos(0 — ip) sin ip 

and so 

s i n 2 0 
(r{ip) = o-(fl) — - y - (9.127) 

cos(8 — ip) sin^ ip 

Multiplying both sides of Equation 9.126 by cos ip and then adding cos (6 — ip) to 
both sides, we have 

sin(0 — ip) cos ip 
1- cos(0 — ip) = x cos ip + cos(0 — ip) 

sin ip 

Expanding sin(0 — ip) and cos(0 — ip) on the left-hand side, we obtain 
sin 8 

= x cos ip + cos(6 — ip) 
sin ip 
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Substituting this result into Equation 9.127, 

[x cos i/r + cos(9 — i/r)]2 

a(ip) = a(9) , 
cos (9 — ijt) 

And f rom Equation 9.126, we have 

cos(9 — i/r) = V l — x2 sin2 l/r 

Hence, 

(x < 1) (9.128) 

o - W = <r{6) 
[x cos i/r + V I x2 sin2 i/r]2 

v r x2 sin2 i/r 

Equation 9.126 can be used to write 

9 = sin : ( x sin t/r) + </r 

(9.129) 

(9.130) 

Equations 9.129 and 9.130 therefore specify the cross section entirely in terms of 
the angle i/r.* For the general case (i.e., for an arbitrary value of x), the evalua-
tion of cr(i/r) is complicated. Tables exist, however, so the particular cases can be 
computed with relative ease.* 

The transformation represented by Equations 9.129 and 9.130 assumes a 
simple form for two cases. For x = mx/mt = 1, we have f rom Equation 9.71, 8 = 
2i/r, and Equation 9.129 becomes 

o-(ijj) = cr(9)le=2i/i' 4 cos i/r, mx — w?2 

and for ml m2, x = 0, and 9 = i/r, so that 

o-(i/r) = a(d)= Wj wi9 

(9.131) 

(9.132) 

EXAMPLE 9.11 

Consider molecules of radius moving toward the right with identical veloci-
ties scattering f rom dust particles of radius R2 that are at rest. Consider both as 
hard spheres and f ind the differential and total cross sections. 

Solution. The dust particles are at rest, and we will solve this scattering prob-
lem in the LAB system. Consider the geometry of scattering in Figure 9-23. T h e 
particles with impact parameter b will be scattered at angle i/r. Similarly to 
Equation 9.119, incident particles enter ing within a range of impact parameters 
db scatter into an angular range dip, and we have 

2tt-b db = —cr (t/r) • 277• sin i/r dip (9.133) 

*These equations apply not only for elastic collisions but also for inelastic collisions (in which the in-
ternal potential energy of one or both of the particles is altered as a result of the interaction) if the 
parameter xis written as V/v\ instead of » / m 2 (see Equation 9.68). Note that the preceding equa-
tions refer only to the usual case x < 1. 
fSee, for example, the tables by Marion et al. (Ma59). 
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the left and scatters at angle </'• 

In o r d e r to f i n d the d i f fe ren t ia l cross sect ion a (if/), we have to find the relat ion-
sh ip be tween the impac t p a r a m e t e r b a n d scat ter ing ang le ip. We see f r o m 
Figure 9-23 tha t b = (Rx + R2) cos a , so we n e e d to first find t h e re la t ionsh ip be-
tween angles a a n d ip. 

Look closely a t F igure 9-23 to see t ha t 2/3 + ip = '7T,a = ip + l3- tt/2, a n d 

- * + ( f - f ) - f - i 
Before using E q u a t i o n 9.133, we n e e d to find t h e d i f fe ren t ia l db. We have 

4> 
b = (Ri + R2)cosa = (Rx + R2)co s1 

a n d 

+ Rj) . * db = sin — dip. 
2 2 

We now inser t t h e t e rms in to Equa t ion 9.133 to find 

273" ip ip 
—^"(-Ri + ^2) cos 2 s*n 2 ^ = ' 2Tsintp dtp 

If we use the identity, sin ip = 2 sin (ip/2)cos(ip/2), we finally f i n d 

<T(iP) = + R2)2 (9.135) 

We first n o t e tha t t he d i f fe ren t ia l sca t ter ing cross sect ion is isotropic, t he scatter-
ing is the same in every d i rec t ion . This is somewha t surpr is ing, because differ-
ent ial scat ter ing cross sect ions normal ly have a n angu l a r d e p e n d e n c e . 
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We will discuss the total cross section in the next section, bu t briefly it is 
proport ional to the probability that any scattering takes place. In order to deter-
mine the total cross section, we must integrate Equation 9.135 over all possible 
ip. Note that we have already done so over the azimuthal angle to de te rmine 
Equation 9.118. We have 

cr, = l—dil = a(ip) dCl 
Jdip J 

+ R2)22tt s i n ip dip 
o 4 

= + R2)2 I sin i f , dip = - + R2)2cos ip 
2 Jo 2 o 

<Tt = 7T{RX + R2)2 

This is precisely what we would expect for the total cross section for scattering 
of two hard spheres. The maximum area occurs when the molecule and dust 
particle have jus t a glancing blow, angle a = 0. The impact parameter will be 
simply b = Rx + R2, and the area is 7rb2. 

9.10 Rutherford Scattering Formula* 
O n e of the most impor tant problems that makes use of the formulas developed 
in the preceding section is the scattering of charged particles in a Coulomb or 
electrostatic field. The potential fo r this case is 

U(r) = - (9.136) 
r 

where k = qxq2/4ite0, with qx and q2 the amounts of charge that the two particles 
carry (k may be either positive or negative, depend ing on whether the charges 
are of the same or opposite sign; k > 0 corresponds to a repulsive force and k < 0 
to an attractive force). Equation 9.123 then becomes 

^ P0 (b/r)dr 
0 = . (9.137) 

Jrmi„Vr2 - (k/T'0)r — b2 

which can be integrated to obtain (see the integration of Equation 8.38): 

(K/b) 
cos O = . : (9.138) 

V I + (K/b)2 

*E. Rutherford, Phil. Mag. 21, 669 (1911). 
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where 

K 

Equation 9.138 can be rewritten as 

b'2 = k2VAU'20 

But Equation 9.122 states that O = tt/2 - 6/2, so 

b = k co t (0 /2) 

Thus, 

db__K 1 
dd ~ 2 s in 2 (6 /2) 

Equation 9.120 thus becomes 

<7(0) = 
K2 cot(0/2) 

Now, 

Hence, 

2 sin 0 sin2(0/2) 

sin 0 = 2 s in(0/2) cos(0/2) 

/f2 1 = — J 
v ' 4 sin4 (0/2) 

or 

(9.139) 

(9.140) 

which is the Rutherford scattering formula* and demonstrates the dependence 
of the CM scattering cross section on the inverse four th power of sin (0 /2) . Note 
that <T(0) is independen t of the sign of k, so that the form of the scattering distri-
but ion is the same for an attractive force as for a repulsive one. It is also rather re-
markable that the quantum-mechanical t rea tment of Coulomb scattering leads to 
exacdy the same result as does the classical derivation.^ This is indeed a for tunate 
circumstance because, if it were otherwise, the disagreement at this early stage be-
tween classical theory and exper iment might have seriously delayed the progress 
of nuclear physics. 

For the case M, = m2, Equation 9.79 states that T'0 = |T0 , SO that 

k'2 1 
a { e ) ~~ 4TQ ' sin4(0/2) ' 

m \ — m 2 (9.141) 

*This form of the scattering law was verified for the interaction of a particles and heavy nuclei by the 
experiments of H. Geiger and E. Marsden, Phil. Mag. 25, 605 (1913). 
+N. Bohr showed that the identity of the results is a consequence of the 1/r2 nature of the force; it 
cannot be expected for any other type of force law. 
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Or, f rom Equation 9.131, 

fe2 COS (// 
o - W = T T ' = (9.142) 

1 0 s i r ip 

All the preceding discussion applies to the calculation of differential scattering 
cross sections. If it is desired to know the probability that any interaction whatsoever 
will take place, it is necessary to integrate a {9) [or er(t//) ] over all possible scattering 
angles. The resulting quantity is called the total scattering cross section (a,) and is 
equal to the effective area of the target particle for producing a scattering event: 

a t = <r(0)dCl' = 2tt \ a(d)sinddO (9.143) 
J47T JO 

where the integration over 9 runs f rom 0 to tt. The total cross section is the same 
in the LAB as in the CM system. If we wish to express the total cross section in 
terms of an integration over the LAB quantities, 

<t, = cr(ip)dil 

then if m, < »i2, ip also runs f rom 0 to tt. If wi, S m2,ip runs only u p to <//max 

(given by Equation 9.77), and we have 
V m ax 

(tt — 2tt a{ip) sin Ip dip (9.144)' 
Jo 

If we at tempt to calculate crt for the case of Rutherford scattering, we find 
that the result is infinite.This occurs because the Coulomb potential, which varies 
as 1/r , falls off so slowly that, as the impact parameter b becomes indefinitely 
large, the decrease in scattering angle is too slow to prevent the integral f rom di-
verging. We have, however, pointed out in Example 8.6 that the Coulomb field of 
a real atomic nucleus is screened by the surrounding electrons so that the poten-
tial is effectively cut off at large distances. The evaluation of the scattering cross 
section for a screened Coulomb potential according to the classical theory is 
quite complicated and is not discussed here; the quantum-mechanical t reatment 
is actually easier for this case. 

9.11 Rocket Motion 
The mot ion of a simple rocket is an interesting application of elementary 
Newtonian dynamics and might have been covered in Chapter 2. However, we 
want to include more complicated rockets with exhaust masses and multiple 
rocket stages, so we deferred the discussion to this chapter on systems of particles. 
The two cases we examine are rocket motion in f ree space and the vertical as-
cent of rockets u n d e r gravity. The first case requires an application of the con-
servation of linear momen tum. T h e second case requires a more complicated 
application of Newton's Second Law. 
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Free space 
f = 0 

v 

Inertial reference system 

FIGURE 9-24 A rocket moves in free space at velocity v. In the time interval dt, a mass 
dm' is ejected from the rocket engine with velocity u with respect to the 
rocket ship. 

Rocket Motion in Free Space 
We assume here that the rocket (space ship) moves u n d e r the influence of no 
external forces. We choose a closed system in which Newton's Second Law can 
be applied. In outer space, the mot ion of the space ship must depend entirely 
on its own energy. It moves by the reaction of ejecting mass at high velocities. To 
conserve linear m o m e n t u m , the space ship will have to move in the opposite di-
rection. The diagram of the space ship mot ion is shown in Figure 9-24. At some 
time t, the instantaneous total mass of the space ship in m, and the instantaneous 
speed of the space ship is v with respect to an inertial reference system. We as-
sume that all mot ion is in the x direction and eliminate the vector notation. 
During a time interval dt, a positive mass dm' is ejected f rom the rocket engine 
with a speed — u with respect to the space ship. Immediately after the mass dm' is 
ejected, the space ship's mass and speed are m — dm' and v + dv, respectively. 

Initial m o m e n t u m = mv (at time t) (9.145) 

Final m o m e n t u m = (m — dm') (v + dv) + dm'(v — u) (at time t + dt) 

Notice that the speed of the ejected mass dm' with respect to the reference sys-
tem is v — u. The conservation of l inear m o m e n t u m requires that Equations 
9.145 and 9.146 be equal. There are n o external forces (Fexl = 0). 

space ship less dm' rocket exhaust dm' (9.146) 

final 

p(t) = p{t + dt) 
mv — (m— dm') (v + dv) + dm' {v — u) (9.147) 
mv = mv + m dv — v dm! — dm' dv + v dm! — u dm' 

mdv = u dm! 
dm' 

dv = u 
m 

(9.148) 
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where we have neglected the p roduc t of two differentials dm'dv. We have consid-
ered dm' to be a positive mass ejected f r o m the space ship. T h e change in mass 
of the space ship itself is dm, where 

dm= -dm' (9.149) 

and 

dm 
dv = —u — 

m 
(9.150) 

because dm must be negative. Let m0 and v0 be the initial mass and speed of the 
space ship, respectively, and integrate Equation 9.150 to its final values tn and v. 

'v rm 

dv = — M 
^ Jmo 

dm 
m 

v — v0 = u In OTo 
m 

(9.151) 

v = v 0 + u \ n ( ^ ^ (9.152) 

T h e exhaust velocity u is assumed constant. Thus, to maximize the space ship's 
speed, we need to maximize the exhaust velocity u and the ratio m0/m. 

Because the terminal speed is limited by the ratio mQ/m, engineers have con-
structed multistage rockets. T h e min imum mass (less fuel) of the space ship is 
limited by structural material. However, if the fuel container itself is je t t isoned 
after its fuel has been burned , the mass of the remaining space ship is even less. 
T h e space ship can contain two or more fuel containers, each of which can be 
jet t isoned. 

For example, let 

m0 = Initial total mass of space ship 

mx = ma+ mb 

ma = Mass of first-stage payload 

mh = Mass of first-stage fuel containers, etc. 

t/j = Terminal speed of first stage of "burnout" 
after all fuel is b u r n e d 

vi = v0 + w l n ^ j (9.153) 

At burnout , the terminal speed vx of the first stage is reached, and the mass mb is 
released into space. Next, the second-stage rocket ignites with the same exhaust 
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velocity, and we have 

ma = Initial total mass of space ship second stage 

Wc, = mc + md 

mc = Mass of second-stage payload 

md = Mass of second-stage fue l container, etc. 

= Initial speed of second stage 

vt = Terminal speed of second stage at b u r n o u t 

v ^ v i + u l n ^ j (9.154) 

( mnm„\ 

(9.155) mxm2J 
T h e p roduc t (m()ma/mx m2) can be m a d e m u c h larger than ju s t m^/mx. 

Multistage rockets are more commonly used in ascent u n d e r gravity than in f ree 
space. 

We have seen tha t the space ship is p rope l led as a result of the conservation 
of l inear m o m e n t u m . But engineers and scientists like to refer to the force te rm 
as rocket "thrust." If we multiply Equat ion 9.150 by m and divide by dt, we have 

dv dm 
m = -u— (9.156) 

dt dt 

Since the left side of this equat ion "appears" as ma(force) , the r ight side is called 
thrust: 

dm 
Thrus t = - u — (9.157) 

dt 

Because dm/ dt is negative, the thrust is actually positive. 

Vertical Ascent Under Gravity 
The actual mot ion of a rocket a t tempt ing to leave Earth 's gravitational field is 
quite complicated. For analytical purposes , we begin by making several assump-
tions. T h e rocket will have only vertical mot ion , with n o horizontal c o m p o n e n t . 
We neglect air resistance and assume that the accelerat ion of gravity is constant 
with height . We also assume that the b u r n rate of the fue l is constant . All these 
factors that are neglected can reasonably be inc luded with a numer ica l analysis 
by computer . 

We can use the results of the previous case of rocket mot ion in f r ee space, 
bu t we n o longer have Fext = 0. T h e geometry is shown in Figure 9-25. We again 
have dm' as positive, with dm = —dm'. T h e external force Fext is 

•Fext = 
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Earth 

FIGURE 9-25 A rocket in vertical ascent under Earth's gravity. Mass dm' is ejected 
from the rocket engine with velocity u with respect to the rocket ship. 

or 

Femdt = d(mv) = dp = p(t + dt) - p(t) (9.158) 

over a small differential time. 
For the space ship system, we f o u n d the initial a n d final m o m e n t a in 

Equations 9.145-9.150. We now use the results leading u p to Equation 9.150 to 
obtain 

p(t + dt) - p(t) = mdv + udm (9.159) 

In f ree space, Fexl = 0, bu t in ascent, FeM = — mg. Combining Equations 9.158 
and 9.159 gives 

Fexldt = — mg dt = mdv + u dm 

— mg= mv + um (9.160) 

Because the fuel bu rn rate is constant, let 

dm 
m = —— = —a, a > 0 (9.161) 

dt 

and Equation 9.160 becomes 

( « dv = —g + — u]dt V * m J 
This equation, however, has three unknowns (v, m, t), so we use Equation 9.161 
to eliminate time, giving 

dv = ( - ~ — \dm (9.162) \ a mi 
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Assume the initial and final values of the velocity to be 0 and v respectively and 
of the mass m0 and m respectively, so that 

dv 
-

— ) dm a m i 

S fmo —(mn — m) + u lnl — a \ m 

We can integrate Equation 9.161 to find the time: 

(9.163) 

dm = —a 
Jmo 

m0 — m = at 

dt 

Equation 9.163 becomes 

! m o -gt + wln( — 

(9.164) 

(9.165) 

We could cont inue with Equation 9.163 and integrate once more to deter-
mine the height of the rocket, bu t we leave that to Example 9.13 and the prob-
lems. Such integrations are tedious, and the problem is more easily handled by 
computer methods. Even at burnout , the rocket will cont inue rising because it 
still has an upward velocity. Eventually, with the preceding assumptions, the grav-
itational force will stop the rocket (because we assumed a constant g no t de-
creasing with height) . 

An interesting situation occurs if the exhaust velocity u is no t sufficiendy 
great to make v in Equation 9.165 positive. In this case, the rocket would remain 
on the ground. This situation occurs because of the limits of integration we as-
sumed leading to Equation 9.163. We would need to bu rn off sufficient fuel be-
fore the rocket thrust would lift it off the g round (see Problem 9-59). Of course, 
rockets are no t designed this way; they are made to lift off as the rockets reach a 
full bu rn rate. 

EXAMPLE 9.12 

Consider the first stage of a Saturn Vrocket used for the Apollo m o o n program. 
The initial mass is 2.8 X 106 kg, and the mass of the first-stage fuel is 2.1 X 106 

kg. Assume a mean thrust of 37 X 106 N. T h e exhaust velocity is 2600 m / s . 
Calculate the final speed of the first stage at burnout . Using the result of 
Problem 9-57 (Equation 9.166), also calculate the vertical he ight at burnout . 

Solution. From the thrust (Equation 9.157), we can de te rmine the fuel b u r n 
rate: 

dm thrust 37 X 10 6N , 
— = = = - 1 . 4 2 X 104 kg / s 
dt ~u - 2 6 0 0 m/ s 8 
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The final rocket mass is (2.8 X 106 kg - 2.1 X 106 kg) or 0.7 x 106 kg. We can 
de termine the rocket speed at b u r n o u t (vb) using Equat ion 9.163. 

"2.8 x 106kg~ 9.8 m/s 2 (2.1 x 106kg) 

* = 1.42 x 10 4kg/s + ( 2 6 Q Q m / s ) l n 

vb = 2.16 X 10s m / s 

The time to bu rnou t tb, f rom Equation 9.164, is 

0.7 x 106kg 

k = 

m0 — m 
a 

2.1 X 106kg 

1.42 X 10 4 kg/s 
= 148 s 

or about 2.5 min. 
We use the result of Problem 9-57 to obtain the height at b u r n o u t yb: 

1 mu (m0 
y b = u t b - - g t l - ~ \ n \ - (9.166) 

(2600 m/s) (148 s) - - ( 9 . 8 m/s2) • (148 s)2 

(0.7 x 10® kg) • (2600 m/s ) / 2 .8 x 10 6kg 
— In 

Jb 

1.42 x 10 4kg/s 

yb = 9.98 X 104 m = 100 km 

The actual height is only about two-thirds of this value 

0.7 x 10 6kg 

EXAMPLE 9.1.5 

A sounding rocket leaves Earth's surface under gravity, typically in a vertical 
direction and returns to Earth. The exhaust velocity is u, and the constant fuel 
burn rate is a. Let the initial mass be m0 and the mass at fuel burnout be mf. 
Calculate the altitude and speed of the rocket at fuel burnout in terms of 
u, a, m(, viq, and g. 

Solution. We de te rmine the time T a t bu rnou t f rom Equation 9.164, 
T = (m0 — m,f)/a. We integrate over the velocity, Equat ion 9.165, to find Hbo, 
the height at fuel bu rn out. 

CT rT 
Hb0= | vdt —gt + u In 

mo 
m 

dt 

We use Equation 9.161, dt -

H, bo 

• {dm)/a, for the last integral and integrate over dm. 

ln | — | dm 
« \mo ^ J o d t + a 



378 9 / DYNAMICS OF A SYSTEM OF PARTICLES 

We integrate the last term using the definite integral, / I n x dx = x In x — x, to 
obtain after collecting terms, 

g(m<> ~ »y)2 u 
Hh„ — 

2a 2 + -a rrij In (-) \m0J 
+ m0 — m (9.167) 

If we insert the numbers f rom the last example, we find the same answer for the 
bu rnou t height. 

The speed at bu rnou t can be de termined directly f rom Equat ion 9.165. 

m0 

(9.168) 

Vbo = ~gT + U ln I — m. 

g(m0-mf) (m,,, 
1- u In — a \m L 

PROBLEMS 

9-1. Find the center of mass of a hemispherical shell of constant density and inner ra-
dius rj and outer radius r2. 

9-2. Find the center of mass of a uniformly solid cone of base diameter la and height h. 

9-3. Find the center of mass of a uniformly solid cone of base diameter 2 a and height h 
and a solid hemisphere of radius a where the two bases are touching. 

9-4. Find the center of mass of a uniform wire that subtends an arc 6 if the radius of the 
circular arc is a, as shown in Figure 9-A. 

FIGURE 9-A Problem 9-4. 

9-5. The center of gravity of a system of particles is the point about which external grav-
itational forces exert no net torque. For a uniform gravitational force, show that 
the center of gravity is identical to the center of mass for the system of particles. 

9-6. Consider two particles of equal mass m. The forces on the particles are F, = 0 and 
F2 = F(li. If the particles are initially at rest at the origin, what is the position, veloc-
ity, and acceleration of the center of mass? 
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9-7. A model of the water molecule H 2 0 is shown in Figure 9-B. Where is the center of 
mass? 

y 
/ 

/ 
a / 

/ 
/ 

/ V 
o 

V 5 2 ° 
\ 

\ 
\ a \ 

\ 
\ 

\ H 

X 

FIGURE 9-B Problem 9-7. 

9-8. Where is the center of mass of the isosceles r ight triangle of un i form areal density 
shown in Figure 9-C? 

9-9. A projectile is f i red at an angle of 45° with initial kinetic energy Eq. At the top of its 
trajectory, the projectile explodes with addit ional energy Eq into two fragments . 
O n e f r agmen t of mass ml travels straight down. What is the velocity (magni tude 
and direction) of the second f r agment of mass m2 and the velocity of the first? 
What is the ratio of mi/m2 when mx is a maximum? 

9-10. A cannon in a for t overlooking the ocean fires a shell of mass M at an elevation 
angle 6 and muzzle velocity va. At the highest point , the shell explodes into two 
f ragments (masses m1 + m2 = M), with an addit ional energy E, traveling in the 
original horizontal direction. Find the distance separat ing the two f ragments when 
they land in the ocean. For simplicity, assume the cannon is at sea level. 

9-11. Verify that the second term on the r ight-hand side of Equat ion 9.9 indeed vanishes 
for the case n = 3. 

9-12. Astronaut S tumblebum wanders too far away f r o m the space shuttle orbi ter while 
repair ing a b roken communicat ions satellite. S tumblebum realizes that the orbiter 
is moving away f r o m him at 3 m / s . S tumblebum and his maneuver ing uni t have a 
mass of 100 kg, including a pressurized tank of mass 10 kg. T h e tank includes only 
2 kg of gas that is used to prope l h im in space. T h e gas escapes with a constant ve-
locity of 100 m / s . 
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(a) Will Stumblebum run out of gas before he reaches the orbiter? 
(b) With what velocity will Stumblebum have to throw the empty tank away to reach 

the orbiter? 

9-13. Even though the total force on a system of particles (Equation 9.9) is zero, the net 
torque may not be zero. Show that the net torque has the same value in any coordi-
nate system. 

9-14. Consider a system of particles interacting by magnetic forces. Are Equations 9.11 
and 9.31 valid? Explain. 

9-15. A smooth rope is placed above a hole in a table (Figure 9-D). One end of the rope 
falls through the hole at t = 0, pulling steadily on the remainder of the rope. Find 
the velocity and acceleration of the rope as a function of the distance to the end of 
the rope x. Ignore all friction. The total length of the rope is L. 

W . . . 

1 
j 

It i 

Hi 

X 

i 

FIGURE 9-D Problem 9-15. 

9-16. For the energy-conserving case of the falling chain in Example 9.2, show that the 
tension on either side of the bottom bend is equal and has the value px2/4. 

9-17. Integrate Equation 9.17 in Example 9.2 numerically and make a plot of 
the speed versus the time using dimensionless parameters, x/ V^2gb vs. t/ V2b/g 
where V2b/g is the free fall time, (freefaU. Find the time it takes for the free end to 
reach the bottom. Define natural units by T = <Vg/2A, a = x/%b and integrate 
dr/da from a = s (some small number greater than 0) to a = 1/2. One can't in-
tegrate numerically from a = 0 because of a singularity in dr/da. The expression 
dr/da is 

*L = I 1 ~ 2 a 

da V 2a(l — a) 

9-18. Use a computer to make a plot of the tension versus time for the falling chain in 
Example 9.2. Use dimensionless parameters (T/Mg) versus t/tb„m, where 
*freefaii = V2A/g. Stop the plot before T/Mg becomes greater than 50. 

9-19. A chain such as the one in Example 9.2 (with the same parameters) of length b and 
mass pb is suspended from one end at a point that is a height b above a table so that 
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the free end barely touches the tabletop. At time t = 0, the fixed end of the chain is 
released. Find the force that the tabletop exerts on the chain after the original 
fixed end has fallen a distance x. 

9-20. A uniform rope of total length 2a hangs in equilibrium over a smooth nail. A very 
small impulse causes the rope to slowly roll off the nail. Find the velocity of the 
rope as it just clears the nail. Assume the rope is prevented from lifting off the nail 
and is in free fall. 

9-21. Aflexible rope of length 1.0 m slides from a frictionless table top as shown in Figure 
9-E. The rope is initially released from rest with 30 cm hanging over the edge of the 
table. Find the time at which the left end of the rope reaches the edge of the table. 

9-22. A deuteron (nucleus of deuterium atom consisting of a proton and a neutron) with 
speed 14.9 km/s collides elastically with a neutron at rest. Use the approximation 
that the deuteron is twice the mass of the neutron, (a) If the deuteron is scattered 
through a LAB angle if/ = 10°, what are the final speeds of the deuteron and neu-
tron? (b) What is the LAB scattering angle of the neutron? (c) What is the maxi-
mum possible scattering angle of the deuteron? 

9-23. A particle of mass m1 and velocity uY collides with a particle of mass m2 at rest. The 
two particles stick together. What fraction of the original kinetic energy is lost in 
the collision? 

9-24. A particle of mass m at the end of a light string wraps itself about a fixed vertical 
cylinder of radius a (Figure 9-F). All the motion is in the horizontal plane (disre-
gard gravity). The angular velocity of the cord is <u0 when the distance from the par-
ticle to the point of contact of the string and cylinder is b. Find the angular velocity 
and tension in the string after the cord has turned through an additional angle 0. 

9-25. Slow-moving neutrons have a much larger absorption rate in 235U than fast neu-
trons produced by 235U* fission in a nuclear reactor. For that reason, reactors con-
sist of moderators to slow down neutrons by elastic collisions. What elements are 
best to be used as moderators? Explain. 

FIGURE 9-E Problem 9-21. 

FIGURE 9-F Problem 9-24. 
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9-26. T h e force of attraction between two particles is given by 

r 
f1 2 = k (r2 - r,) («2 -

where k is a constant, v(l is a constant velocity, and r = | r2 — i"i I - Calculate the internal 
torque for the system; why does this quantity not vanish? Is the system conservative? 

9-27. Derive Equat ion 9.90. 

9-28. A particle of mass ml elastically collides with a particle of mass m2 at rest. What is 
the max imum fraction of kinetic energy loss for m{i Describe the reaction. 

9-29. Derive Equation 9.91. 

9-30. A tennis player strikes an incoming tennis ball of mass 60 g as shown in Figure 9-G. 
T h e incoming tennis ball velocity is vt = 8 m / s , and the outgoing velocity is 
Vj = 16 m / s . 
(a) What impulse was given to the tennis ball? 
(b) If the collision t ime was 0.01 s, what was the average force exerted by the tennis 

9-31. Derive Equat ion 9.92. 

9-32. A particle of mass m and velocity % makes a head-on collision with ano the r particle 
of mass 2 at rest. If the coefficient of restitution is such to make the loss of total ki-
netic energy a maximum, what are the velocities J;, and v2 af ter the collision? 

9-33. Show that 7] / T0 can be expressed in terms of OT2/mx = a and cos ip = y as 

Plot 7 , /7 0 as a funct ion of ip for a = 1, 2, 4, and 12. These plots correspond to the 
energies of protons or neut rons after scattering f r o m hydrogen (a = 1), deu te r ium 
(a = 2), hel ium (a = 4), and carbon (a = 12), o r of a lpha particles scattered f rom 
hel ium (a = 1), oxygen (a = 4), and so for th . 

racket? 

FIGURE 9-G Problem 9-30. 
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9-34. A billiard ball of initial velocity M, collides with another billiard ball (same mass) initially 
at rest. The first ball moves off at ij/ = 45°. For an elastic collision, what are the veloci-
ties of both balls after the collision? At what LAB angle does the second ball emerge? 

9-35. A particle of mass m1 with initial laboratory velocity % collides with a particle of mass to, 
at rest in the LAB system. The particle m, is scattered through a LAB angle ip and has a 
final velocity r;,, where = vt (if/). Find the surface such that the time of travel of the 
scattered particle from the point of collision to the surface is independent of the scat-
tering angle. Consider the cases (a) m2 = mb (b) m2 = 2mu and (c) m2 = oo. Suggest 
an application of this result in terms of a detector for nuclear particles. 

9-36. In an elastic collision of two particles with masses ra, and m2, the initial velocities 
are u, and u2 = au,. If the initial kinetic energies of the two particles are equal, 
find the conditions on Mi/«2 and ml/m2 such that m1 is at rest after the collision. 
Examine both cases for the sign of a. 

9-37. When a bullet fires in a gun, the explosion subsides quickly. Suppose the force on 
the bullet is F = (360 — 107<2s -2) N until the force becomes zero (and remains 
zero). The mass of the bullet is 3 g. 
(a) What impulse acts on the bullet? 
(b) What is the muzzle velocity of the gun? 

9-38. Show that 
7i m\ 

• S2 

T0 (mi + m2f 

where 
cos (0 - ip) 

S = cos tp + mi 

9-39. A particle of mass m strikes a smooth wall at an angle 6 from the normal. The coef-
ficient of restitution is c. Find the velocity and the rebound angle of the particle 
after leaving the wall. 

9-40. A particle of mass ml and velocity M, strikes head-on a particle of mass m2 at rest. 
The coefficient of restitution is e. Particle m2 is tied to a point a distance a away as 
shown in Figure 9-H. Find the velocity (magnitude and direction) of m1 and ?n2 

after the collision. 

a v 
o 

FIGURE 9-H Problem 9-40. 
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9-41. A rubber ball is dropped from rest onto a linoleum floor a distance h\ away. The 
rubber ball bounces up to a height h*,. What is the coefficient of restitution? What 
fraction of the original kinetic energy is lost in terms of c? 

9-42. A steel ball of velocity 5 m / s strikes a smooth, heavy steel plate at an angle of 30° 
from the normal. If the coefficient of restitution is 0.8, at what angle and velocity 
does the steel ball bounce off the plate? 

9-43. A proton (mass m) of kinetic energy T0 collides with a helium nucleus (mass 4m) at 
rest. Find the recoil angle of the helium if i// = 45° and the inelastic collision has 
Q = "To/6. 

9-44. A uniformly dense rope of length b and mass density fi is coiled on a smooth table. 
One end is lifted by hand with a constant velocity v0. Find the force of the rope 
held by the hand when the rope is a distance a above the table (b> a). 

9-45. Show that the equivalent of Equation 9.129 expressed in terms of 0 rather than i/f is 
1 + x cos 6 

<t(8) = o-(iA) ' (1 + 2x CQS e + x2)S/2 

9-46. Calculate the differential cross section cr(6) and the total cross section a , for the 
elastic scattering of a particle from an impenetrable sphere; the potential is given 
by 

Jo, 
loo, r < a 

9-47. Show that the Rutherford scattering cross section (for the case w, = m2) can be ex-
pressed in terms of the recoil angle as 

- 1 crLAB(f) ~ rj,9 ' » „ COS3f 

9-48. Consider the case of Rutherford scattering in the event that ml w2. Obtain an ap-
proximate expression for the differential cross section in the LAB coordinate system. 

9-49. Consider the case of Rutherford scattering in the event that w2 ml. Obtain an 
expression of the differential cross section in the CM system that is correct to first 
order in the quantity mx/m2. Compare this result with Equation 9.140. 

9-50. A fixed force center scatters a particle of mass m according to the force law 
F(r) = k/r3. If the initial velocity of the particle is u0, show that the differential scat-
tering cross section is 

k-rr2(tt - 0) 
<7(0) = 

iup2(27T - 6)2 sin 0 

9-51. It is found experimentally that in the elastic scattering of neutrons by protons 
(mn = mp) at relatively low energies, the energy distribution of the recoiling pro-
tons in the LAB system is constant up to a maximum energy, which is the energy of 
the incident neutrons. What is the angular distribution of the scattering in the CM 
system? 
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9-52. Show that the energy distribution of particles recoiling from an elastic collision is 
always directly proportional to the differential scattering cross section in the CM 
system. 

9-53. The most energetic a-particles available to Ernest Rutherford and his colleagues 
for the famous Rutherford scattering experiment were 7.7 MeV. For the scatter-
ing of 7.7 MeV a-particles from 238U (initially at rest) at a scattering angle in the 
lab of 90" (all calculations are in the LAB system unless otherwise noted), find 
the following: 
(a) the recoil scattering angle of 238U. 
(b) the scattering angles of the a-particle and 238U in the CM system. 
(c) the kinetic energies of the scattered a-particle and 238U. 
(d) the impact parameter b. 
(e) the distance of closest approach rmin. 
(f) the differential cross section at 90°. 
(g) the ratio of the probabilities of scattering at 90° to that of 5°. 

9-54. A rocket starts from rest in free space by emitting mass. At what fraction of the ini-
tial mass is the momentum a maximum? 

9-55. An extremely well-constructed rocket has a mass ratio (m0/m) of 10. A new fuel is 
developed that has an exhaust velocity as high as 4500 m/s. The fuel burns at a con-
stant rate for 300 s. Calculate the maximum velocity of this single-stage rocket, as-
suming constant acceleration of gravity. If the escape velocity of a particle from the 
earth is 11.3 km/s, can a similar single-stage rocket with the same mass ratio and ex-
haust velocity be constructed that can reach the moon? 

9-56. A water droplet falling in the atmosphere is spherical. Assume that as the droplet 
passes through a cloud, it acquires mass at a rate equal to k A where At is a con-
stant(>0) and A its cross-sectional area. Consider a droplet of initial radius r0 that 
enters a cloud with a velocity % Assume no resistive force and show (a) that the ra-
dius increases linearly with the time, and (b) that if r0 is negligibly small then the 
speed increases linearly with the time within the cloud. 

9-57. A rocket in outer space in a negligible gravitational field starts from rest and accel-
erates uniformly at a until its final speed is v. The initial mass of the rocket is m,,. 
How much work does the rocket's engine do? 

9-58. Consider a single-stage rocket taking off from Earth. Show that the height of the 
rocket at burnout is given by Equation 9.166. How much farther in height will the 
rocket go after burnout? 

9-59. A rocket has an initial mass of mand a fuel burn rate of a (Equation 9.161). What is 
the minimum exhaust velocity that will allow the rocket to lift off immediately after 
firing? 

9-60. A rocket has an initial mass of 7 X 104 kg and on firing burns its fuel at a rate of 250 
kg/s. The exhaust velocity is 2500 m/s. If the rocket has a vertical ascent from rest-
ing on the earth, how long after the rocket engines fire will the rocket lift off? What 
is wrong with the design of this rocket? 
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9-61. Consider a multistage rocket of n stages, each with exhaust speed u. Each stage of 
the rocket has the same mass ratio at burnout (k = mjrrif). Show that the final 
speed of the nth stage is nu In k. 

9-62. To perform a rescue, a lunar landing craft needs to hover just above the surface of 
the moon, which has a gravitational acceleration of g/6. The exhaust velocity is 
2000 m/s , but fuel amounting to only 20 percent of the total mass may be used. 
How long can the landing craft hover? 

9-63. A new projectile launcher is developed in the year 2023 that can launch a 104 kg 
spherical probe with an initial speed of 6000 m/s . For testing purposes, objects are 
launched vertically. 
(a) Neglect air resistance and assume that the acceleration of gravity is constant. 

Determine how high the launched object can reach above the surface of Earth. 
(b) If the object has a radius of 20 cm and the air resistance is proportional to the 

square of the object's speed with cw = 0.2, determine the maximum height 
reached. Assume the density of air is constant. 

(c) Now also include the fact that the acceleration of gravity decreases as the object 
soars above Earth. Find the height reached. 

(d) Now add the effects of the decrease in air density with altitude to the calcula-
tion. We can very roughly represent the air density by logio (p) = - 0.05A + 0.11 
where p is the air density in kg /m 3 and h is the altitude above Earth in km. 
Determine how high the object now goes. 

9-64. A new single-stage rocket is developed in the year 2023, having a gas exhaust veloc-
ity of 4000 m/s . The total mass of the rocket is 105 kg, with 90% of its mass being 
fuel. The fuel burns quickly in 100 s at a constant rate. For testing purposes, the 
rocket is launched vertically at rest from Earth's surface. Answer parts (a) through 
(d) of the previous problem. 

9-65. In a typical model rocket (Estes Alpha III) the Estes C6 solid rocket engine provides 
a total impulse of 8.5 N-s. Assume the total rocket mass at launch is 54 g and that it 
has a rocket engine of mass 20 g that burns evenly for 1.5 s. The rocket diameter is 
24 mm. Assume a constant burn rate of the propellent mass (11 g), a rocket exhaust 
speed 800 m/s , vertical ascent, and drag coefficient cw = 0.75. Determine 
(a) The speed and altitude at engine burnout, 
(b) Maximum height and time it occurs, 
(c) Maximum acceleration, 
(d) Total flight time, and 
(e) Speed at ground impact. 
Produce a plot of altitude and speed versus time. For simplicity, because the pro-
pellent mass is only 20% of the total mass, assume a constant mass during rocket 
burning. 

9-66. For the previous problem, take into account the change of rocket mass with time 
and omit the effect of gravity, (a) Find the rocket's speed at burn out. (b) How far 
has the rocket traveled at that moment? 

9-67. Complete the derivation for the burnout height Hbo in Example 9.13. Use the num-
bers for the Saturn brocket in Example 9.12 and use Equations 9.167 and 9.168 to 
determine the height and speed at burnout. 



CHAPTER 

Motion in a Noninertial 
Reference Frame 

10.1 Introduction 
The advantage of choosing an inertial reference f rame to describe dynamic 
processes was made evident in the discussions in Chapters 2 and 7. It is always possi-
ble to express the equations of motion for a system in an inertial f rame. But there 
are types of problems for which these equations would be extremely complex, and it 
becomes easier to treat the motion of the system in a noninertial f rame of reference. 

To describe, for example, the mot ion of a particle on or nea r the surface of 
Earth, it is t empt ing to do so by choosing a coordinate system fixed with respect 
to Earth. We know, however, tha t Earth undergoes a complicated mot ion , com-
p o u n d e d of many di f ferent rotat ions (and hence accelerations) with respect to 
an inertial re ference f r a m e identif ied with the "fixed" stars. Earth 's coord ina te 
system is, therefore , a noninertial f r a m e of reference; and , a l though the solutions 
to many problems can be obta ined to the desired degree of accuracy by ignor ing 
this distinction, many impor tan t effects result f r o m the noniner t ia l na tu re of the 
Earth coordinate system. 

In fact, we have already studied noniner t ia l systems when we studied ocean 
tides (Section 5.5). Tidal forces d u e to Ea r th -Moon and Sun-Ear th orbits are 
observed on Earth 's surface, which is a noniner t ia l system. Space does n o t allow 
us f u r t h e r study in this chapter of this interesting subject, bu t qui te reasonable 
accounts can be f o u n d elsewhere.* 

*See, for example, Knudsen and Hjorth (KnOO, Chapter 6) and M. S. Tiersten and H. Soodak, Am.J. 
Phys. 68, 129 (2000). 
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*3 P 

FIGURE 10-1 The x[ are coordinates in the fixed system, and x, are coordinates in 
the rotating system. The vector R locates the origin of the rotating 
system in the fixed system. 

In analyzing the motion of rigid bodies in the following chapter, we also f ind 
it convenient to use noninert ial reference f rames and therefore make use of 
much of the development presented here . 

10.2 Rotating Coordinate Systems 
Let us consider two sets of coordinate axes. Let one set be the "fixed" or inertial 
axes, and let the o ther be an arbitrary set that may be in mot ion with respect to 
the inertial system. We designate these axes as the "fixed" and "rotating" axes, re-
spectively. We use x'i as coordinates in the fixed system and x, as coordinates in 
the rotating system. If we choose some point P, as in Figure 10-1, we have 

where r' is the radius vector of P i n the fixed system and r is the radius vector of 
P i n the rotating system. The vector R locates the origin of the rotat ing system in 
the fixed system. 

We may always represent an arbitrary infinitesimal displacement by a pu re 
rotation about some axis called the instantaneous axis of rotation. For example, 
the instantaneous mot ion of a disk rolling down an inclined plane can be de-
scribed as a rotation about the point of contact between the disk and the plane. 
Therefore , if the x, system undergoes an infinitesimal rotation 50, correspon-
ding to some arbitrary infinitesimal displacement, the mot ion of P (which, for 
the moment , we consider to be at rest in the x, system) can be described in terms 
of Equation 1.106 as 

where the designation "fixed" is explicidy included to indicate that the quantity 
dr is measured in the x[, or fixed, coordinate system. Dividing this equat ion by dt, 
the time interval dur ing which the infinitesimal rotat ion takes place, we obtain 
the time of rate change of r as measured in the fixed coordinate system: 

r' = R + r (10.1) 

fixed = dQ X r (10.2) 

(10.3) 
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or, because the angular velocity of the rotation is 

We have 

'dr 

« - ^ (10.4) 
dt 

= w x r (for P fixed in x, system) (10.5) 
" V fixed 

This same result was de te rmined in Section 1.15. 
If we allow the point P to have a velocity (dr/dt)rotating with respect to the xt 

system, this velocity must be added to w x r to obtain the time rate of change of 
r in the fixed system: 

+ a) x r (10.6) 
d t j f i x e d V / rotating 

EXAMPLE 10.1 

Consider a vector r = Xjej + x2e2 + x3e3 in the rotating system. Let the fixed 
and rotating systems have the same origin. Find r ' in the fixed system by direct 
differentiation if the angular velocity of the rotating system is t»> in the fixed 
system. 

Solution. We begin by taking the time derivative directly 

! ) - 5 d t J fixed d t \ 1 

= S f o e , - + Xied (10.7) I 
The first term is simply r r in the rotating system, bu t what are the e,? 

Ux\ 
r' = - At i ^ " ' V rotating 

=rr+2xiei (10.8) 
dt J fixed 

Look at Figure 10-2 and examine which components of w, tend to rotate e^ 
We see that a)2 tends to rotate e j toward the — e 3 direction and that co3 tends to 
rotate e j toward the + e 2 direction. We therefore have 

dex 
— = w3e2 - a>2es (10.9a) 
dt 
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x3 

<L-J><03 

-x2 

FIGURE 10-2 The angular velocity components <o, rotate the system around the e, axis, 
so that, for example, a>3 tends to rotate e, toward the +e2 direction. 

Similarly, we have 

de2 

dt 
de3 
dt 

-w3ei + &)1e3 

<o2e j — coi e2 

(10.9b) 

(10.9c) 

In each case, the direction of the time derivative of the uni t vector must be per-
pendicular to the uni t vector in order not to change its magni tude. 

Equations 10.9a-c can be written 

e. = w X ef (10.10) 
and Equation 10.8 becomes 

~rj =rr+2co X xfii 
d t / fixed ! 

= f r + o> X r (10.11) 

which is the same result as Equation 10.6. 

Although we choose the displacement vector r for the derivation of Equation 
10.6, the validity of this expression is no t limited to the vector r. In fact, for an ar-
bitrary vector Q, we have 

'dQ\ = (dQ\ 
dt J Fixed dt J 

+ a> x Q (10.12) 
rotating 

Equation 10.12 is an impor tant result. 
We note, for example, that the angular acceleration to is the same in bo th 

the fixed and rotating systems: 

( — ) + c o x « * = cb (10.13) 
V dt / f i xed V dt / rotating 

because w X to vanishes and to designates the common value in the two systems. 



10.3 CENTRIFUGAL AND CORIOLIS FORCES 391 

Equation 10.12 may now be used to obtain the expressions for the velocity of 
the point P a s measured in the fixed coordinate system. From Equation 10.1, we 
have 

so that 

If we define 

we may write 

where 

dr 
dt / fixed V dt J fixed \dt J fixed 

dr^\ 
d t / fixed 

'dR\ (dr\ 
— 1 + I— I + (a X r 

dt J fixed \ d t J rotating 

v / - V (di) 
a l / fixed 

V = R 
'dR\ 

d t / f i x e d 

alJ rotating 

v , = V + v , + w X r 

Vy = Velocity relative to the fixed axes 
V = Linear velocity of the moving origin 
vr = Velocity relative to the rotating axes 
OJ = Angular velocity of the rotating axes 

w X r = Velocity due to the rotation of the moving axes 

(10.14) 

(10.15) 

(10.16a) 

(10.16b) 

(10.16c) 

(10.17) 

1 0 . 3 C e n t r i f u g a l a n d C o r i o l i s F o r c e s 

We have seen that Newton's equat ion F = wa is valid only in an inertial f r ame of 
reference. The expression for the force on a particle can therefore be obtained 
from 

H—I \ d t J fixed 
F=ma/=m( J (10.18) 

where the differentiation must be carried out with respect to the fixed system. 
Differentiating Equation 10.17, we have 

' f v A _ tav 

K dt J flxed \dt 
\ f d v \ (dr\ 
I + ( — J + ( i ) X r + w X ( — I (10.19) 

/ fixed V dt J fixed V dt J fixed 
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We denote the first term by Rf . 

R ^ l ^ - I (10.20) 
\ a l / f i xed 

T h e second term can be evaluated by substituting v r for Q in Equation 10.12: 

" fe) + " * V "A / rotating 

= a r + t o x v r (10.21) 

where a r is the acceleration in the rotat ing coordinate system. T h e last te rm in 
Equation 10.19 can be obtained directly f rom Equat ion 10.6: 

(dr\ (dr\ 
to x I — I = to x I — I + w x ( u X r ) 

\ d t J fixed \ d t J rotating 

= to X v r + to X (to X r) (10.22) 

Combining Equations 10.18-10.22, we obtain 
F = ma.f= mRj+ ma.r + mtb X r + moi X (to X r) + 2mto x v r (10.23) 

To an observer in the rotating coordinate system, however, the effective 
force on a particle is given by* 

Feff = wa r (10.24) 

= F - mRf - mtb X r - mta x (to X r) - 2mta x v r (10.25) 

T h e first term, F, is the sum of the forces acting on the particle as measured in 
the fixed inertial system. T h e second ( — mKj) and third ( —witb X r) terms result 
because of the translational and angular acceleration, respectively, of the mov-
ing coordinate system relative to the fixed system. 

The quantity — moi x (to X r) is the usual centrifugal force te rm and reduces 
to rmt)2r for the case in which to is normal to the radius vector. Note that the 
minus sign implies that the centrifugal force is directed outward f rom the center 
of rotation (Figure 10-3). 

The last term in Equation 10.25 is a totally new quantity that arises f rom the 
mot ion of the particle in the rotating coordinate system. This term is called the 
Coriolis force. Note that the Coriolis force does indeed arise f r o m the motion of 
the particle, because the force is proport ional to vr and hence vanishes if there 
is no motion. 

Because we have used (on several occasions) the term centrifugal force and 
have now int roduced the Coriolis force, we must now inquire about the physical 
meaning of these quantities. It is impor tant to realize that the centrifugal and 
Coriolis forces are no t forces in the usual sense of the word; they have been 

*This result was published by G. G. Coriolis in 1835. The theory of the composition of accelerations 
was an outgrowth of Coriolis's study of water wheels. 
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FIGURE 10-3 Diagram indicating that the vector — t o X ( to X r ) points outward, 
away from the axis of rotation along to. The term — m i o X (co X r ) 
is the usual centrifugal force. 

in t roduced in an artificial m a n n e r as a result of ou r arbitrary r equ i r emen t tha t 
we be able to write an equa t ion resembling Newton's equa t ion tha t is at the same 
time valid in a noniner t ia l r e fe rence f rame; tha t is, t he equa t ion 

F = mtif 

is valid only in an inertial f r ame . If, in a ro ta t ing re fe rence f r ame , we wish to 
write (let Ry and o» be zero fo r simplicity) 

Fef f = m a r 

then we can express such an equat ion in terms of the real force m a j as 

F,.(r = ma.j + (noninert ia l terms) 
where the "noninert ial terms" are identif ied as the centr i fugal and Coriolis 
"forces." Thus , for example , if a body rotates abou t a fixed force center, the only 
real force on the body is the force of at tract ion toward the force center (and 
gives rise to the centripetal accelerat ion). An observer moving with the rota t ing 
body, however, measures this central force and also notes tha t the body does n o t 
fall toward the force center. To reconcile this result with the r equ i r emen t tha t 
the ne t force on the body vanish, the observer must postulate an addit ional 
force—the centr ifugal force. But the " requi rement" is artificial; it arises solely 
f rom an a t t empt to ex tend the f o r m of Newton's equa t ion to a noniner t ia l sys-
tem, and this can be d o n e only by in t roducing a fictitious "correct ion force." 
The same comments apply fo r the Coriolis force; this "force" arises when an at-
tempt is m a d e to describe mot ion relative to the rota t ing body. 

Despite their artificiality, the concepts of centr i fugal a n d Coriolis forces are 
useful. To describe the mot ion of a particle relative to a body rota t ing with re-
spect to an inertial re fe rence f r a m e is a complicated matter . But the p rob l em 
can be m a d e relatively easy by the simple exped ien t of in t roduc ing the "nonin-
ertial forces," which then allows the use of an equat ion of mot ion resembling 
Newton's equat ion. 
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EXAMPLE 10.2 

A student is pe r fo rming measurements with a hockey puck on a large merry-
go-round with a smooth (frictionless) horizontal, flat surface. The merry-go-
round has a constant angular velocity w and rotates counterclockwise as seen 
f rom above, (a) Find the effective force on the hockey puck after it is given a 
push, (b) Plot the path for various initial directions and velocities of the puck as 
observed by the person on the merry-go-round that pushes the puck. 

Solution. The first three terms for Fef f in Equation 10.25 are zero, so the effec-
tive force as observed by the person on the merry-go-round is 

Feff = -m<a x (<o X r ) - 2mw X v r (10.26) 

We have taken the fr ict ional force to be zero. R e m e m b e r that v r is the velocity 
as measured by the observer on the rotat ing surface. T h e effective accelera-
tion is 

Feff 
aeff = — = - w X ( a X r) - 2 w X v , (10.27) m 

The velocity and position are given by integration, in turn, of the acceleration. 

Ve£f = *eff dt (10.28a) 

r e f f = vc(fdt , (10.28b) 

We put the origin of our rotating coordinate system at the center of the 
merry-go-round. We will need the initial positions and velocities of the puck to 
plot the motion. For this example, we let the radius of the mer ry -go- round be 
R and the velocities be in units of ojR. The initial position of the puck will always 
be at an (x, y) position of (—0.5R, 0). 

We p e r f o r m a numerical calculation to de te rmine the mot ion and show 
the results for several directions and values of the initial velocity in Figure 10-4. 
For purposes of calculation, we let co = 1 r a d / s and R = 1 m, so the units of v0 

(initial speed) and T (time for puck to slide off the surface) shown in Figure 
10-4 are in m / s and s, respectively. For parts ( a ) - (d ) , the initial velocity is in 
the +^-direction, and the initial speed decreases in each succeeding view. In 
(a), the puck slides off quickly. For (b) and (d), the puck slides off at similar 
positions, bu t note the differences in initial speeds as well as the time it takes 
the puck to reach the edge. For a speed in termedia te between these two 
speeds, as seen in (c), the puck may make several paths a round the merry-go-
round; at some speed, the puck must stay on. T h e last two views show the ini-
tial velocity at an angle of 45° to the x-axis. In (e), the puck loops a r o u n d its 
path along the way to exiting the merry-go-round, and in (f), it changes direc-
tion ra ther abruptly. 

The real challenge is to pe r fo rm such experiments to compare the actual 
paths in the fixed and rotating coordinate systems with the computer calculations. 



10.4 MOTION RELATIVE TO THE EARTH 395 

(a) ^ (b) (c) 

x 

(d) (f) 
FIGURE 10-4 The motion of the hockey puck of Example 10.2 as observed in the 

rotating system for various initial directions and velocities v0 at the 
times Tnoted. The angular velocity o»(l rad/s) is out of the page. 

In each of the cases above, the puck will move in a straight line in the fixed sys-
tem, because there is no friction or external force in the plane. 

10.4 Motion Relative to the Earth 
The motion of Earth with respect to an inertial reference f r ame is dominated by 
Earth's rotation about its own axis. The effects of the o ther motions (e.g., the 
revolution about the Sun and the mot ion of the solar system with respect to the 
local galaxy) are small by comparison. If we place the fixed inertial f rame x'y'z' 
at the center of Earth and the moving reference f r ame xyz on the surface of 
Earth, we can describe the motion of a moving object close to the surface of 
Earth as shown in Figure 10-5. We then apply Equation 10.25 to the dynamical 
motion. We denote the forces as measured in the fixed inertial system as 
F = S + mgo, where S represents the sum of the external forces (e.g., impulse, 
electromagnetic, friction) o ther than gravitation, and mg0 represents the gravi-
tational attraction to Earth. In this case, g0 represents Earth's gravitational field 
vector (Equation 5.3), 

where ME is the mass of Earth, R is the radius of Earth, and the uni t vector eR is 
a unit vector along the direction of R in Figure 10-5. We are assuming Earth is 

ME 
go G — (10.29) 
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FIGURE 10-5 In order to study the motion of an object near Earth's surface, we 
place a fixed inertial frame x'y'z' at the center of Earth and the 
moving frame xyz on Earth's surface. 

spherical and isotropic and that R originates f r o m the center of Earth. The ac-
celeration of gravity varies over the surface of Earth due to Earth's oblateness, 
density nonuniformities, and altitude. We choose, at the present time, not to 
add this complexity to mot ion relative to Earth, bu t we have previously pointed 
out that effects such as these can be considered in due course by per forming 
computer calculations. 

The effective force Feff as measured in the moving system placed on the sur-
face of Earth becomes, f r o m Equation 10.25, 

Feff = S + mgo - mRf - rretb x r - m to X (to X r) - 2mto X vr (10.30) 

We let Earth's angular velocity to be along the inertial system's z'-direction (e'z). 
The value of a> is 7.3 X 10 ~5 r ad / s , which is a relatively slow rotation, bu t it is 
365 times greater than the rotation f requency of Earth about the Sun. T h e value 
of to is practically constant in time, and the term to X r will be neglected. 

According to Equation 10.12, we have for the third term above, 

Ry = to X Rf 

R y = t o x ( t o x R ) (10.31) 

Equation 10.30 now becomes 

Feff = s + mSo - mb> X [to X (r + R)] - 2mto x vr (10.32) 

The second and third terms (divided by m) are what we exper ience (and meas-
ure) on the surface of Earth as the effective g, and we will hencefor th denote it 
as g. Its value is 

g = go - to X [to X (r + R)] (10.33) 
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The second term of Equat ion 10.33 is the centrifugal force. Because we are lim-
iting our present considerat ion to mot ion near the surface of Earth, we have 
r<3C R, and the to X (to X R) te rm totally dominates the centr i fugal force. For 
situations far away f rom the surface of Earth, we would have to consider bo th 
the variation of gwi th alt i tude as well as the to X (to X r) term. T h e centrifugal 
force is responsible for the oblateness of Earth. Earth is no t really a solid sphe-
roid; it is more like a strongly viscous liquid with a solid crust. Because of 
Earth's rotation, Earth has de fo rmed so that its equatorial radius is 21.4 km 
greater than its polar radius, and the acceleration of gravity is 0.052 m/s 2 

greater at the poles than at the equator. T h e surface of calm ocean water is per-
pendicular to g, no t go and on the average, the p lane of Earth 's surface is also 
perpendicular to g. 

We rewrite Equation 10.32 in simpler terms as 

Feff = S + m S ~ to X v r (10.34) 

It is this equat ion that we will use to discuss the mot ion of objects close to the 
surface of Earth. 

But first, let's re turn to the effective g of Equation 10.33. The per iod of a 
pendulum determines the magni tude of g, and the direction of a p lumb bob in 
equilibrium determines the direction of g. The value of a>2R is 0.034 m/s 2 , and 
this is a significant enough a m o u n t (0.35%) of the magni tude of g to be consid-
ered. We de termined the direction of the centrifugal term to X [to x (r + R)] 
in Figure 10-3 (where the r is our r' of Figure 10-5). The direction of the cen-
trifugal term (—to X [to X (r + R)] is outward f rom the axis of the rotating 
Earth. The direction of a p lumb bob will include the centrifugal term. Because 
of this fact, the direction of g at a given point is in general slightly different f rom 
the true vertical (defined as the direction of the line connect ing the point with 
the center of Earth; see Problem 10-12). The situation is represented schemati-
cally (with considerable exaggeration) in Figure 10-6. 

FIGURE 10-6 Near Earth's surface the terms g0 (Earth's gravitational field vector) 
and —to X (to X R) (main centrifugal term) make up the effective g 
(other smaller terms have been neglected). The effect of the centrifu-
gal term on g is exaggerated here. 
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v. r 

Deflected path 

FIGURE 10-7 In the Northern Hemisphere, a particle projected in a horizontal plane 
will be directed toward the right of the particle's motion. In the 
Southern Hemisphere, the direction will be to the left. 

Coriolis Force Effects 
T h e angu la r velocity vec tor co, which represen t s Ear th ' s ro t a t ion a b o u t its axis, is 
d i rec ted in a no r the r ly d i rec t ion . T h e r e f o r e , in the N o r t h e r n H e m i s p h e r e , co 
has a c o m p o n e n t co z d i r ec t ed outward a l ong the local vertical. If a par t ic le is pro-
j e c t e d in a hor izon ta l p l a n e (in t h e local c o o r d i n a t e system at t h e su r face of 
Ear th ) with a velocity vr, t h e n the Coriolis fo rce —2mco X vr has a c o m p o n e n t in 
the p l ane of m a g n i t u d e 2mcozvr d i rec ted toward the right of the part ic le 's mo t ion 
(see Figure 10-7), a n d a def lec t ion f r o m the original d i rec t ion of m o t i o n results.* 

Because the m a g n i t u d e of the hor izon ta l c o m p o n e n t of the Coriolis fo rce is 
p r o p o r t i o n a l to the vertical c o m p o n e n t of to, t h e p o r t i o n of t h e Coriolis fo rce 
p r o d u c i n g def lec t ions d e p e n d s o n t h e la t i tude, b e i n g a m a x i m u m at t he N o r t h 
Pole a n d zero at t h e equa tor . In t h e S o u t h e r n H e m i s p h e r e , t h e c o m p o n e n t caz is 
d i rec ted inward a l ong t h e local vertical, a n d h e n c e all def lec t ions a re in t h e op-
posi te sense f r o m those in t h e N o r t h e r n Hemisphere .^ 

Pe rhaps the mos t no t i ceab le ef fec t of the Coriolis f o r ce is tha t o n t h e air 
masses. As air flows f r o m high-pressure regions to low pressure , t h e Coriolis 
fo rce deflects the air toward t h e r igh t in t h e N o r t h e r n H e m i s p h e r e , p r o d u c i n g 
cyclonic m o t i o n (Figure 10-8). T h e air rota tes with h igh p res su re o n the r ight 
a n d low pressure o n the left . T h e h igh pressure p reven ts the Coriolis fo rce f r o m 
def lec t ing the air masses f a r t h e r to t h e right, resu l t ing in a counterclockwise 
flow of air. In the t e m p e r a t e regions , t he airf low does n o t t e n d to b e a long the 
p ressure gradients , b u t r a t h e r a long the p ressure isobars d u e to t h e Coriolis 
f o r ce a n d the associated cen t r i fuga l fo rce of the ro ta t ion . 

*Poisson discussed the deviation of projectile motion in 1837. 
fDuring the naval engagement near the Falkland Islands early in World War I, the British gunners 
were surprised to see their accurately aimed salvos falling 100 yards to the left of the German ships. 
The designers of the sighting mechanisms were well aware of the Coriolis deflection and had care-
fully taken this into account, but they apparently were under the impression that all sea battles took 
place near 50°N latitude and never near 50°S latitude. The British shots, therefore, fell at a distance 
from the targets equal to twice the Coriolis deflection. 
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FIGURE 10-8 The Coriolis force deflects air in the Northern Hemisphere to the right 
producing cyclonic motion. 

N e a r the equa tor ia l reg ions , t h e sun hea t i ng Ear th ' s su r face causes h o t sur-
face air to rise. In the N o r t h e r n H e m i s p h e r e , this results in coo le r air mov ing in 
a southerly direct ion toward the equator . T h e Coriolis fo rce deflects this moving 
air to the right, resul t ing in the trade winds, which provide a b reeze toward the 
southwest in the N o r t h e r n H e m i s p h e r e a n d toward the nor thwes t in the S o u t h e r n 
Hemisphe re . Note tha t this par t icular effect does n o t occur at the equator because 
of the d i rec t ions of to a n d t h e air 's su r face v. 

T h e actual m o t i o n of air masses is m u c h m o r e compl ica ted t han the s imple 
p ic ture descr ibed here , b u t t he qualitative fea tures of cyclonic m o t i o n a n d the 
t rade winds are correctly given by cons ider ing the effects of t h e Coriolis force . T h e 
mot ion of water in whirlpools is (at least in pr inciple) a similar si tuation, b u t in ac-
tuality, o t h e r factors (various pe r tu rba t ions a n d residual angu la r m o m e n t u m ) 
d o m i n a t e the Coriolis force , a n d whirlpools a re f o u n d with b o t h direct ions of flow. 
Even u n d e r laboratory condi t ions , it is ext remely difficult to isolate the Coriolis ef-
fect. (Reports of water in f lush toilets a n d ba th tubs circulat ing in oppos i te direc-
tions as cruise ships cross the e q u a t o r a re mos t likely highly exaggerated. ) 

EXAMPLE 10.3 

Find the hor izonta l de f l ec t ion f r o m t h e p l u m b line caused by t h e Coriolis f o r c e 
ac t ing o n a part icle fal l ing f reely in Ear th ' s gravitat ional f ield f r o m a h e i g h t h 
above Ear th ' s sur face . 

Solution. We use E q u a t i o n 10.34 with t h e app l ied forces S = 0. If we set 
Feff = mar, we can solve f o r the acce le ra t ion of the par t ic le in t h e ro ta t ing coor-
d ina te system f ixed o n Ear th . 

a r - g - 2to X v r 

T h e accelera t ion d u e to gravity g is t he effective o n e a n d is a l ong t h e p l u m b line. 
We choose a z-axis d i rec ted vertically ou tward (a long —g) f r o m t h e sur face of 
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FIGURE 10-9 The coordinate system on Earth's surface for finding the horizontal 
deflection of a falling particle from the plumb line caused by the 
Coriolis force. The vector ev is in the southerly direction, and e}1 is in 
the easterly direction. 

Earth. With this def in i t ion of e z , we comple te the cons t ruc t ion of a r ight-hand co-
ordinate system by specifying that ex b e in a southerly a n d eT in a n easterly direc-
t ion, as in Figure 10-9. We m a k e the a p p r o x i m a t i o n tha t t h e d is tance of fall is 
sufficiently small t ha t g r e m a i n s cons tan t d u r i n g the process . 

Because we have c h o s e n the or ig in O of t h e ro ta t ing c o o r d i n a t e system to 
lie in the N o r t h e r n H e m i s p h e r e , we have 

o)x = —a) cos A 

(oy = 0 

coz = a) sin A 

Al though the Coriolis f o r ce p r o d u c e s small velocity c o m p o n e n t s in the ey 

a n d ex d i rect ions , we can certainly neglec t x a n d y c o m p a r e d with z, t h e vertical 
velocity. T h e n , approximately , 

x = 0 

y = 0 

z = -gt 

where we ob ta in z by cons ide r ing a fall f r o m rest. T h e r e f o r e , we have 

e * e j 
e z 

M X V, = —w cos A 0 co sin A 
0 0 -gt 

= — {utgt cos A)e ) 
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T h e componen t s of g are 

g* = 0 

gy = 0 

gz = ~g 
so the equat ions for the componen t s of a r (neglecting terms* in w2; see 
Problem 10-13) become 

(ar)* = X = 0 

(a,.), = y = 2(ogt cos A 

( a r ) z = z = ~g 

Thus, the effect of the Coriolis force is to p roduce an accelerat ion in the e r 

or easterly, direction. In tegrat ing y twice, we have 

y(t) = ~u>gt5cos A 
3 

where y = 0 and y = 0 at t = 0. T h e integrat ion of z yields the familiar result f o r 
the distance of fall, 

z(t) = z(0) - ^gt* 

and the time of fall f r o m a he igh t h = z(0) is given by 

t s Vu7g 

H e n c e the result for t he eastward deflect ion d of a particle d r o p p e d f r o m rest at 
a height h a n d at a n o r t h e r n lati tude A is1' 

1 / 8 F 
d = - w c o s A J (10.35) 

3 V g 

An object d ropped f r o m a he ight of 100 m at lat i tude 45° is def lected approxi-
mately 1.55 cm (neglecting the effects of air resistance). 

*According to M. S. Tiersten and H. Soodak, Am,. J. Phys. 68, 129 (2000), the southerly deflection is on 
the order of a million times smaller than the easterly deflection for a drop of about 100 m, and there is 
no credible evidence that the southerly deflection has been correctly measured, despite many attempts. 
fThe eastward deflection was predicted by Newton (1679), and several experiments (notably those 
of Robert Hooke) appeared to confirm the results. The most careful measurements were probably 
those of F. Reich (1831; published 1833), who dropped pellets down a mine shaft 188 m deep and 
observed a mean deflection of 28 mm. This is smaller than the value calculated f rom Equation 10.35, 
the decrease being due to air resistance effects. In all the experiments, a small southerly component 
of the deflection was observed—and remained unaccounted for until Coriolis's theorem was appre-
ciated (see Problems 10-13 and 10-14). 
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EXAMPLE 10.4 

To demons t ra te the power of the Coriolis m e t h o d for obta in ing the equat ions 
of mot ion in a noniner t ia l r e fe rence f rame, rework the last example b u t use 
only the formalism previously deve loped—the theory of central-force mot ion. 

Solution. If we release a particle of small mass f r o m a tower of he igh t h above 
Earth 's surface, the pa th the particle describes is a conic sect ion—an ellipse 
with e = 1 a n d with o n e focus very close to Earth 's center. If Ris Ear th 's radius 
a n d A the (nor the rn ) latitude, t h e n at the m o m e n t of release, the particle has a 
horizontal velocity in the eastward direct ion: 

^hor = r a > c o s ^ = (R + h)a> cos A 

and the angular m o m e n t u m abou t the polar axis is 

I = mrvhor = m(R + h)2a> cos A (10.36) 

T h e equat ion of the pa th is* 

" = 1 - e cos 0 (10.37) 

if we measure 0 f rom the initial position of the particle (see Figure 10-10). At t = 0, 
we have 

a - i = 1 — e 
R + h 

so Equat ion 10.37 can be written as 

(1 ~ s)(R+ h) r = 

1 — 8 COS 0 

From Equat ion 8.12 for the areal velocity, we can write 

1 d0 _ J _ 
2 dt ~ 2m 

Thus, the t ime t r equ i red to describe an angle 0 is 

(10.38) 

m 
t=l r2d0 

Substituting into this expression the value of £ f r o m Equat ion 10.36 a n d r f rom 
Equat ion 10.38, we f ind 

1 
t = 

a> cos A o \ l — e cos 0 
1 - e \ 2 

d0 (10.39) 

*Notice that there is a change of sign between Equation 10.37 and Equation 8.41 due to the differ-
ent origins for 0 in the two cases. 
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FIGURE 10-10 The rather complicated geometry for describing the motion of a 
falling particle in a noninertial system using central-force motion. 

If we let 0 = 0O when the particle has r eached Ear th ' s surface (r = R), t h e n 
Equation 10.38 becomes 

R _ 1 - e 
R + h 1 — E cos 0O 

or, inverting, 

h 1 — e cos On 
1 + - = ^ 

R 1 - e 

= 1 - e [ l - 2 sin2(fl0 /2)] 
1 - e 

= 1 + sin2 ^ (10.40) 
1 - e 2 

f rom which we have 

h 2e . 90o 

Because the pa th described by the particle is almost vertical, little change oc-
curs in the angle 0 between the position of release and the po in t at which the 
particle reaches the surface of Earth; 0O is there fore small a n d sin (0 o /2) can be 
approximated by its a rgument : 
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If we expand the in tegrand in Equation 10.39 by the same me thod used to 
obtain Equation 10.40, we find 

dd 
t = 

o {1 + [2e / ( l - e)]s in 2(0/2)} 2 to cos A Jo 

and because 0 is small, we have 

1 r de 
t 

(o cos A Jo [1 + e0 2 / 2 ( l - s ) ] 2 

Substituting for s / 2 ( l - e) f rom Equation 10.41 and writing t(6 = 0O) = T for 
the total time of fall, we obtain 

T = 
to cos A 

dd 
o [1 + (h9*/Rdl)Y 

1 
co cos A Jo \ R9\ 

i - M«. a> cos A \ 3R 

Solving for 0O, we find 

wTcosA I 2 h 
9n = — w7 cos A 1 H 0 1 - 2h/5R V 

During the time of fall T, Earth turns through an angle coT, so the point on 
Earth directly benea th the initial position of the particle moves toward the east 
by an amoun t RwTcos A. During the same time, the particle is deflected toward 
the east by an a m o u n t R90. Thus, the ne t easterly deviation d is 

d = R60 — RtoT cos A 

2 
= — hcoT cos A 

3 
and using T = v2h/g as in the preceding example, we have, finally, 

1 /8A5 

d = - to cos A , / 
3 V g 

which is identical with the result obtained previously (Equation 10.35). 

EXAMPLE 10.5 

The effect of the Coriolis force on the mot ion of a p e n d u l u m produces a preces-
sion, or rotation with time of the plane of oscillation. Describe the mot ion of 
this system, called a Foucault pendulum * 

*Devised in 1851 by the French physicist Jean-Bernard-Leon Foucault, pronounced Foo-co 
(1819-1868). 
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Solution. To describe this effect, let us select a set of coordinate axes with ori-
gin at the equilibrium point of the p e n d u l u m and z-axis along the local vertical. 
We are interested only in the rotation of the plane of oscillation—that is, we 
wish to consider the mot ion of the p e n d u l u m bob in the x-y p lane (the hori-
zontal plane). We therefore limit the mot ion to oscillations of small ampli tude, 
with the horizontal excursions small compared with the length of the pendu-
lum. U n d e r this condition, z is small compared with x and y and can be neg-
lected. 

The equation of mot ion is 

a = g -I 2ft) X v . r 6 m r (10.42) 

where T / m is the acceleration p roduced by the force of tension T in the pendu-
lum suspension (Figure 10-11). We therefore have, approximately, 

As before, 

and 

T = - T -

T = -T--
y I 

T T 

(10.43) 

g,= 0 

gy = 0 

ft = ~g 

co, = —a> cos A 
0 

o)=oj s i n A 

i Suspension point 
at great height 

FIGURE 10-11 Geometry for the Foucault pendulum. The acceleration g vector is 
along the —z-direction, and the tension T is separated into x-, y-, 
and z-components. 
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with 

Therefore , 

O) X v 

(vr)* = X 

(Vr), = y 

(vr)z = Z = 0 

-co cos A 0 co sin A 
x y 0 

so that 

( t o X vr) x = — y co sin A 
(co X v r ) ? s i t ) sin A 
(<o x vr)z = —y co cos A 

(10.44) 

Thus, the equations of interest are 

(ar)* = * = 

( » r ) , = y = 

T x 
m I 
T y 
m I 

+ 2'yco sin A 

— 2xo) sin A 
(10.45) 

For small displacements, T = mg. Defining a2 = T/ml = g/l, and writing coz 

a) sin A, we have 

x + a2x = 2tozy 

y + a2y 2w •I x) 
(10.46) 

We note that the equation for x contains a term in y and that the equation 
for y contains a term in x. Such equations are called coupled equations. A solu-
tion for this pair of coupled equations can be effected by adding the first of the 
above equations to i times the second: 

(x + i'y) + a2(x + iy) = —2 toz(ix— y) = ~2itoz(x+ iy) 

If we write 

we then have 

q s x + iy 

q + 2icazq + a2q = 0 

This equation is identical with the equation that describes damped oscillations 
(Equation 3.35), except that here the term corresponding to the damping factor 
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is purely imaginary. The solution (see Equation 3.37) is 

q(t) = e x p [ [ A exp(V-co? - a 2 t) + Bexp( ~V~<4 - a2 *)] (10.47) 
If Earth were not rotating, so that coz = 0, then the equation for q would 

become 

q' + a 2 q ' s 0, to, = 0 

f rom which it is seen that a corresponds to the oscillation f requency of the pen-
dulum. This f requency is clearly much greater than the angular f requency of 
Earth's rotation. Therefore , a a>z, and the equation for q(t) becomes 

q(t) = e-^Ae*" + Be'™') (10.48) 

We can interpret this equat ion more easily if we note that the equat ion for 
q' has the solution 

q'(t) = x'(i) + iy'(i) = Ae+ Be 

Thus, 

q(t) = q'(t)-e-iw*' 

or 

x(t) + iy(t) = [(x'(0 + iy'{t)] •e'*0* 

= (x' + iy') (cos (ozt — i sin a>zt) 

= (x'cos (ozt + / s i n a)zt) + ?( -x ' s in wzt + y 'cos (ozt) 
Equating real and imaginary parts, 

x(t) = x' cos cozt + y' sin a)zt ^ 

y(t) = —x' sin cozt + y' cos (ozt J 

We can write these equations in matrix fo rm as 

x(£)\ _ f cos o>zt sin (ozt\( x'(t) 
/ s i i .. t * \ i (10.49) / \ ~ s i n cozt cos u>ztj \y (t)/ 

f rom which (x, y) may be obtained f rom (x', y') by the application of a rotation 
matrix of the familiar fo rm 

( cos 6 sin <A A= . . J (10.50) 
sin 0 cos 0/ 

Thus, the angle of rotation is 6 = cozt, and the plane of oscillation of the pendu-
lum therefore rotates with a f requency coz = w sin A. The observation of this ro-
tation gives a clear demonstrat ion of the rotation of Earth.* 

"Vincenzo Viviani (1622-1703), a pupil of Galileo, had noticed as early as about 1650 that a pendu-
lum undergoes a slow rotation, but there is no evidence that he correctly interpreted the phenome-
non. Foucault's invention of the gyroscope in the year following the demonstration of his pendulum 
provided even more striking visual proof of Earth's rotation. 
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PROBLEMS 

10-1. Calculate the centrifugal acceleration, d u e to Earth 's rotat ion, on a particle on the 
surface of Earth at the equator. Compare this result with the gravitational accelera-
tion. Compute also the centrifugal acceleration d u e to the mot ion of Earth about 
the Sun and justify the remark m a d e in the text that this acceleration may be neg-
lected compared with the acceleration caused by axial rotat ion. 

10-2. An automobile drag racer drives a car with acceleration a and instantaneous veloc-
ity v. The tires (of radius r0) are no t slipping. Find which poin t on the tire has the 
greatest acceleration relative to the g round . What is this acceleration? 

10-3. In Example 10.2, assume that the coefficient of static fr ict ion between the hockey 
puck and a horizontal rough surface (on the merry-go-round) is /xs. How far away 
f r o m the center of the merry-go-round can the hockey puck be placed without 
sliding? 

10-4. In Example 10.2, fo r what initial velocity and direction in the rotat ing system will 
the hockey puck appear to be subsequently motionless in the fixed system? What 
will be the mot ion in the rotat ing system? Let the initial position be the same as in 
Example 10.2. You may choose to do a numerical calculation. 

10-5. Per form a numerical calculation using the parameters in Example 10.2 and Figure 
10-4e, bu t find the initial velocity for which the pa th of mot ion passes back over the 
initial position in the rotat ing system. At what time does the puck exit the merry-go-
round? 

10-6. A bucket of water is set spinning about its symmetry axis. Dete rmine the shape of 
the water in the bucket. 

10-7. Determine how much greater the gravitational field s trength g-is at the pole than at 
the equator. Assume a spherical Earth. If the actual measured difference is 
A g = 5 2 m m / s 2 , explain the difference. How might you calculate this difference 
between the measured result and your calculation? 

10-8. If a particle is projected vertically upward to a height h above a point on Earth's sur-
face at a nor the rn latitude A, show that it strikes the g round at a point | co cos A • 
V o A V g to the west. (Neglect air resistance, and consider only small vertical 
heights.) 

10-9. If a projectile is fired due east f r o m a point on the surface of Earth at a no r the rn 
latitude A with a velocity of magni tude V0 and at an angle of inclination to the hor-
izontal of a , show that the lateral deflection when the projectile strikes Earth is 

4V0
3 

d = —— • co sin A • sin 2 a cos a 
g 

where co is the rotat ion f requency of Earth. 
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10-10. In the preceding problem, if the range of the projectile is Rj) fo r the case co = 0, 
show that the change of range d u e to the rotat ion of Earth is 

I2R' 3 ( 1 \ 
A R' = , /—— • co cos AI cot 1 / 2 a t a n 3 / 2 a 

V g V 3 J 

10-11. Obtain an expression for the angular deviation of a particle projected f r o m the 
Nor th Pole in a pa th that lies close to Earth. Is the deviation significant for a mis-
sile that makes a 4,800-km flight in 10 minutes? What is the "miss distance" if the 
missile is a imed directly at the target? Is the miss distance greater for a 19,300-km 
flight at the same velocity? 

10-12. Show that the small angular deviation e of a p lumb line f r o m the t rue vertical (i.e., 
toward the center of Earth) at a point on Earth 's surface at a lati tude A is 

_ Ro)2 sin A cos A 
go — RaJ2 cos2 A 

where R is the radius of Earth. What is the value (in seconds of arc) of the maxi-
m u m deviation? Note that the ent i re denomina to r in the answer is actually the ef-
fective g, and g0 denotes the pu re gravitational componen t . 

10-13. Refer to Example 10.3 concerning the deflection f r o m the p lumb line of a particle 
falling in Earth 's gravitational field. Take g t o be def ined at g round level and use 
the zeroth o rde r result for the time-of-fall, T = \ f l h / g . Pe r fo rm a calculation in 
second approximat ion (i.e., retain terms in aj2) and calculate the southerly deflec-
tion. The re are three components to consider: (a) Coriolis force to second o rde r 
(C, ) , (b) variation of centrifugal force with he ight (C2), and (c) variation of gravi-
tational force with height (C3). Show that each of these componen t s gives a result 
equal to 

2 . . . Li— a * sin A cos A 
g 

with Ct = 2/3, C2 = 5/6, and C3 = 5/2. T h e total southerly deflection is there fore 
(4/(2a)2 sin A cos A)/g. 

10-14. Refer to Example 10.3 and the previous problem, bu t drop the particle at Earth's sur-
face down a mineshaft to a depth h. Show that in this case there is no southerly de-
flection due to the variation of gravity and that the total southerly deflection is only 

3 h2co2 

sin A cos A 
2 g 

10-15. Consider a particle moving in a potential U(r). Rewrite the Lagrangian in terms of 
a coordinate system in un i fo rm rotat ion with respect to an inertial f rame. 
Calculate the Hamil tonian and de te rmine whether H = E. Is H a constant of the 
motion? If E is no t a constant of mot ion, why isn't it? T h e expression for the 
Hamil tonian thus obtained is the s tandard formula 1 / 2 mv2 + U plus an addi-
tional term. Show that the extra term is the centrifugal potential energy. Use the 
Lagrangian you obtained to reproduce the equations of mot ion given in Equat ion 
10.25 (without the second and third terms). 



4 1 0 10 / MOTION IN A NONINERTIAL REFERENCE FRAME 

10-16. Consider Problem 9-63 but include the effects of the Coriolis force on the probe. 
The probe is launched at a latitude of 45° straight up. Determine the horizontal 
deflection in the probe at its maximum height for each part of Problem 9-63. 

10-17. Approximate Lake Superior by a circle of radius 162 km at a latitude of 47°. 
Assume the water is at rest with respect to Earth and find the depth that the center 
is depressed with respect to the shore due to the centrifugal force. 

10-18. A British warship fires a projectile due south near the Falkland Islands during 
World War I at latitude 50° S. If the shells are fired at 37° elevation with a speed of 
800 m/s, by how much do the shells miss their target and in what direction? 
Ignore air resistance. 

10-19. Find the Coriolis force on an automobile of mass 1300 kg driving north near 
Fairbanks, Alaska (latitude 65°N) at a speed of 100 km/h . 

10-20. Calculate the effective gravitational field vector g at Earth's surface at the poles 
and the equator. Take account of the difference in the equatorial (6378 km) 
and polar (6357 km) radius as well as the centrifugal force. How well does the 
result agree with the difference calculated with the result g = 9.780356[1 + 
0.0052885 sin 2 A - 0.0000059 sin2(2A)]m/s2 where A is the latitude? 

10-21. Water being diverted during a flood in Helsinki, Finland (latitude 60°N) flows along 
a diversion channel of width 47 m in the south direction at a speed of 3.4 m/s. On 
which side is the water the highest (from the standpoint of noninertial systems) and 
by how much? 

10-22. Shot towers were popular in the eighteenth and nineteenth centuries for drop-
ping melted lead down tall towers to form spheres for bullets. The lead solidified 
while falling and often landed in water to cool the lead bullets. Many such shot 
towers were built in New York State. Assume a shot tower was constructed at lati-
tude 42°N, and the lead fell a distance of 27 m. In what direction and how far did 
the lead bullets land from the direct vertical? 



CHAPTER 

Dynamics of Rigid Bodies 

11.1 Introduction 
We def ine a rigid body as a collection of particles whose relative distances are 
constrained to remain absolutely fixed. Such bodies d o n o t exist in na ture , be-
cause the ul t imate c o m p o n e n t particles compos ing every body ( the atoms) are 
always unde rgo ing some relative mot ion like vibrations. This mot ion , however, is 
microscopic, and it the re fore usually may be ignored when describing the 
macroscopic mot ion of the body. However, macroscopic d isplacement within the 
body (such as elastic deformat ions) can take place. For many bodies of interest, 
we can safely neglect the changes in size and shape caused by such deformat ions 
and obtain equat ions of mot ion valid to a h igh degree of accuracy. 

We use he re the idealized concep t of a rigid body as a collection of discrete 
particles or as a con t inuous distribution of mat te r interchangeably. T h e only 
change is the r ep lacement of summat ions over particles by integrat ions over 
mass density distributions. T h e equat ions of mot ion are equally valid fo r ei ther 
viewpoint. 

We have s tudied rigid bodies in in t roductory physics and have already seen 
examples in this book of hoops and cylinders roll ing down incl ined planes. We 
also know how to find the center of mass of various rigid objects (Section 9.2). 
Such problems can be hand l ed with concepts already p resen ted inc luding rota-
tional inertia, angular velocity a n d m o m e n t u m , a n d torque . We can use these 
techniques to solve many problems, such as some simple examples of p lanar mo-
tion in Section 11.2. W h e n we allow comple te three-dimensional mot ion, the 
mathemat ical complexity considerably escalates. T h e classic example , of course, 
is of the cat, who invariably lands on its feet a f ter be ing d r o p p e d ( u n d e r a care-
fully control led exper imenta l situation) with its fee t initially po in t ing upwards. 

411 
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We have l e a rned to descr ibe t h e m o t i o n of a body by the s u m of two inde-
p e n d e n t mo t ions—a l inear t ranslat ion of s o m e p o i n t of the body plus a ro ta t ion 
a b o u t tha t point .* If t he p o i n t is chosen to be the c e n t e r of mass of t h e body, t h e n 
such a separa t ion of the m o t i o n in to two par ts allows t h e use of t h e d e v e l o p m e n t 
in C h a p t e r 9, which indicates tha t t h e angu la r m o m e n t u m (see E q u a t i o n 9.39) 
can b e sepa ra ted in to po r t i ons re la t ing to t h e m o t i o n of t h e c e n t e r of mass a n d 
to the m o t i o n around t he c e n t e r of mass. 

It is t he gene ra l ro ta t ion tha t increases t h e complexity. We will find it use fu l 
to have two c o o r d i n a t e systems, o n e a n inert ia l c o o r d i n a t e system (f ixed) a n d 
the o t h e r a coo rd ina t e system fixed with respec t to t h e body. Six quant i t ies m u s t 
be specif ied to d e n o t e t h e pos i t ion of t h e body. We normal ly use t h r e e coordi-
na tes to descr ibe t h e pos i t ion of t h e c e n t e r of mass (which can o f t e n conve-
n i e n d y b e m a d e to co inc ide with t h e or ig in of t h e body c o o r d i n a t e system) a n d 
t h r e e i n d e p e n d e n t angles t ha t give t h e o r i en ta t ion of t h e body c o o r d i n a t e sys-
t e m with respec t to t h e fixed (or iner t ia l) system^ T h e t h r e e i n d e p e n d e n t angles 
a re normal ly t aken to b e t h e Eulerian angles, descr ibed in Sect ion 11.8. 

Unfor tuna te ly , t h e m a t h e m a t i c a l level increases in this chapte r . We will find 
it p r u d e n t to i n t r o d u c e t ensor a n d ma t r ix a lgebra in o r d e r to descr ibe t h e com-
p le te m o t i o n of s imple look ing dynamica l systems like ro ta t ing tops (e i ther f r e e 
o r in a gravitat ional field), dumbbe l l s , gyroscopes, flywheels, a n d a u t o m o b i l e 
wheels out-of-balance. We will use t h e dumbbe l l , because of its simplicity, as o u r 
system of in te res t as we i n t r o d u c e t h e n e e d e d mathemat ic s . 

11.2 Simple Planar Motion 
We have already solved t h e p r o b l e m of a disk ro l l ing down a n inc l ined p l a n e 
(see Examples 6.5 a n d 7.9, a n d Figure 6-7). Several end-of -chap te r p r o b l e m s in 
C h a p t e r 7 c o n c e r n e d s imple rigid bodies . We discussed c e n t e r of mass in Sect ion 
9.2, a n g u l a r m o m e n t u m of a system of part icles in Sect ion 9.4, a n d t h e ene rgy of 
t h e system in Sect ion 9.5. We restr ict ourselves in this sect ion to t h e m o t i o n of a 
rigid body in a p l a n e a n d p r e s e n t example s as a review of o u r i n t roduc to ry 
physics. 

EXAMPLE 11.1 

A s t r ing a t t ached to t h e cei l ing is w r a p p e d a r o u n d a h o m o g e n o u s cyl inder of 
mass M a n d rad ius R (see F igure 11-1). At time t = 0, t h e cyl inder is d r o p p e d 
f r o m res t a n d ro ta tes as t h e s t r ing unwinds . F ind t h e t ens ion T in the str ing, t h e 
l inear a n d angu l a r acce lera t ions of t h e cylinder, a n d t h e a n g u l a r velocity a b o u t 
the cylinder 's center . 

* Chastes' Theorem, which is even more general than this statement (it says that the line of translation 
and the axis of rotation can be made to coincide), was proven by the French mathematician Michel 
Chasles (1793-1880) in 1830. The proof is given, e.g., by E. T. Whittaker (Wh37, p. 4). 
f i n this chapter, we use the designation body system in place of the term rotating system used in the pre-
ceding chapter. The term fixed system will be retained. 
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FIGURE 11-1 Example 11-1. A string attached to the ceiling is wrapped around a 
cylinder. The cylinder is released from rest. 

Solution. The center of mass moves due to the sum of the forces, which are all 
in the vertical direction. We let y poin t downward. 

My =F.~ T= Mg - T, (11.1) 

where the center of mass acceleration is y, and we have used Fg = Mg. T h e ro-
tation about the cylinder's center of mass at O is due to the tension T. 

t = RT = 10 (11.2) 

where r is the torque about 0, and I is the rotational inertia of the cylinder 
(MR2/2). We let y = 0 and 9 = 0 at t = 0 when the cylinder is released. T h e n we 
have y = R9, y = V = Rd, and y = R9. We can combine these relations with 
Equations 11.1 and 11.2 to de termine the acceleration. 

T 19 MR2y y 
g- M g MR = g- 2 MR2 g-

which gives y = 2g/3 for the acceleration, and the angular acceleration, 
a = 6 = y/R = 2g/3R. 

The tension Tis then f o u n d f r o m Equat ion 11.2 to be 

^ 19 MR2y M2g 
2 3 R 2 R2 Mg/3 (11.3) 

The angular velocity is w = 9 = V/R. We integrate y to obtain V = y = 2gt/3 
and co = 2gt/3R 

EXAMPLE 11.2 

A physical or compound pendu lum is a rigid body that oscillates due to its own 
weight about a horizontal axis that does no t pass th rough the center of mass of 
the body (Figure 11-2). For small oscillations, f ind the f requency and per iod of 
oscillation if the mass of the body is M and the radius of gyration is k. 
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FIGURE 11-2 Example 11-2. The physical or compound pendulum. The body 
rotates about an axis passing through O. The body rotates due to 
the gravitational force acting at the center of mass. 

Solution. We use the Lagrangian me thod to solve this example, a l though we 
could jus t as easily solve for the torque to f ind the equation of motion. The ro-
tation axis passes through the point 0 of the body. The radius of gyration is de-
f ined such that the rotational inertia / a b o u t the given axis of rotat ion (0 in this 
case) is given by I = Mk2. 

The kinetic energy of rotation and the potential energy is 

where we have def ined the zero of the potential energy to be at poin t 0 and 
have used the small angle approximation for cos 8. We find the Lagrangian 
funct ion and take the appropriate derivatives to fo rm the Lagrange equat ion of 
motion. T h e generalized coordinate is clearly 8. 

T=-I82 

2 

dL 
dO 

j^dL 
dtd8 

18 
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T h e Lagrange equation of mot ion is 

.. MgL e + —j-e = o 

We have seen this equat ion several times, and the angular f requency is given by 
<o2 = MgL/I. From this we f ind the f requency v and per iod T, 

_ _ J _ MgL _ J _ MgL _ J _ gL 
V ~ 2tt ~ 2tt- V I ~~ 2tr V Mk2 ~ 2ttV k2 

V V gL 

Now that we have briefly reviewed our previous study of rigid body motion, 
let's proceed to the more general cases. For this we will need the inertia tensor. 

11.3 Inertia Tensor 
We now direct our attention to a rigid body composed of n particles of masses ma, 
a = 1, 2, 3 , . . . ,n . If the body rotates with an instantaneous angular velocity to 
about some point fixed with respect to the body coordinate system and if this 
point moves with an instantaneous linear velocity V with respect to the fixed co-
ordinate system, then the instantaneous velocity of the a t h particle in the fixed 
system can be obtained by using Equation 10.17. But we are now considering a 
rigid body, so 

= 0 
rotating 

Therefore , 

v„ = V + to X r„ (11.4) 

where the subscript / denot ing the fixed coordinate system, has been deleted 
f rom the velocity v„, it now being unders tood that all velocities are measured in 
the fixed system. All velocities with respect to the rotating or body system now 
vanish because the body is rigid. 

Because the kinetic energy of the a t h particle is given by 

1 
'"a. va 

we have, for the total kinetic energy, 

T = ^ 2 m o ( V + t 0 X r a ) 2 

I a. 
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Expanding the squared term, we f ind 

T = \ ^ m a V 2 + 2 w i a V - w X r a + \ co X r a) 
2 a ol 2 <* 

(11.5) 

This is a general expression for the kinetic energy and is valid for any choice of 
the origin f rom which the vectors ra are measured. But if we make the origin of 
the body coordinate system coincide with the center of mass of the object, a con-
siderable simplification results. First, we note that in the second term on the 
right-hand side of this equation nei ther V no r oi is characteristic of the a t h par-
ticle, and therefore, these quantities may be taken outside the summation: 

But now the term 

to X r„ = V • co X 2 m „ r r 

2 m „ r „ = M R 

is the center-of-mass vector (see Equation 9.3), which vanishes in the body sys-
tem because the vectors ra are measured f rom the center of mass. T h e kinetic 
energy can then be written as 

T= T 4 T trans 1 rot 

where 

= 1 = -MV* 
2 « 

T r o t = ^ 2 m a ( c o X ra)2 
2 a 

(11.6a) 

(11.6b) 

Ttrans and ?rot designate the translational and rotational kinetic energies, respec-
tively. Thus, the kinetic energy separates into two independen t parts. 

The rotational kinetic energy term can be evaluated by not ing that 

(A x B)2 = (A x B) • (A x B) 

Therefore , 

= A2B2 - (A-B) 

Trot = \ ^ m a [ u 2 r 2 - (to • r a ) 2 ] 
2 " 

(11.7) 

We now express Trot by using the components oj, and ra i of the vectors (o and 
ra. We also note that ra = (x„ l t x a 3) in the body system, so we can write 
ra, = xaJ. Thus, 

71, = -
2 « 

(11.8) 
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Now, we can write o>, = ^jCOjSy, so that 

Tmt = I a >•) 
a);(i) <5„( 2 xl i UJjuij\ ~ Aa,k 

= — 2<W,<W, S„ 2 X2
 h — x„,x„ 2 i,j 1 a a \ 'J k • ' 

If we define the zj'th e lement of the sum over a to be Itp 

In — 2 m „ ( <5„ 2 x2
 h — x„ , x, « 9 t a 'a,i a,7 

(11.9) 

(11.10) 

then we have 

= -

2 y J 7 

This equation in its most restricted form becomes 

Tmt = 

(11.11) 

(11.12) 

where I is the (scalar) rotational inertia (momen t of inertia) about the axis of ro-
tation. This equat ion will be recognized as the familiar expression for the rota-
tional kinetic energy given in elementary treatments. 

The n ine terms Iy constitute the elements of a quantity we designated by {I}. 
In form, {1} is similar to a 3 X 5 matrix. It is the proportionality factor between 
the rotational kinetic energy and the angular velocity and has the dimensions 
(mass) X (length)2 . Because {1} relates two quite different physical quantities, 
we expect that it is a member of a somewhat h igher class of funct ions than has 
here tofore been encountered. Indeed, {1} is a tensor and is known as the inertia 
tensor.* Note, however, that Tmt can be calculated without regard to any of the 
special properties of tensors, by using Equation 11.9, which completely specifies 
the necessary operations. 

The elements of {1} can be obtained directly f rom Equation 11.10. We write 
the elements in a 3 X 3 array for clarity: 

{1} = < 

S m ^ x 2
 2 + 4,3) a 

- 2 w i a x a 2 x a l 

jm<xXct,%Xa,\ 

2fflaX„ jXa 2 
a 

S J M x 2 ! + X2
3) a 

2: 
a 

a 

+ xlz) 

jmaxa,lxa,5 a 

~ Tfl,y Xn 9 Xf (11.13a) 

*The true test of a tensor lies in its behavior under a coordinate transformation (see Section 11.7). 
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Equation 11.10 is a compact way to write the inertia tensor components , but 
Equation 11.13a is an imposing equation. By using components (xa, ya, z„) in-
stead of (x a l , xa£, xa3) and letting rf = x* + *fa + z2, Equation 11.13a can be 
written as 

{1} 

.2 ,Ja\' a a 

- 2 m a y a x a a 

ĤJ tThfy Xv 

-Smaxaya a 

2ma{r\ - yl) a 

-2maxaza a 

mayaza a 

2m„(r! - zl) 

(11.13b) 

which is less imposing and more recognizable. We continue, however, with the 
xa i notat ion because of its utility. 

The diagonal elements, I n , /22, and /33, are called the moments of inertia 
about the and respectively, and the negatives of the off-diagonal 
elements I12, /13, and so forth, are te rmed the products of inertia.* It should be 
clear that the inertia tensor is symmetric; that is, 

(11-14) 
and, therefore, that there are only six i ndependen t elements in {I}. Fur thermore , 
the inertia tensor is composed of additive elements; the inertia tensor for a body 
can be considered to be the sum of the tensors for the various port ions of the 
body. Therefore , if we consider a body as a cont inuous distribution of matter 
with mass density p = p(r) , then 

(11.15) 

where dv = dxx dx2 dx3 is the e lement of volume at the position def ined by the 
vector r, and where Vis the volume of the body. 

EXAMPLE 11.3 

Calculate the inertia tensor of a homogeneous cube of density p, mass M, and 
side of length b. Let one corner be at the origin, and let three adjacent edges lie 
along the coordinate axes (Figure 11-3). (For this choice of the coordinate 
axes, it should be obvious that the origin does no t lie at the center of mass; we 
re turn to this point later.) 

Solution. According to Equation 11.15, we have 

P f (b 

I\\ = p \ dx3 dx2(x\ + x3) dxx 
Jo Jo Jo 

2 2 
= - pb5 = — Mb2 

3 3 

^Introduced by Huygens in 1673; Euler coined the name. 
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x3 

o 
s 

s • 
* 

s 

*1 
FIGURE 11-3 Example 11-3. A homogeneous cube of sides b with the origin at 

one corner. 

7j2 — p j X] (I.X\ I Xi^ (lX'2 
Jo Jo 

dxQ 

pb5 Mb2 

It should be easy to see that all the diagonal elements are equal and, fur-
thermore, that all the off-diagonal elements are equal. If we define /3 = Mb2, we 
have 

hi ~ hi ~ hs ~ c, P 

Ht hs ~ h 23 

The moment-of-inertia tensor then becomes 
/ 

2 1 i 
4 4 

1 2 1 
3 4 

1 1 2 
3 

We shall cont inue the investigation of the moment-of-inertia tensor for the 
cube in later sections. 

11.4 Angular Momentum 
With respect to some point 0 fixed in the body coordinate system, the angular 
m o m e n t u m of the body is 

L = S r a x P a (11.16) 
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The most convenient choice for the position of the po in t O depends on the par-
ticular problem. Only two choices are important : (a) if one or more points of 
the body are fixed (in the fixed coordinate system), Ois chosen to coincide with 
one such point (as in the case of the rotat ing top, Section 11.11); (b) if n o point 
of the body is fixed, O is chosen to be the center of mass. 

Relative to the body coordinate system, the linear m o m e n t u m p a is 

pa = maxa = maoi x ra 

Hence, the angular m o m e n t u m of the body is 

L = 2 m j c a X (co X ra) (11-17) a 

The vector identity 

A X (B X A) = A 2 B - A ( A - B ) 

can be used to express L: 

L = 2 » i a [ r2o> - ra(ra • co) ] (11.18) 

The same technique we used to write Trot in tensor fo rm can now be applied 
here . But the angular m o m e n t u m is a vector, so for the ith component , we write 

= 2 ma[ co ; 2 xlM k 
, 2 x„,c 

J 

Ka,k 

= Sl} 2 xltk - xaJxaJ (11.19) 

The summation over a can be recognized (see Equation 11.10) as the ijth ele-
men t of the inertia tensor. Therefore , 

A = j 

or, in tensor notat ion, 

L = {1} • <o 

(11.20a) 

(11.20b) 

Thus, the inertia tensor relates a sum over the components of the angular veloc-
ity vector to the ith componen t of the angular m o m e n t u m vector. This may at 
first seem a somewhat unexpected result; for, if we consider a rigid body for 
which the inertia tensor has nonvanishing off-diagonal elements, then even if co 
is directed along, say, the xx-direction, co = (w1, 0, 0), the angular m o m e n t u m 
vector in general has nonvanishing components in all three directions: L = 
(Lj, L2, LS); that is, the angular m o m e n t u m vector does no t in general have the 
same direction as the angular velocity vector. (It should be emphasized that this 
statement depends on A # 0 for i ¥= j; we return to this point in the next section.) 
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Rotation axis 

FIGURE 11-4 A dumbbell connected by masses mx and m2 at the ends of its shaft. Note 
that co is not along the shaft, and that co and L are not collinear. 

As an example of co and L no t being collinear, consider the rotating dumb-
bell in Figure 11-4. (We consider the shaft connect ing ml and m2 to be weighdess 
and extensionless.) The relation connect ing ra, v„, and to is 

v a = to X r„ 

and the relation connect ing ra, v«, and L is 

It should be clear that to is directed along the axis of rotation and that L is per-
pendicular to the line connect ing mx and m v 

We note, for this example, that the angular-momentum vector L does no t re-
main constant in time bu t rotates with an angular velocity o> in such a way that it 
traces out a cone whose axis is the axis of rotation. There fore L, 0. But 
Equation 9.31 states that 

where N is the external torque applied to the body. Thus, to keep the dumbbel l 
rotating as in Figure 11-4, we must constandy apply a torque. 

We can obtain ano ther result f rom Equation 11.20a by multiplying L, by |w t 

and summing over i: 

a a 

L = N (11.21) 

( 1 1 . 2 2 a ) 
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where the second equality is jus t Equation 11.11. Thus, 

Trot = g W " L (11.22b) 

Equations 11.20b and 11.22b illustrate two impor tant propert ies of tensors. 
T h e product of a tensor and a vector yields a vector, as in 

L = {1} • to 

and the p roduc t of a tensor and two vectors yields a scalar, as in 

rrot = | w - L = | « •{!}•«> 

We shall not , however, have occasion to use tensor equations in this form. We 
use only the summation (or integral) expressions as in Equations 11.11, 11.15, 
and 11.20a. 

EXAMPLE 11.4 

Consider the p e n d u l u m shown in Figure 11-5 composed of a rigid rod of length 
b with a mass mY at its end. Another mass (m2) is placed halfway down the rod. 
Find the f requency of small oscillations if the p e n d u l u m swings in a plane. 

Solution. We use the methods of this chapter to analyze the system. Let the 
fixed and body systems have their origin at the p e n d u l u m pivot point. Let e t be 
along the rod, e2 be in the plane, and e3 be out of the plane (Figure 11-5). The 
angular velocity is 

to = « 3e 3 = 0e3 (11.23) 

We use Equation 11.10 to f ind the inertia tensor. All the mass is a long e1( with 
i = b and x21 = b/2. All o ther components of xa k equal zero. 

Iy = »h(8,y*i,i - Xhixh) + m2(djjX2i - X>,<X2,7) (11.24) 

The inertia tensor, Equation 11.13a, becomes 

FIGURE 11-5 Example 11.4. A rigid rod rotating as a pendulum has a mass ; 
end and another mass m2 halfway. 

at its 
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{•} = < 
0 mxb2 + trie 

b2 

0 

0 

mxb2 + m2 
62 

(11.25) 

We determine the angular m o m e n t u m f rom Equation 11.20a: 

Lx = 0 
L2 = 0 

( b*\-L3 = /33w3 = \mxb2 + m2 — id 

(11.26) 

The only external force is gravity, which causes a torque N on the system. 
Because L = N, we have 

mxb2 + m2^jde5 = 2 r a X Fa 

Because the gravitational force is down, 

g = g cos 9ex — g sin 6 e2 

Thus, 

rx X Fj = bex X (cos 0e, - sin 0e2) mxg = — mxgb sin 0e3 

r2 X F2 = — ex X (cos dex — sin 0e2) m2g : 

Equation 11.27 becomes 

b2[ mx + = ~bg sin 6 ( mx + ^ 

and the f requency of small oscillations is 

(dI = 

m2 
m,i H 

2 g 

OTj + 
W2 

(11.27) 

-wijg- sin 0e3 

(11.28) 

(11.29) 

We can check Equation 11.29 by not ing that to2 ~ g/b for mx tn2 and 
co § = 2g/6 for m2 m, as it should. 

This example could have jus t as easily been solved by finding the kinetic en-
ergy f rom Equation 11.22a and using Lagrange's equations of motion. We 
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would then have 

_ 1 _ 1 
Trol - ~ co5L3 - - w3/33 

= U^my + m 2 ^ j e 2 (11.30) 

b 
U = —rtiigb cos 6 — m2g- cos 6 (11.31) 

Where U = 0 at the origin. The equat ion of mot ion (Equation 11.28) follows di-
rectly f rom a straightforward application of the Lagrangian technique. 

11.5 Principal Axes of Inertia* 
It should be clear that a considerable simplification in the expressions for T and 
L would result if the inertia tensor consisted only of diagonal elements. If we 
could write 

hj ~ !i8ij 

then the inertia tensor would be 

h 0 0 
0 h 0 

0 0 h. 

We would then have 

and 

Li = 2 1 , 8 „ a j , = Li 

= - 2 I,8,,(O,<A>, = — 
2 i,j 1 1 2 • iof 

(11.32) 

(11.33) 

(11.34) 

(11.35) 

Thus, the condit ion that {1} have only diagonal elements provides quite sim-
ple expressions for the angular m o m e n t u m and the rotational kinetic energy. 
We now determine the conditions u n d e r which Equation 11.32 becomes the de-
scription of the inertia tensor. This involves f inding a set of body axes for which 
the products of inertia (i.e., the off-diagonal elements of {I}) vanish. We call 
s u c h a x e s t h e p r i n c i p a l a x e s o f i n e r t i a . 

If a body rotates a round a principal axis, both the angular velocity and the 
angular m o m e n t u m are, according to Equat ion 11.34, directed along this axis. 

*Discovered by Euler in 1750. 
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T h e n , i f / i s the rotat ional inertia ( m o m e n t of inertia) abou t this axis, we can write 

L = /to (11.36) 

Equat ing the componen t s of L in Equat ions 11.20a and 11.36, we have 

L | = I(TJL = IUO) I + /12a>2 + / 1 3 a»3 

L2 = I(O2 = /,,&>, + /22w2 + /23o>3 (11.37) 

!-•>, = Ia>3 = 4|ftJ| + /32w2 + /33W3. 

Or, collecting terms, we obtain 

( / „ - I)WX + /12FT>2 + 4S«>3 = 0 
/.,!«! + (/22 - /) to2 + /23«3 = 0 (11.38) 

kl<0\ + 42w2 + (4s - = 0 , 

T h e condi t ion that these equat ions have a nontrivial solution is tha t the de-
t e rminan t of the coefficients vanish: 

(In ~ I ) 212 
J

21 

•<31 

(42 - / ) 
42 

-'IS 
-'23 

(4s - / ) 

= 0 (11.39) 

T h e expansion of this de t e rminan t leads to the secular o r characteristic equa-
tion* for I, which is a cubic. Each of the th ree roots cor responds to a m o m e n t of 
inert ia abou t o n e of the principal axes. These values, I l t /2, a n d /3, are called the 
principal m o m e n t s of inert ia. If the body rotates abou t the axis cor responding to 
the principal m o m e n t Ix, t hen Equat ion 11.36 becomes L = / j to—tha t is, bo th to 
and L are di rected a long this axis. T h e direct ion of to with respect to the body 
coord ina te system is then the same as the direct ion of the principal axis corre-
spond ing to / j . There fo re , we can de t e rmine the direct ion of this principal axis 
by substi tuting /, for / i n Equat ion 11.38 and de t e rmin ing the ratios of the com-
ponen t s of the angular-velocity vector: tu^a^aj j . We thereby de t e rmine the direc-
tion cosines of the axis abou t which the m o m e n t of inert ia is I v The directions 
cor responding to /2 and /3 can be f o u n d in a similar fashion. That the principal 
axes de t e rmined in this m a n n e r are i ndeed real and orthogonal is proved in 
Section 11.7; these results also follow f r o m the m o r e genera l considerat ions 
given in Section 12.4. 

T h e fact tha t the diagonalizat ion p r o c e d u r e ju s t descr ibed yields only the 
ratios of the componen t s of to is n o handicap , because the ratios completely de-
te rmine the direct ion of each of the pr incipal axes, a n d it is only the directions 
of these axes that are required. Indeed , we would n o t expect the magnitudes of 
the C0i to be de t e rmined , because the actual rate of the body's angular mot ion 
canno t be specified by the geometry alone. We are f r ee to impress on the body 
any magn i tude of the angular velocity we wish. 

*So called because a similar equation describes secular perturbations in celestial mechanics. The 
mathematical terminology is the characteristic polynomial 
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For most of the problems encountered in rigid-body dynamics, the bodies 
are of some regular shape, so we can determine the principal axes merely by ex-
amining the symmetry of the body. For example, any body that is a solid of revo-
lution (e.g., a cylindrical rod) has one principal axis that lies along the symmetry 
axis (e.g., the center line of the cylindrical rod) , and the o ther two axes are in a 
plane perpendicular to the symmetry axis. It should be obvious that because the 
body is symmetrical, the choice of the angular p lacement of these o ther two axes 
is arbitrary. If the m o m e n t of inertia along the symmetry axis is then /2 = I3 

for a solid of revolution—that is, the secular equat ion has a double root. 
If a body has / j = /2 = /3, it is termed a spherical top; if = /2 # /3, it is 

termed a symmetric top; if the principal moments of inertia are all distinct, it is 
termed an asymmetric top. If a body has /, = 0, /2 = 1$, as, for example, two 
point masses connected by a weighdess shaft, or a diatomic molecule, it is called 
a rotor. 

EXAMPLE 11.5 

Find the principal moments of inertia and the principal axes for the cube in 
Example 11.3. 

Solution. In Example 11.3, we f o u n d that the moment-of-inertia tensor for a 
cube (with origin at one corner) had nonzero off-diagonal elements. Evidendy, 
the coordinate axes chosen for that calculation were no t principal axes. If, for . 
example, the cube rotates about the x3-axis, then to = <u3e3 and the angular 
m o m e n t u m vector L (see Equation 11.37) has the components 

Li = Pws 

L2 = - - )3w3 

Thus, 

;/3W3 

1 1 2 
L = Mb2a> e! e2 H— e 3 4 4 3 

which is no t in the same direction as to. 
To find the principal moments of inertia, we must solve the secular equation 

13-I 
- i " - i " 

- i ' 
= 0 

- i ' - i " 

(11.40) 
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T h e value of a de te rminant is no t affected by adding (or subtracting) any row 
(or column) f rom any other row (or column) . Equat ion 11.40 can be solved 
more easily if we subtract the first row f rom the second: 

+ ; — — / 
12 H 12 H 

1 

4 

0 

' p - I 

= 0 

We can factor ( I ) f rom the second row: 

2 

11 
12 ' 

P - / 

- 1 
1 

1 

1 

i " 

- i " 
0 = 0 

Expanding, we have 

M " ~ - A i 1 3 - ' 
= 0 

which can be factored to obtain 

M i M G i ' - ' i -

Thus, we have the following roots, which give the principal moments of inertia: 

The diagonalized moment-of-inertia tensor becomes 

{1} 

f l 
\ 

6 
0 0 

1 1 
0 -HP 0 

1 2 

1 1 
0 0 TT:P 

1 2 , 

(11.41) 

Because two of the roots are identical, /2 = I3, the principal axis associated with 
Ix must be an axis of symmetry. 
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To find the direct ion of the principal axis associated with Ix, we substitute 
for / i n Equat ion 11.58 the value / = / j = | )8 : 

2 1 \ 1 -/3--I3 cou ~-fico21 
1 

0 

-\p«>n + 
1 

/3o>31 = 0 

~ \ p a > u ~ \ & < » n + ( f £ - K = 0 

where the second subscript 1 o n the signifies that we are consider ing the 
principal axis associated with I v Dividing the first two of these equat ions by /3/4, 
we have 

2o)n — wn — w31 — 
- w u + 2w21 - w31 

(11.42) 

Subtract ing the second of these equat ions f r o m the first, we find a>n = (o21. 
Using this result in e i ther of the Equat ions 11.42, we obtain &>n = tu2i = w 3 i> 

and the desired ratios are 

<wn:to2i:w3i = 1:1:1 

There fo re , when the cube rotates abou t an axis tha t has associated with it 
the m o m e n t of inert ia / , = g/3 = jMb 2 , the project ions of o> o n the th ree coor-
dinate axes are all equal. Hence , this pr incipal axis cor responds to the diagonal 
of the cube. 

Because the m o m e n t s /2 and /3 a re equal, the or ientat ion of the principal 
axes associated with these m o m e n t s is arbitrary; they n e e d only lie in a p lane 
no rma l to the diagonal of the cube. 

11.6 Moments of Inertia for Different Body 
Coordinate Systems 

For the kinetic energy to be separable into translational a n d rotat ional por t ions 
(see Equat ion 11.6), it is, in general , necessary to choose a body coord ina te sys-
tem whose origin is the center of mass of the body. For certain geometr ical 
shapes, it may no t always be convenient to compu te the e lements of the inert ia 
tensor using such a coordinate system. We the re fore consider some o the r set of 
coordina te axes .X,, also f ixed with respect to the body and having the same ori-
enta t ion as the x r axes b u t with an origin Q that does n o t co r respond with the 
origin 0 (located at the center of mass of the body coord ina te system). Origin Q 
may be located ei ther within or outside the body u n d e r considerat ion. 

The e lements of the inertia tensor relative to the X,-axes can be written as 

h = S m ^ S x * * - ^ ^ (11.43) 
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orientation as the x,-axes, but its origin Q is not located at the 
origin O (at center of mass of body system). 

If the vector connect ing Q with O is a, then the general vector R (Figure 11-6) 
can be written as 

R = a + r (11.44) 

with components 

XI=AI+XI (11.45) 

Using Equation 11.45, the tensor e lement JL} becomes 

Jij = + ak)2 ~ {xa<i + a,)(xaJ + a;) 

= - xaixa^j 

+ ^2tmj[8l]^{2xakak + af) - ( a ^ + ap^ + a.aj^j (11.46) 

Identifying the first summation as Iy, we have, on regrouping, 

Jij = 1^ + ^ma(dy^al - ata^j - atxaj - ajxa^j (11.47) 

But each term in the last summation involves a sum of the fo rm 

a 
We know, however, that because O is located at the center of mass, 

S m x = 0 
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or, for the Ath component , 

^ m a x a k = 0 a 
Therefore , all such terms in Equation 11.47 vanish and we have 

Jij = h + (^v ^ ~ a 

But 

= M and = a2 

a k 

Solving for Ii}, we have the result 

(11.48) 

k = Jij~ M(a%j - a f l j ) (11.49) 

which allows the calculation of the elements I{j of the desired inertia tensor (with 
origin at the center of mass) once those with respect to the X r axes are known. 
The second term on the right-hand side of Equation 11.49 is the inertia tensor 
referred to the origin Q for a poin t mass M. 

Equation 11.49 is the general fo rm of Steiner's parallel-axis theorem,* the 
simplified fo rm of which is given in elementary treatments. Consider, for exam-
ple, Figure 11-7. Element I n is 

In = Jn ~ M[{al + 4 + al)8u - aft 

= Ju ~ M{a\ + a f ) 

X3 

0 

ayr / ai 
yS Al 

a X, 
/ 

/ 

/ 
/ 

/ 
/a\ / 1 

/ 

#2 

FIGURE 11-7 The elements Il; in the x raxes are related to those (Jt]) in the X^-axes 
by Equation 11.49. The vector a connects the origin Qwith the origin O. 

"Jacob Steiner (1796-1863). 
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which states t h a t t h e d i f f e r ence b e t w e e n t h e e l e m e n t s is equa l to t h e mass of t h e 
body mul t ip l ied by t h e square of the d is tance b e t w e e n the paral lel axes (in this 
case, be tween the Xr a n d X r a x e s ) . 

EXAMPLE 11.6 

F ind the iner t ia t ensor of the c u b e of E x a m p l e 11.3 in a c o o r d i n a t e system with 
or igin at t he c e n t e r of mass. 

Solution. In E x a m p l e 11.3, with t h e or ig in a t t h e c o r n e r of the cube , we f o u n d 
the iner t ia t ensor to b e 

- M b 2 

3 
- -Mb2 

4 
--Mb2 

4 

{J} = < - -Mb2 

4 
- ~ Mb2 

4 

--Mb2 

I 4 
- -Mb2 

4 
| M 6 2 

3 

(11.50) 

We may now use E q u a t i o n 11.49 to ob ta in t h e iner t ia t ensor {1} r e f e r r e d to a co-
o r d i n a t e system with or ig in at t h e c e n t e r of mass. In k e e p i n g with the no ta t ion 
of this sect ion, we call t h e new axes x{ with or ig in O a n d call the previous axes Xt 

with or ig in Q_ a t o n e c o r n e r of the c u b e (Figure 11-8). 
T h e c e n t e r of mass of the cube is at t h e p o i n t (b/2, b/2, b/2) in the Xt coor-

d ina te system, a n d t h e c o m p o n e n t s of t h e vec tor a t h e r e f o r e a re 

a, = «2 = % = b/ 2 

F r o m E q u a t i o n 11.50, we have 

Jn = Jn = 733 = 3 Mb'1 

7l2 = 7l3 = 723 = - \ Mb2 

X] • 

Xi 

o 

•A 

FIGURE 11-8 Example 11.6. The X raxes have their origin Qat one corner of a cube of 
sides b. The system x{ has its origin O at the cube's center of mass. 
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And applying Equation 11.49, we find 

hi =Jn ~ M{a2 - of) 

= / „ - M{a\ + a\) 

= - Mb2 — - Mb2 — - Mb2 

3 2 6 

and 

Altogether, we have 

hi =/ i2 _ M{-axat) 

= - - Mb2 + - Mb2 

4 4 

/, , = /29 = / , , = i MA2 

/12 — /is — — 0 •<13 23 

The inertia tensor is therefore diagonal: 

1 
M62 

- M b 2 

6 

6 

(11.51) 

If we factor out the common term ^Mb2 f rom this expression, we can write 

{1} = - M62{1} 
6 

where {1} is the unit tensor: 

(11.52) 

(11.53) 

Thus, we f ind that, for the choice of the origin at the center of mass of the 
cube, the principal axes are perpendicular to the faces of the cube. Because, 
f rom a physical standpoint, no th ing distinguishes any one of these axes f rom an-
other, the principal moments of inertia are all equal for this case. We note fur-
ther that, as long as we maintain the origin at the center of mass, then the inertia 
tensor is the same for any orientation of the coordinate axes and these axes are 
equally valid principal axes.* 

*In this regard, the cube is similar to a sphere as far as the inertia tensor is concerned (i.e., for an ori-
gin at the center of mass, the structure of the inertia tensor elements is not sufficiendy detailed to 
discriminate between a cube and a sphere). 
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11.7 Further Properties of the Inertia Tensor 
Before attacking the problems of rigid-body dynamics by obtaining the general 
equations of motion, we should consider the fundamenta l impor tance of some 
of the operations we have been discussing. Let us begin by examining the prop-
erties of the inertia tensor u n d e r coordinate transformations.* 

We have already obtained the fundamenta l relation connect ing the inertia 
tensor and the angular m o m e n t u m and angular velocity vectors (Equation 
11.20), which we can write as 

Lk = (11.54a) 

Because this is a vector equation, in a coordinate system rotated with respect to 
the system for which Equation 11,54a applies, we must have an entirely analo-
gous relation, 

L\ - (11.54b) 
} 

where the pr imed quantities all refer to the rotated system. Both L and to obey 
the standard transformation equation for vectors (Equation 1.8): 

= 2 A fjX) = 2 A , 

We can therefore write 

and 

Lk = 2Am*Z4 (11.55a) 

= (11.55b) 0) 

If we substitute Equations 11.55a and b into Equation 11.54a, we obtain 

2A„i;,/4 = (n.56) 
m I J J J 

Next, we multiply bo th sides of this equat ion by \ l k and sum over k: 

S ^ S A ^ L : = j j . j w ; ( n . 5 7 ) 

T h e term in parentheses on the left-hand side is just 8im, so pe r fo rming the sum-
mation over m we obtain 

l\ = (n.58) 

For this equation to be identical with Equat ion 11.54b, we must have 

4 = 2A t t A/„ (11.59) 

This is therefore the rule that the inertia tensor must obey u n d e r a coordinate 
transformation. Equation 11.59 is, in fact, the general rule specifying the m a n n e r 

*We confine our attention to rectangular coordinate systems so that we may ignore some of the 
more complicated properties of tensors that manifest themselves in general curvilinear coordinates. 
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in which any second-rank tensor must t ransform. For a tensor {T} of arbitrary 
rank, the s tatement is* 

t: abed... — 2 A„,Ai,,A.i.A ckndl••• 1 ijkl... 

Note that we can write Equation 11.59 as 

I'ij — ^KJkiK, 

(11.60) 

(11.61) 

Although matrices and tensors are distinct types of mathematical objects, the 
manipulat ion of tensors is in many respects the same as for matrices. Thus, 
Equation 11.61 can be expressed as a matrix equation: 

I' = AIA( (11.62) 
where we unders tand I to be the matrix consisting of the elements of the tensor 
{I}. Because we are considering only or thogonal t ransformation matrices, the 
transpose of A. is equal to its inverse, so we can express Equation 11.62 as 

MA. - l (11.63) 

A transformation of this general type is called a similarity transformation (I' is 
similar to I). 

EXAMPLE 11.7 

Prove the assertion stated in Example 11.6 that the inertia tensor for a cube 
(with origin at the center of mass) is i ndependen t of the orientation of the 
axes. 

Solution. The change in the inertia tensor u n d e r a rotation of the coordinate 
axes can be computed by making a similarity t ransformation. Thus, if the rota-
tion is described by the matrix A, we have 

I' = AIA"1 (11.64) 
But the matrix I, which is derived f rom the elements of the tensor {1} (Equation 
11.52 of Example 11.4), is jus t the identity matrix 1 multiplied by a constant: 

1 0 0 ' 
-Mb21 0 1 

,0 0 
0 I = - Mb21 (11.65) 

*Note that a tensor of the first rank transforms as 

T'a = aiTj i 
Such a tensor is in fact a vector. A tensor of zero rank implies that T' = T, or that such a tensor is a 
scalar. The properties of quantities that transform in this manner were first discussed by C. Niven in 
1874. The application of the term tensor to such quantities can be traced t o j . Willard Gibbs. 
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Therefore , the operations specified in Equation 11.64 are trivial: 

I' = -M6 2 A1A 1 = -Mb2\A-1 = - Mb21 = I (11.66) 
6 6 6 

Thus, the t ransformed inertia tensor is identical to the original tensor, inde-
penden t of the details of the rotadon. 

Let us next de termine what condit ion must be satisfied if we take an arbi-
trary inertia tensor and pe r fo rm a coordinate rotation in such a way that the 
t ransformed inertia tensor is diagonal. Such an operat ion implies that the quan-
tity Iy in Equation 11.59 must satisfy (see Equation 11.32) the relation 

I'a = Ii&ij (11.67) 

Thus, 

h = 2A*A 7 / h (11 -68) 

If we multiply both sides of this equat ion by Aim and sum over i, we obtain 

2T, A i mSy= 2 ^2A i mA i S j Ay, Ikl (11.69) 

The term in parentheses is jus t Smh so the summation over i on the left-hand side 
of the equation and the summation over k on the right-hand side yield 

IJ AJM = 2 a ; , 4 ; (11.70) 

Now the left-hand side of this equat ion can be written as 

Iĵ -jm = (11-71) 

so Equation 11.70 becomes 

2 / ^ ^ = 2 A]tIml (11.72a) 

or 

2 ( 4 , - 7 / ^ = 0 (11.72b) 

This is a set of simultaneous linear algebraic equations; for each value of j there 
are three such equations, one for each of the three possible values of m. For a 
nontrivial solution to exist, the de te rminant of the coefficients must vanish, so 
the principal moments of inertia, /,, 72, and 73, are obtained as roots of the secu-
lar de terminant for 7: 

41 ~ 18mil ~ 0 (11.73) 

This equation is just Equation 11.39; it is a cubic equation that yields the principal 
moments of inertia. 
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Thus, fo r any inertia tensor, the elements of which are computed for a given 
origin, it is possible to pe r fo rm a rotat ion of the coordinate axes about that ori-
gin in such a way that the inertia tensor becomes diagonal. The new coordinate 
axes are then the principal axes of the body, and the new moments are the prin-
cipal moments of inertia. Thus, for any body and for any choice of origin, there 
always exists a set of principal axes. 

EXAMPLE 11.8 

For the cube of Example 11.3, diagonalize the inertia tensor by rotat ing the co-
ordinate axes. 

Solution. We choose the origin to lie at one corner and pe r fo rm the rotation 
in such a m a n n e r that the a^-axis is rotated to the original diagonal of the cube. 
Such a rotat ion can conveniently be m a d e in two steps: first, we rotate th rough 
an angle of 45° about the x3-axis; second, we rotate th rough an angle of 
c o s _ 1 ( V | ) about the x2-axis. T h e first rotat ion matrix is 

Aj = 

/ _ L 
V 2 

1 

~ V 2 

and the second rotat ion matrix is 

/ 

A9 = 

0 

V 

0 

1 

V 3 

The complete rotat ion matrix is 

A — A^A] — 

1 

V 2 

1 

V 2 

0 

A 

j _ \ 
V s 

1 

0 

0 

1 1 1 \ / 
V i V i V s 

1 1 
0 

1 

V 2 V 2 
0 

V 3 
1 1 

V 6 V s / \ 

3 / 

1 

/» 
2 

1 

V 2 

(11.74) 

(11.75) 

3 

1 

V 2 
V^ 

(11.76) 

/ 
T h e matrix fo rm of the t ransformed inert ia tensor (see Equat ion 11.62) is 

I' = AIA< (11.77) 
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or, factoring /3 out of I, 

1 

£ 
I 

\ V 2 

/ 1 

\ V2 

\ > 

1 

3 

1 

V 2 

1 

5 

1 
V 2 

V 2 

- 4 = V 2 

\ 
0 

0 

n 
12 

o 

P o 

/ 2 1 _ 1 \ A £ 1 \ 
3 4 4 

i 
V 2 V 2 

1 2 1 
/ s 1 

4 3 4 i V 2 ~ V l 
1 

\ i 
1 
4 

2 

3 / 0 V2) 

\ A 11 F- i i V a \ 

6 12\ 12 12 2 

i 3 11 V 2 
6 12 V 2 12 2 

1 
0 — V 2 

12 / 

(11.78) 

Equation 11.78 is just the matrix fo rm of the inertia tensor f o u n d by the 
diagonalization procedure using the secular de te rminant (Equation 11.41 of 
Example 11.5). 

We have demonstra ted two general procedures to diagonalize the inertia 
tensor. We previously pointed out that these methods are no t limited to the iner-
tia tensor bu t are generally valid. Either p rocedure can be very complicated. For 
example, if we wish to use the rotat ion p rocedure in the most general case, we 
must first construct a matrix that describes an arbitrary rotation. This entails 
three separate rotations, one about each of the coordinate axes. This rotation 
matrix must then be applied to the tensor in a similarity transformation. The off-
diagonal elements of the resulting matrix* must then be examined and values of 
the rotation angles de termined so that these off-diagonal elements vanish. T h e 
actual use of such a procedure can tax the limits of h u m a n patience, bu t in some 
simple situations, this method of diagonalization can be used with profit. This is 
particularly true if the geometry of the problem indicates that only a simple rota-
tion about one of the coordinate axes is necessary; the rotation angle can then be 
evaluated without difficulty (see, for example, Problems 11-16,11-18, and 11-19). 

*A large sheet of paper should be used! 
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In practice, there are systematic p rocedures fo r f ind ing principal m o m e n t s 
and principal axes of any inertia tensor. S tandard c o m p u t e r programs and hand-
calculator me thods are available to f ind the n roots of an nth-order polynomial 
and to diagonalize a matrix. W h e n the principal m o m e n t s are known, the prin-
cipal axes are easily found . 

T h e example of the cube illustrates the impor tan t po in t that the e lements of 
the inertia tensor, the values of the pr incipal m o m e n t s of inertia, and the orien-
tation of the principal axes fo r a rigid body all d e p e n d on the choice of origin 
fo r the system. Recall, however, that fo r the kinetic energy to be separable into 
translational and rotational port ions, the origin of the body coordina te system 
must, in general , be taken to coincide with the cen te r of mass of the body. 
However, fo r any choice of the origin fo r any body, the re always exists an orienta-
tion of the axes that diagonalizes the inert ia tensor. Hence , these axes become 
principal axes fo r that part icular origin. 

Next, we seek to prove that the principal axes actually fo rm an or thogonal 
set. Let us assume that we have solved the secular equa t ion and have de t e rmined 
the principal m o m e n t s of inertia, all of which are distinct. We know that fo r each 
principal m o m e n t there exists a co r re spond ing principal axis with the proper ty 
that, if the angular velocity vector to lies a long this axis, then the angular mo-
m e n t u m vector L is similarly or iented; tha t is, to each there corresponds an an-
gular velocity to, with componen t s Wy, oj3j. (We use the subscript on the vec-
tor to and the second subscript on the componen t s of to to designate the 
principal m o m e n t with which we are concerned . ) For the mth principal mo-
men t , we have 

Urn = 4 « i m (11.79) 

In terms of the e lements of the moment-of- inert ia tensor, we also have 

Lim = 2 I i k o k m (11.80) R 
Combin ing these two relations, we have 

(o k m = Ima)im (11.81a) k 

Similarly, we can write for the nth principal m o m e n t : 

(oin = Ino)kn (11.81b) t 

If we multiply Equat ion 11,81a by coin and sum over i and then multiply Equat ion 
11.81b by a)km and sum over k, we have 

2 / f t u>km d)m - 2 / m w ! m w m 

2/„ 
i,k 

2 / . 
(11.82) 

T h e left-hand sides of these equat ions are identical, because the inert ia tensor is 
symmetrical {IA = Iki). There fore , o n subtract ing the second equat ion f r o m the 
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first, we have 

Im^O>imO)in - lJLwk mwk n = 0 (11.83) 
I k 

Because i a n d k are bo th d u m m y indices, we can replace t hem by I, say, and 
obta in 

( 4 - In)^colmoyln = 0 (11.84) 

By hypothesis, the principal moments are distinct, so that 4 ^ 4- Therefore , 
Equation 11.84 can be satisfied only if 

^ w l m w l n = 0 (11.85) 

But this summation is jus t the definit ion of the scalar p roduc t of the vectors tam 

and <«>„. Hence, 

wm-<on = 0 (11.86) 

Because the principal moments 4 and In were picked arbitrarily f rom the set of 
three moments , we conclude that each pair of principal axes is perpendicular ; 
the three principal axes therefore constitute an or thogonal set. 

If a double root of the secular equation exists, so that the principal moments 
are I u /2 = /3, then the preceding analysis shows that the angular velocity vectors 
satisfy the relations 

Crtj _L C02, ti>! _L to3 

but that no th ing may be said regarding the angle between o>2 and to3. But the 
fact that I2 = /3 implies that the body possesses an axis of symmetry. Therefore , 
to, lies along the symmetry axis, and w2 and to3 are required only to lie in the 
plane perpendicular to W], Consequently, there is no loss of generality if we also 
choose w2J-to3. Thus, the principal axes for a rigid body with an axis of symme-
try can also be chosen to be an or thogonal set. 

We have previously shown that the principal moments of inertia are ob-
tained as the roots of the secular equat ion—a cubic equation. Mathematically, at 
least one of the roots of a cubic equation must be real, bu t there may be two 
imaginary roots. If the diagonalization procedures for the inertia tensor are to 
be physically meaningful , we must always obtain only real values for the principal 
moments . We can show in the following way that this is a general result. First, we 
assume the roots to be complex and use a p rocedure similar to that used in the 
preceding proof. But now we must also allow the quantities u>km to become com-
plex. There is n o mathematical reason why we cannot do this, and we are not 
concerned with any physical interpretat ion of these quantities. We therefore 
write Equation 11.81a as before, bu t we take the complex conjugate of Equation 
11.81b: 

^ I k M k m = 4 w i i 
k 

J* * T* * (11.87) 

Next, we multiply the first of these equat ions by u>*in a n d sum over i a n d multi-
ply the second by a>km and sum over k. The inert ia tensor is symmetrical, and its 
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elements are all real, so that Iik = Vkv The re fo re , subtract ing the second of 
these equat ions f r o m the first, we f ind 

( 4 - colmcoln = 0 (11.88) 

For the case TO = n, we have 

( 4 - O^a) l mco;m = 0 (11.89) 

The sum is jus t the definit ion of the scalar p roduc t of (om and w*: 

co m - W ;= | w j 2 > 0 (11.90) 

Therefore , because the squared magni tude of wm is in general positive, it 
must be t rue that Im — 7* for Equadon 11.89 to be satisfied. If a quantity and its 
complex conjugate are equal, then the imaginary parts must vanish identically. 
Thus, the principal moments of inertia are all real. Because {1} is real, the vec-
tors <am must also be real. 

If TO # n in Equation 11.88 and if Im =£ /„, then the equat ion can be satisfied 
only if oim • o>„ = 0; that is, these vectors are or thogonal , as before . 

In all the proofs carried out in this section, we have refer red to the inertia 
tensor. But examining these proofs reveals that the only propert ies of the inertia 
tensor that have actually been used are the facts that the tensor is symmetrical 
and that the elements are real. We may therefore conclude that any real, sym-
metric tensor* has the following properties: 

1. Diagonalization may be accomplished by an appropr ia te rotation of axes, 
that is, a similarity transformation. 

2. The eigenvalues* are obtained as roots of the secular de te rminant and are 
real. 

3. The eigenvectors* are real and orthogonal . 

11.8 Eulerian Angles 
The transformation f rom one coordinate system to ano ther can be represented 
by a matrix equation of the form 

x = Ax' 

If we identify the fixed system with x' and the body system with X, then the rota-
tion matrix A completely describes the relative orientation of the two systems. The 
rotation matrix A contains three independent angles. There are many possible 

*To be more precise, we require only that the elements of the tensor obey the relation Ilh = 4*; thus 
we allow the possibility of complex quantities. Tensors (and matrices) with this property are said to 
be Hermitean. 
fThe terms eigenvalues and eigenvectors are the generic names of the quantities, which, in the case of 
the inertia tensor, are the principal moments and the principal axes, respectively. We shall encounter 
these terms again in the discussion of small oscillations in Chapter 12. 
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Xg - x3 

>A 
xi xi 

(a) 

x. 

(b) 

FIGURE 11-9 The Eulerian angles are used to rotate f rom the x- system to the xt 

system, (a) First rotation is counterclockwise through an angle (f> 
about the x^-axis. (b) Second rotation is counterclockwise through 
an angle 6 about the a^'-axis. (c) Third rotation is counterclockwise 
through an angle ip about the -axis. 

choices fo r these angles; we f ind it conven ien t to use the Eulerian angles* <fi, 6, 
a n d ip. 

T h e Eu le r i an angles a re g e n e r a t e d in the fol lowing series of ro ta t ions , which 
takes the x\ system in to t h e xl system.^ 

1. T h e first ro ta t ion is counterc lockwise t h r o u g h a n ang le <j> a b o u t t h e %3-axis 
(Figure l l - 9 a ) to t r a n s f o r m t h e x\ in to t h e x". Because the ro ta t ion takes 
place in the x[-x'2 p l ane , t he t r ans fo rma t ion ma t r ix is 

( cos 4> sin 4> 
AJ, — 

V 

a n d 

— sin (f> cos <f> 0 
0 0 1, 

x — A j,X ' 

(11.91) 

(11.92) 
2. T h e s econd ro ta t ion is counterc lockwise t h r o u g h a n ang le 6 a b o u t t h e x'{-

axis (Figure l l - 9 b ) to t r a n s f o r m t h e x" i n to t h e x"{. Because t h e ro ta t ion is 
now in t h e p lane , t h e t r ans fo rma t ion ma t r ix is 

(11.93) 

a n d 

Aflx" (11.94) 

*The rotation scheme of Euler was first published in 1776. 
f T h e designations of the Euler angles and even the manner in which they are generated are not uni-
versally agreed upon. Therefore, some care must be taken in comparing any results from different 
sources. The notation used here is that most commonly found in modern texts. 
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3. The third rotat ion is counterclockwise th rough an angle ip about the x3-axis 
(Figure l l -9c) to transform the x'" into the xv T h e transformation matrix is 

(11.95) 

and 

A^x" (11.96) 
The line c o m m o n to the planes containing the xr and x^-axes and the x[-

and x2-axes is called the line of nodes. T h e complete transformation f rom the x\ 
system to the x, system is given by 

and the rotat ion matrix A is 

— A^x'" — A^Agx" 
= A^AgA^x' 

A = A,;,AflA^ 

(11.97) 

(11.98) 

The components of this matrix are 

An = cos ip cos <f> — cos 6 sin <fi sin ip 
A21 = — sin ip cos (f> — cos 9 sin (f> cos ip 
A31 = sin 6 sin </> 

A12 = cos if/ sin (j> + cos 9 cos <f> sin tp 
A22 = — sin ip sin (f> + cos 9 cos <p cos ip (11.99) 
A32 = — sin 6 cos <fi 

A13 = sin ip sin 0 
A23 = cos ip sin 9 
A33 = cos 9 

(The components Ai; are offset in the preceding equat ion to assist in the visuali-
zation of the complete X matrix.) 

Because we can associate a vector with an infinitesimal rotation, we can asso-
ciate the time derivatives of these rotation angles with the components of the an-
gular velocity vector a>. Thus, 

Gv = <i> 
o>e = 9 

o>* = <P 

(11.100) 

The rigid-body equations of motion are most conveniently expressed in the 
body coordinate system (i.e., the x, system), and therefore we must express the 
components of ta in this system. We note that in Figure 11-9 the angular velocities 
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<j), 0, and i|i are directed along the following axes: 

t|» along the x3- (fixed) axis 

0 along the line of nodes 

along the x3- (body) axis 

The components of these angular velocities along the body coordinate axes are 

= <j> sin 8 sin ip 
</>2 = <j> sin 0 cos ip (11.101a) 
<j>3 = cos 6 

6i = 9 cos ip 
02 = ~9 sin ip 
0 3 = 0 

<Ai = o 
4,2 = o 

<p3 = <1> . 

Collecting the individual components of to, we have, finally, 

(11.101b) 

(11.101c) 

co1 = 4>x + + ij/1 = (f> sin 9 sirup + 9 cos tp 
<o2 = fa + 02 + fa = <f> sin 0 cos ip — 9 sin ip 
(o3 = <j>5 + 93 + >j/3 = <j> cos 9 + ip 

(11.102) 

These relations will be of use later in expressing the components of the angular 
m o m e n t u m in the body coordinate system. 

EXAMPLE 11.9 

Using the Eulerian angles, f ind the transformation that moves the original x\-
axis to the x'2-x'3 plane halfway between x'2 and x'3 and moves x'2 perpendicular 
to the plane (Figure 11-10). 

Solution. The key to transformations using Eulerian angles is the second rota-
tion about the line of nodes, because this single rotation must move x'3 to xv 

From the statement of the problem, x3 must be in the x2-x^ plane, rotated 45° 
f rom x3. The first rotation must move x\ to x'[ to have the correct position to 
rotate x3 = x"3 to x"3 = x3. 

In this case, x3 = x3 is rotated 9 = 45° about the original x[ = x"-axis so 
that (p = 0 and 

A^ = 1 (11.103) 

(1 0 0 \ 
Xg = 0 1 / V 2 1 / V 2 (11.104) 

\ 0 - 1 / V 2 1/V2/ 
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FIGURE 11-10 Example 11.9. We use Eulerian angles to rotate the x't system into 
the x, system. 

T h e last ro ta t ion , if/ = 90°, moves x[ 
t h e or iginal x^-xs p l ane . 

x'[ = x"{ to Xi to t h e pos i t ion des i red in 

(11.105) 

T h e t r ans fo rma t ion ma t r ix A is A 

A = 

(11.106) 

Direc t ion c o m p a r i s o n be tween t h e xr a n d x ' r axes shows tha t A r ep re sen t s a sin-
gle ro ta t ion descr ib ing t h e t r ans fo rma t ion . 

11.9 Euler's Equations for a Rigid Body 
Let us first cons ide r t h e force- f ree m o t i o n of a r igid body. In such a case, t h e po-
tent ial energy U vanishes a n d t h e Lagrang ian L b e c o m e s ident ica l with t h e rota-
t ional kinet ic ene rgy T.* If we choose t h e x,-axes to c o r r e s p o n d to t h e p r inc ipa l 

•Because the motion is force free, the translational kinetic energy is unimportant for our purposes 
here. (We can always transform to a coordinate system in which the center of mass of the body is at 
rest.) 
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axes of the body, then f rom Equation 11.35 we have 

T= (11.107) 

If we choose the Eulerian angles as the generalized coordinates, then Lagrange's 
equat ion for the coordinate ip is 

dT _ d_dT 
dip dt dip 

- 0 (11.108) 

which can be expressed as 

2 — ^ - — 2 — — - o 
i doij dip dt i da); dip 

(11.109) 

If we differentiate the components of <o (Equation 11.102) with respect to ip and 
ip, we have 

da^ 
—- = (j> sin 0 cos ip — 6 sin ip = w2 dip 
d(a2 
—— = —<p sin 9 sin ip — 8 cos ip = — a>, 
dip 
dw» 
— = 0 
dip 

(11.110) 

and 

dtoi datn 
- 4 - = —£ = o 
dip dip 

dw<, 
= 1 

dip 

(11.111) 

From Equation 11.107, we also have 

dT 
= /jtoj 

dw, 
(11.112) 

Equation 11.109 therefore becomes 

Ixwxw2 + /2«2(-«i) - -jlsfos = 0 
dt 

o r 

(I\ ~ /2)«iw2
 _ h&s = 0 (11.113) 
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Because the designation of any particular principal axis as the %-axis is en-
tirely arbitrary, Equation 11.113 can be pe rmuted to obtain relations for d), and 
ai2: 

(/2 - I3)(o2<o3 - TjW] = 0 
(/3 - IJcosWt - /2<w2 = 0 (11.114) 

(Il - 4 ) « i « 2 - /3«3 = 

Equations 11.114 are called Euler's equations for force-free motion.* It must be 
noted that, a l though Equation 11.113 for d>3 is indeed the Lagrange equation for 
the coordinate ip, the Euler equations for a>j and cl>2 are not the Lagrange equa-
tions for 8 and cp. 

To obtain Euler's equations for mot ion in a force field, we may start with the 
fundamenta l relation (see Equation 2.83) for the torque N: 

' d l A 
dt J 

= N (11.115) 
fixed 

where the designation "fixed" has been explicitly appended to L because this re-
lation is derived f rom Newton's equation and is therefore valid only in an iner-
tial f rame of reference. From Equation 10.12 we have 

„ dt J fixed \ dt J body 

CO X L (11.116) 

or 

dL\ 
+ CO X L = N (11.117) 

„ dt J body 

The componen t of this equat ion along the x3-axis (note that this is a body axis) is 

L 3 + wxL2 - a>2Lx = N3 (11.118) 

But because we have chosen the x -axes to coincide with the principal axes of 
the body, we have, f rom Equation 11.34, 

A = IiMi 

so that 

I3w3 - ( / j - /a)<u1<ug = N3 (11.119) 

By permut ing the subscripts, we can write all three components of N: 

~ (h ~ h)«>2ws = Ni 
I2(02 ~ (I5 ~ I\)OJ3(Oi = N2 

4^3 - (Ii - k)(OiO)2 = N3j 

(11.120) 

* Leonard Euler, 1758. 
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Using the p e r m u t a t i o n symbol, we can write, in gene ra l 

Ui ~ Ij)<»i<»j ~ - Nk)eijk = 0 (11.121) 

Equa t ions 11.120 a n d 11.121 a re t h e des i red Eu le r equa t ions f o r t h e m o t i o n of a 
rigid body in a fo r ce f ield. 

T h e m o t i o n of a rigid body d e p e n d s o n the s t ruc tu re of the body only 
t h r o u g h the t h r e e n u m b e r s /2, a n d I 3 —that is, t h e p r inc ipa l m o m e n t s of iner-
tia. Thus , any two bod ies with t h e same pr inc ipa l m o m e n t s move in exacdy the 
s ame m a n n e r , regardless of the fac t t ha t they may have qu i te d i f f e r e n t shapes. 
(However, effects such as f r ic t ional r e t a rda t ion may d e p e n d o n t h e s h a p e of a 
body.) T h e s implest geomet r i ca l s h a p e tha t a body hav ing t h r e e given pr inc ipa l 
m o m e n t s may possess is a h o m o g e n e o u s ell ipsoid. T h e m o t i o n of any rigid body 
can t h e r e f o r e be r e p r e s e n t e d by t h e m o t i o n of t h e equivalent ellipsoid.* T h e 
t r e a t m e n t of r igid-body dynamics f r o m this p o i n t of view was o r ig ina ted by 
Poinsot in 1834. T h e Poinsot construction is s o m e t i m e s use fu l f o r dep ic t ing the 
m o t i o n of a rigid body geometrically.* 

EXAMPLE 11.10 

Cons ide r t h e d u m b b e l l of Sect ion 11.4. F ind the a n g u l a r m o m e n t u m of the sys-
t e m a n d t h e t o r q u e r e q u i r e d to m a i n t a i n the m o t i o n shown in Figures 11-4 a n d 
11-11. 

its shaft has its angular momentum L perpendicular to the shaft and 
L rotates around ta. The shaft maintains an angle a with to . 

*The momental ellipsoid was introduced by the French mathematician Baron Augustin Louis Cauchy 
(1789-1857) in 1827. 
fSee, for example, Goldstein (Go80, p. 205). 
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Solution. Let | r, | = | r21 = b. Let the body fixed coordinate system have its ori-
gin at O a n d the symmetry axis x3 be along the weightless shaft toward mt. 

L = r a X v« (11.122) 

Because L is perpendicular to the shaft and L rotates a round co as the shaft ro-
tates, let e2 be along L: 

L = L2e2 (11.123) 

If a is the angle between co and the shaft, the components of co are 

&»! = 0 
u>2 = co sin a (11.124) 
a>3 = o) cos a _ 

The principal axes are xx, x2, and x3, and the principal moments of inertia are, 
f rom Equation 11.13a, 

Ix = (mx + m2)b2 

/2 = (mx + m2)b2 } (11.125) 

h = o 

Combining Equations 11.124 and 11.125 

Lj = Ixa)x = 0 
L2 = I2(t)2 = (mx + m2)b2(t) sina (11.126) 
L 3 = I3(o3 = 0 

which agrees with Equation 11.123. 
Using Euler's equations (Equation 11.120) and w = 0, the torque compo-

nents are 

Nx = — (m,i + m2) b2a>2 sin a cos a 
N2 = 0 
N3 = 0 

(11.127) 

The torque required to maintain the mot ion if a> = 0 is directed along the 
xj-axis. 

11.10 Force-Free Motion of a Symmetric Top 
If we consider a symmetric top, that is, a rigid body with I x = I2 I3, then the 
force-free Euler equations (Equation 11.114) become 

( / , - I3)(o2(o3 - Ixd)x = 0 
(I3 - Ix)(o3(ox - Ixd)2 = 0 

I36)3 = 0 

(11.128) 
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where I\ has been substituted for I2. Because for force-free motion the center of 
mass of the body is ei ther at rest or in un i form mot ion with respect to the fixed 
or inertial f rame of reference, we can, without loss of generality, specify that the 
body's center of mass is at rest and located at the origin of the fixed coordinate 
system. We consider the case in which the angular velocity vector w does not lie 
along a principal axis of the body, otherwise, the mot ion is trivial. 

T h e first result for the mot ion follows f rom the third part of Equations 
11.128,ft)3 = 0, or 

a>3(l) = const. (11.129) 

The first two parts of Equation 11.128 can be written as 

. _ ( k - h \ Wj - - I — ft>3 lft>2 

h ~ h ft)2 = [—~—ft)3 /ft>i 

(11.130) 

Because the terms in the parentheses are identical and composed of constants, 
we may define 

h ~ h 
B 1 ft>3 (11.131) 

h 
so that 

(i)j + /3ft)2 = 2 = 0l 
i = o] 

n (11.132) 
ft)2 — Jiftlj = 

These are coupled equations of familiar form, and we can effect a solution by 
multiplying the second equation by i and adding to the first: 

(&>! + i<b2) ~ i/2(ft)j + iw2) = 0 (11.133) 

t j = ft)j + ico2 (11.134) 

i) - iClt] = 0 (11.135) 

t7(0 = Aeim (11.136) 

ft)x + ia>2 = Acos/2<-l- iA sin fit (11.137) 

If we def ine 

then 

with solution* 

Thus, 

*In general, the constant coefficient is complex, so we should properly write A exp(iS). For simplic-
ity, however, we set the phase S equal to zero; this can always be done by choosing an appropriate in-
stant to call t— 0. 



450 11 / DYNAMICS OF RIGID BODIES 

Thus to traces out a cone around the body symmetric axis. 

a n d t h e r e f o r e 

Ce)i (t) = A cos 
, [ a n r (11.138) u>2(t) = A sin lit) 

Because co3 = cons tant , we n o t e tha t t he m a g n i t u d e of co is also cons tan t : 

I CO | = 0) = V w f + <w| + <u§ = V A 2 + CO I = cons t an t (11.139) 

Equa t ions 11.138 a re the p a r a m e t r i c e q u a t i o n s of a circle, so t h e p r o j e c t i o n of 
the vector co (which is of cons tan t m a g n i t u d e ) o n t o t h e xrx2 p l a n e descr ibes a 
circle with time (Figure 11-12). 

T h e x3-axis is t h e symmetry axis of the body, so we f i n d tha t t h e angu l a r ve-
locity vector co revolves o r precesses a b o u t t h e body x3-axis with a cons t an t angu l a r 
f r e q u e n c y f l . Thus , to an observer in the b o d y c o o r d i n a t e system, co t races o u t a 
c o n e a r o u n d t h e body symmetry axis, cal led t h e body cone. 

Because we are cons ide r ing force- f ree m o t i o n , t h e a n g u l a r - m o m e n t u m vec-
tor L is s ta t ionary in the fixed c o o r d i n a t e system a n d is cons t an t in t ime. A n ad-
di t ional cons t an t of the m o t i o n f o r t h e fo rce - f ree case is t he kinet ic energy, o r in 
part icular , because t h e body 's c e n t e r of mass is fixed, t h e rotational k inet ic energy 
is cons tant : 

T ro t = ^ c o - L = c o n s t a n t (11.140) 

But we have L = constant , so co m u s t move such tha t its p r o j e c t i o n o n the sta-
t ionary a n g u l a r - m o m e n t u m vector is cons tan t . Thus , co precesses a r o u n d a n d 
makes a cons tan t ang le with t h e vector L. In such a case, L, co, a n d t h e xs- (body) 
axis (i.e., t h e u n i t vector e s ) all lie in a plane. We can show this by p rov ing tha t 
L • (co X e3) = 0. First, co X e 3 = w2ex — <u,e2. If we take the scalar p r o d u c t of 
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Space 
cone 

h>h 

FIGURE 11-13 We let the angular momentum L be along the fixed xj-axis. The 
angular velocity to traces out the body cone as it precesses about the 
x:,t - axis in the body system, and it traces out the space cone as it 
precesses around the xj-axis in the space-fixed system. We can 
imagine the body cone rolling around the space cone. 

this resul t with L, we have L • (co X e 3 ) = /jO^fe^ — I^cj^a^ = 0, because = /2 

f o r the symmetr ic top . T h e r e f o r e , if we des igna te the x ' r ax is in t h e f ixed coordi-
na t e system to co inc ide with L, t h e n to a n observer in the f ixed system, co traces 
o u t a c o n e a r o u n d the f ixed cal led the space cone. T h e s i tuat ion is t h e n 
desc r ibed (Figure 11-13) by o n e c o n e ro l l ing o n ano the r , such tha t co precesses 
a r o u n d the x3-axis in the body system a n d a r o u n d the x3-axis (or L) in the 
space-fixed system. 

T h e ra te at which co precesses a r o u n d t h e body symmetry axis is given by 
Equa t ion 11.131: 

il = «3 
h 

If / j = /3, t h e n O b e c o m e s very small c o m p a r e d with (o3. Ea r th is slightly flat-
t e n e d n e a r t h e poles ,* so its s h a p e can be a p p r o x i m a t e d by an obla te s p h e r o i d 
with /, = /3, b u t with I3 > /,. If Ea r th is c o n s i d e r e d to b e a rigid body, t h e n the 
m o m e n t s a n d /3 a re such tha t f l = o»3/300. Because the p e r i o d of Ear th ' s ro-
ta t ion is 27t/o) = 1 day, a n d because <w3 = co, t he p e r i o d p red ic t ed f o r t h e preces-
sion of the axis of ro ta t ion is 1/12 = 300 days. T h e observed precess ion has a n 
i r regular p e r i o d a b o u t 50 p e r c e n t g rea t e r t h a n tha t p red ic t ed o n the basis of this 
s imple theory; t he deviat ion is ascr ibed to t h e facts t ha t (1) Ear th is n o t a rigid 
body a n d (2) t h e s h a p e is n o t exactly t ha t of a n obla te sphero id , b u t r a t h e r has a 
h ighe r -o rde r d e f o r m a t i o n a n d actually resembles a f l a t t ened pear . 

Ear th ' s equa tor ia l "bulge" t o g e t h e r with the fac t tha t Ear th ' s ro ta t iona l axis 
is inc l ined at a n angle of app rox ima te ly 23.5° to the p l ane of Ear th ' s o rb i t 
a r o u n d t h e sun ( the plane o f the ecliptic) p r o d u c e s a gravitat ional t o r q u e 
(caused by b o t h the Sun a n d the M o o n ) , which p r o d u c e s a slow precess ion of 

*The flattening at the poles was shown by Newton to be caused by Earth's rotation; the resulting pre-
cessional motion was first calculated by Euler. 
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Ear th ' s axis. T h e p e r i o d of this precess ional m o t i o n is app rox ima te ly 26,000 
years. Thus , in d i f f e r e n t epochs , d i f f e r e n t stars b e c o m e t h e "pole star."* 

EXAMPLE 11.11 

Show that t he m o t i o n dep ic ted in Figure 11-13 actually refers to the m o t i o n of a 
pro la te object such as a n e longa ted r o d ( / j > / 3 ) , whereas fo r a flat disk (I s > Ix) 
t h e space c o n e wou ld be inside t h e body c o n e r a t h e r t h a n outs ide . 

Solution. If L is a l ong x's, t h e n t h e Eu le r angle 6 (be tween t h e xs- a n d uc3-axes) 
is t he angle b e t w e e n L a n d t h e x3-axis. At a given ins tant , we al ign e 2 to b e in 
t h e p l a n e d e f i n e d by L, to, a n d e3 . T h e n , at this s ame instant , 

4 = 0 
L 2 = L sin 0 
L« = L cos 6 

(11.141) 

Let a be the ang le b e t w e e n ta a n d t h e T h e n , at this same ins tant , we 
have 

wj = 0 
0)^ — 0) sin a (11.142) 
co3 = a) cos a / 

We can also d e t e r m i n e t h e c o m p o n e n t s of L f r o m E q u a t i o n 11.34: 

Lj = /[&>, = 0 
L 2 = = I\(o sin a (11.143) 
L 3 = /3<w3 = I3o) cos a t 

We can ob ta in t h e ra t io L 2 / L 3 f r o m Equa t ions 11.141 a n d 11.143, 

L2 A 
- p = t a n 0 = ^ t an a (11.144) 

so we have 

Prolate spheroid 

h > 0 > a (11.145a) 

Oblate spheroid 

/ , > / ! , a > 6 (11.145b) 

T h e two cases a re shown in F igure 11-14. F r o m E q u a t i o n 11.131, we deter -
m i n e tha t f l a n d w3 have t h e s ame sign if /3 > Ix b u t have oppos i t e signs if 

*This precession of the equinoxes was apparently discovered by the Babylonian astronomer Cidenas 
in about 343 B.C. 
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Body cone 

Prolate, / i > / 3 

£2, CO3 have opposite signs. 

(a) 

Oblate, / 3 > / j 
£2, (Dghave same sign. 

(b) 

FIGURE 11-14 Example 11.11. (a) When the body is prolate (7j > /3), we have the 
situation here and in Figure 11-13. (b) When the body is oblate 
(4 > Ii), the inside of the body cone rotates around the outside of 
the space cone. The space cone is at rest in either case. 

Ii > I3. Thus , t h e sense of precess ion is oppos i t e f o r t h e two cases. This fac t a n d 
E q u a t i o n 11.145 can b e r econc i l ed only if t h e space c o n e is ou t s ide the body 
c o n e f o r the p ro la te case b u t inside t h e body c o n e f o r t h e obla te case. T h e an-
gu la r velocity to de f ines b o t h cones as it ro ta tes a b o u t L (space c o n e ) a n d the 
symmetry axis x3 (body c o n e ) . T h e l ine of con tac t be tween t h e space aind body 
cones is t h e i n s t an t aneous axis of ro ta t ion (a long to). At any ins tant , this axis is 
at rest, so t ha t t he body c o n e rolls a r o u n d t h e space c o n e wi thou t sl ipping. In 
b o t h cases, t h e space c o n e is f ixed, because L is cons tan t . 

EXAMPLE 11.12 

With wha t angu l a r velocity does the symmetry axis (x3) a n d to ro ta te a b o u t the 
f ixed angu l a r m o m e n t u m L? 

Solution. Because e3 , to, a n d L a re in t h e same p lane , e 3 a n d to precess a b o u t 
L with t h e same angu l a r velocity. In Sect ion 11.8 we l e a r n e d tha t <j> is t h e angu-
lar velocity a long t h e x3-axis. If we use t h e s ame ins tan t of t ime cons ide red in 
t h e previous e x a m p l e (when e 2 was in t h e p l a n e of e3 , to, a n d L) , t h e n t h e Eule r 
ang le ip = 0, a n d f r o m E q u a t i o n 11.102 

co2 = <p sin 6 

a n d 

too 
<t> = — ^ (H-146) 

sin 6 

Subst i tu t ing f o r <w2 f r o m E q u a t i o n 11.142, we have 

o) sin a 
<t> = - r - r - (11.147) 

sin 6 
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We can rewrite <j> by subst i tu t ing sin a f r o m Equa t ion 11.143 a n d sin 6 f r o m 
Equa t ion 11.141: 

. L2 L L 
<p = a> = — 

h<»L2 Ii (11.148) 

11.11 Motion of a Symmetric Top with One 
Point Fixed 

Cons ider a symmetr ic t o p with tip he ld f ixed* ro ta t ing in a gravitat ional f ield. In 
o u r previous deve lopmen t , we have b e e n able to separa te the kinet ic energy in to 
t ranslat ional a n d ro ta t ional par ts by tak ing t h e body 's cen t e r of mass to be t h e ori-
gin of the ro ta t ing o r body coo rd ina t e system. Alternatively, if we can choose the 
origins of the f ixed a n d the body coo rd ina t e systems to coincide, t h e n the trans-
lational kinetic energy vanishes, because V = R = 0. Such a choice is qu i te con-
ven ien t fo r discussing the top, because the s tat ionary tip may t h e n be taken as the 
origin fo r b o t h coord ina te systems. Figure 11-15 shows the Eu le r angles f o r this 
s i tuat ion. T h e x'3- (f ixed) axis co r r e sponds to the vertical, a n d we choose the 
x3-(body) axis to be the symmetry axis of t h e top . T h e dis tance f r o m the f ixed tip 
to the cen t e r of mass is h, a n d the mass of t h e top is M. 

Because we have a symmetr ic top, t h e p r inc ipa l m o m e n t s of iner t ia a b o u t 
the x,- a n d x 2-axes a re equal : Ix = /2. We assume / 3 # /,. T h e kinet ic ene rgy is 

Line of nodes 
FIGURE 11-15 A symmetric top with its bottom tip fixed rotates in a gravitational 

field. The Euler angles relate the xj- (fixed) axes with the xt- (body) 
axes. The angle ifi represents the rotation around the x3 symmetry 
axis. 

*This problem was first solved in detail by Lagrange in Mecanique analytique. 
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t hen given by 

T= = * A M + &>i) + \l3o>l (11.149) 
2 • g 2 

According to Equat ion 11.102, we have 

to? = (<j> sin 8 sin ip + 8 cos ip)2 

= <j>2 sin2 8 sin2 ip + 2<j>8 sin 8 sin ip cos ip + 82 cos2 ip 

tof = ( $ sin 8 cos ip — 8 sin ip)2 

= <j>2 sin2 8 cos2 ip — 2<f>8 sin 8 sin ip cos ip + 82 sin2 ip 

so that 

and 

There fore , 

to? + wl = <f>2 sin2 8 + 82 (11.150a) 

to | = (4> cos 8 + <p)2 (11.150b) 

T=^I1(4>2 sin26» + 82) + ^Is(<f> cos 8 + i p ) 2 (1L151) 

Because the potent ial energy is Mgh cos 8, the Lagrangian becomes 

L = | Ix{4>2 sin2 8 + 82) + 1 7 , ( 0 cos 0 + ip)2 - Mg/i cos 0 (11.152) 

T h e Lagrangian is cyclic in bo th the <p- and (//-coordinates. T h e m o m e n t a conju-
gate to these coordinates are the re fore constants of the mot ion: 

dL 
pA = —T = (7j sin2 8 + I3 cos2 6)<p + Isip cos 8 = constant (11.153) 

d(p 

dL 
pj, = —r = I3(ip + cp cos 8) = constant (11.154) 

dtp 

Because the cyclic coordinates are angles, the conjugate m o m e n t a are angu-
lar momenta—the angular m o m e n t a a long the axes for which (p and ip are the ro-
tation angles, tha t is, the x3- (or vertical) axis and the x3- (or body symmetry) 
axis, respectively. We no te that this result is ensured by the construct ion shown 
in Figure 11-15, because the gravitational to rque is directed a long the line of 
nodes. Hence , the to rque can have n o c o m p o n e n t a long e i ther the x3- or the 
x3-axis, bo th of which are pe rpend icu la r to the line of nodes . Thus, the angular 
m o m e n t a a long these axes are constants of the mot ion . 
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Equations 11.153 and 11.154 can be solved for 4> and ij/ in terms of 0. From 
Equation 11.154, we can write 

p.lt — L d> cos 0 
= - — - r — (11-155) 

h 

and substituting this result into Equation 11.153, we find 

(Ti sin2 8 + T3 COS 2 0)<j> + (p^ - I3<j> cos 0)cos 8 = p^ 

or 

(Tj sin2 0)<j> + pj, cos 8 = 

so that 

~ lycos fl 

Tj sin2 0 

Using this expression for <j) in Equation 11.155, we have 

• P* (P* ~ P* cos e)cos 0 „, , Bttx 
"A = T T • 2a (11.157) I3 7j sin"2 0 

By hypothesis, the system we are considering is conservative; we therefore 
have the fu r the r property that the total energy is a constant of the motion: 

E = ~ I\(4>2 sin2 0 + 02) + ^ I3<4 + Mgh cos 0 = constant (11.158) 

Using the expression for w3 (e.g., see Equation 11.102), we note that Equation 
11.154 can be written as 

jfy = I3a>3 = constant (11.159a) 

or 

= ~T = constant (11.159b) 
Pi 
4 

Therefore , no t only is £ a constant of the motion, bu t so is E — | I3(o|; we let this 
quantity be E'\ 

E' = E - i T3wi = ^ h{4>2 sin2 0 + 02) + Mgh cos 0 = constant (11.160) 

Substituting into this equat ion the expression for (f> (Equation 11.156), we have 

1 . (Pd> ~ P* cos 0)2 

E' = - Ti02 + — + Mgh cos 0 (11.161) 
2 2Tj sin2 0 s v ' 

which we can write as 

E' = ^ i j 2 + V(0) (11.162) 
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w h e r e V{0) is a n "effective po ten t ia l " given by 

(jfy - jfty cos 0)2 

= or 2 a + MSh c o s 6 (11.163) 2/i s in 2 0 

E q u a t i o n 11.162 can b e solved to yield t(0): 

d0 
t{0) = (11.164) 

V ( 2 / / 1 ) [ £ ' - V{0)} 

This in tegra l can (formally, at least) b e inver ted to ob ta in 8(t), which, in tu rn , 
c a n b e subs t i tu ted in to Equa t ions 11.156 a n d 11.157 to yield <p(t) a n d <p(t). 
Because t h e Eu le r angles 8, </>, tp comple te ly specify t h e o r i en ta t ion of t h e top, 
t h e results f o r 0{t), (j>(t), a n d if>(t) cons t i tu te a c o m p l e t e so lu t ion f o r t h e p rob-
lem. It s h o u l d b e c lear tha t such a p r o c e d u r e is compl i ca t ed a n d n o t very illumi-
na t ing . Bu t we can ob ta in s o m e quali tat ive f ea tu re s of t h e m o t i o n by e x a m i n i n g 
the p r e c e d i n g equa t ions in a m a n n e r a n a l o g o u s to tha t u sed f o r t rea t ing t h e mo-
t ion of a par t ic le in a centra l - force f ie ld (see Sect ion 8.6) . 

F igure 11-16 shows t h e f o r m of t h e effective po ten t i a l V(0) in the r a n g e 0 < 
0 < 7T, which clearly is t h e physically l imi ted r eg ion f o r 0. This energy d i ag ram 
indicates tha t f o r any genera l values of E' (e.g., t h e value r e p r e s e n t e d by E[) the 
m o t i o n is l imited by two e x t r e m e values of 0—that is, 0X a n d Oo, which c o r r e s p o n d 
to t h e t u r n i n g poin ts of t h e central-force p r o b l e m a n d are roots of the d e n o m i -
n a t o r in Equa t ion 11.164. T h u s we f ind tha t t h e inc l ina t ion of the ro ta t ing t o p is, 

FIGURE 11-16 The effective potential V(0) for the rotating top of Figure 11-15 is 
plotted versus the angle 0. We can study the angular limits of the 
inclination of the top by knowing the modified energy E'. 
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' mm' in general, confined to the region 02. For the case that E' = = Vm 

0 is limited to the single value 0O, and the mot ion is a steady precession at a fixed 
angle of inclination. Such mot ion is similar to the occurrence of circular orbits 
in the central-force problem. 

The value of 0O can be obtained by setting the derivative of V(0) equal to 
zero. Thus, 

cos 0o(jfy - p:fl cos 0O)2 + ptl, sin2 0o(jfy - jfy cos 00) 
Mgh sin 0O = 0 

dV 
dd Ii sin3 0O 

(11.165) 

If we define 

/8 =/>* - & cos 0
O
 (11.166) 

then Equation 11.165 becomes 

(cos 0o)/32 - (jfy sin2 0o)/3 + (Mghli sin4 0O) = 0 (11.167) 

This is a quadratic in /3 and can be solved with the result 

,2 P ^ o I ± 4Mghh cos OA 
2 cos 0

O
 V V Pl J 

Because (3 must be a real quantity, the radicand in Equation 11.168 must be pos-
itive. If 0O < 7t/2, we have 

pl > 4Mghli cos 0O (11.169) 

But f rom Equation 11.159a, p^ = /3&)3; thus, 

&>3 > -VMghli cos 0O (11.170) 
h 

We therefore conclude that a steady precession can occur at the fixed angle of 
inclination 0O only if the angular velocity of spin is larger than the limiting value 
given by Equation 11.170. 

From Equation 11.156, we note that we can write (for 0 = 0O) 

<£o = , ^ 2 a (11.171) Ii sin^ 60 

We therefore have two possible values of the precessional angular velocity <j>0, 
one for each of the values of /3 given by Equation 11.168: 

4> o( + ) —>Fast precession 

and 

4>o(-) * Slow precession 

If w3 (or /y) is large (a fast top), then the second term in the radicand of 
Equation 11.168 is small, and we may expand the radical. Retaining only the first 
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n o n v a n i s h i n g t e rm in each case, we find 

I3(»3 

( + ) 

4>o(~) 

/ j cos 8 0 

Mgh 

h<»$ 

(11.172) 

It is t he slower of t h e two possible precess ional a n g u l a r velocities, <j>0(_), tha t is 
usually observed . 

T h e p r e c e d i n g results apply if 60 < TT/2; b u t i f* B0 > TT/2, t h e r ad i cand in 
E q u a t i o n 11.168 is always positive a n d t h e r e is n o l imit ing c o n d i t i o n o n a>3. 
Because t h e radical is g rea te r t h a n uni ty in such a case, t he values of <p0 f o r fast 
a n d slow precess ion have oppos i t e signs; t ha t is, f o r 60 > TT/2, t he fast p recess ion 
is in t h e s ame d i rec t ion as t ha t f o r 90 < TT/2, b u t t h e slow precess ion takes place 
in t h e oppos i t e sense. 

For t h e gene ra l case, in which 8X < 6 < 82, E q u a t i o n 11.156 indicates tha t <f> 
may o r may n o t c h a n g e sign as 8 varies b e t w e e n its l imi ts—depending o n the 
values of p^ a n d /ty. If <j> does n o t c h a n g e sign, t h e t o p precesses mono ton ica l ly 
a r o u n d t h e ~ axis (see F igure 11-15), a n d t h e x3- (or symmetry) axis oscillates 
be tween 8 = 8X a n d 8 = 82. This p h e n o m e n o n is cal led nutation; t h e p a t h de-
scr ibed by t h e p ro jec t ion of t h e body symmetry axis o n a un i t s p h e r e in the fixed 
system is shown in Figure 11-17a. 

If cp does c h a n g e sign be tween the l imit ing values of 8, t h e precess ional angu-
lar velocity mus t have oppos i te signs at 8 = a n d 8 = 82. Thus , t he nuta t ional-

(a) (b) (c) 

FIGURE 11-17 The rotating top also nutates between the limit angles 6X and 02. In 
(a) <j> does not change sign. In (b) <j> does change sign, and we see 
looping motion. In (c) the initial conditions include 6 = <j> = 0; this 
is the normal cusp-like motion when we spin a top and release it. 

*If St, > tt/2, the fixed tip of the top is at a position above the center of mass. Such motion is possible, 
for example, with a gyroscopic top whose tip is actually a ball and rests in a cup that is fixed atop a 
pedestal. 
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precessional mot ion produces the looping mot ion of the symmetry axis depicted 
in Figure 11-17b. 

Finally, if the values of p$ and p^ are such tha t 

- / v c o s 0 ) | f l _ 9 l = 0 (11.173) 

then 

= 0, 0 | ( = 9 l = 0 (11.174) 

Figure 11-17c shows the resulting cusplike mot ion . It is j u s t this case tha t corre-
sponds to the usual m e t h o d of starting a top. First, the top is spun a r o u n d its 
axis, t hen it is given a certain initial tilt a n d released. Thus, initial condi t ions are 
0 = 0j and 0 = 0 = <f>. Because the first mot ion of the top is to begin to fall in 
the gravitational field, the condi t ions are exacdy those of Figure 11-17c, a n d the 
cusplike mot ion ensues. Figures 11-17a and 11-17b cor respond to the mot ion in 
the event that the re is an initial angular velocity <j> e i ther in the direct ion of or 
opposi te to the direct ion of precession. 

11.12 Stability of Rigid-Body Rotations 
We now consider a rigid body u n d e r g o i n g force-free rota t ion a r o u n d o n e of its 
principal axes and inqui re whe ther such mot ion is stable. "Stability" h e r e means, 
as before (see Section 8.10), tha t if a small pe r tu rba t ion is appl ied to the system, 
the mot ion will e i ther r e tu rn to its f o r m e r m o d e o r will p e r f o r m small oscilla-
tions about it. 

We choose for ou r discussion a genera l rigid body for which all the principal 
m o m e n t s of inert ia are distinct, a n d we label t hem such tha t I3 > I2 > We let 
the body axes coincide with the principal axes, a n d we start with the body rotat-
ing a r o u n d the pcraxis—that is, a r o u n d the principal axis associated with the mo-
m e n t of inertia I v T h e n , 

to = wje j (11.175) 

If we apply a small per turba t ion , the angular velocity vector assumes the fo rm 

to = Wjej + Ae2 + Ate3 (11.176) 

where A and f i are small quanti t ies and cor respond to the paramete rs used pre-
viously in o ther pe r tu rba t ion expansions. (A a n d ju, are sufficiendy small so that 
their p roduc t can be neglected compared with all o the r quanti t ies of interest to 
the discussion.) 

T h e Euler equat ions (see Equat ion 11.114) b e c o m e 

(/2 - I 3 ) \ f i ~ Awi = 0 
(1$ ~ - /2A = 0 
(A ~ - I3{L = 0 

(11.177) 
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Because A/u, ~ 0, the first of these equat ions requires a>1 = 0, o r <oy = constant . 
Solving the o ther two equations fo r A and /x, we find 

k = (11.178) 

A = y - ^ w ^ A (11.179) 

where the terms in parentheses a re bo th constants. These are coupled equa-
tions, bu t they canno t be solved by the m e t h o d used in Section 11.10, because 
the constants in the two equat ions are di f ferent . T h e solut ion can be ob ta ined by 
first d i f ferent ia t ing the equat ion fo r A: 

(11.180) 

T h e expression fo r (i can now be subst i tuted in this equat ion: 

; + ( V , - / , ) ( / • - 4 > , , V . „ ( n . I 8 I ) 

V hh J 

T h e solution to this equat ion is 

A (t) = Aein+ Be'*""' (11.182) 

where 

V v2y3 

a n d where the subscripts 1 and A indicate tha t we are consider ing the solution 
fo r A when the rota t ion is a r o u n d the x raxis . 

By hypothesis, /, < I3 a n d h < I2, so il1 A is real. T h e solution fo r A (t) there-
fo re represents oscillatory mot ion with a f r equency f i l k . We can similarly investi-
gate fi(t), with the result tha t fllfL = f } u = I21. Thus, the small per turba t ions in-
t roduced by forc ing small x2- and c o m p o n e n t s on w d o n o t increase with 
time b u t oscillate a r o u n d the equi l ibr ium values A = 0 and fi = 0. Conse-
quently, the rotat ion a r o u n d the x r axis is stable. 

If we consider rotat ions a r o u n d the x2- and x3-axes, we can obtain expres-
sions fo r fl2 and 12 3 f r o m Equat ion 11.183 by pe rmuta t ion : 

= ( h - h n y h ) ( 1 L 1 8 4 a ) 

hh 

f i 2 = w j i k 7 ' ) ( / 2 h ) (11.184b) 
hh 

= ( I U 8 4 c ) 
hh 
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But because Ix < /2 < /3, we have 

{21,{2S real, /22 imaginary 

Thus, when the rotat ion takes place a r o u n d ei ther the x r or x3-axes, the per tur-
bation p roduces oscillatory mot ion and the rotat ion is stable. W h e n the rota t ion 
takes place a r o u n d x2, however, the fact that f l 2 is imaginary results in the per-
turbat ion increasing with t ime without limit; such mot ion is unstable. 

Because we have assumed a completely arbi trary rigid body for this discus-
sion, we conclude tha t rotat ion a r o u n d the principal axis cor responding to ei-
ther the greatest or smallest m o m e n t of inert ia is stable and that rotat ion a r o u n d 
the principal axis cor responding to the in te rmedia te m o m e n t is unstable. We 
can demons t ra te this effect with, say, a book (kept closed by tape o r a rubbe r 
band) . If we toss the book into the air with an angular velocity a r o u n d o n e of the 
principal axes, the mot ion is unstable for rotat ion a r o u n d the in termedia te axis 
and stable for the o the r two axes. 

If two of the m o m e n t s of inertia are equal (/] = /2, say), t hen the coefficient 
of A in Equat ion 11.179 vanishes, and we have jx = 0 or fi(t) = constant . 
Equat ion 11.178 for A can therefore be in tegrated to yield 

A (t) = C+Dt (11.185) 

and the per tu rba t ion increases linearly with the time; the mo t ion a r o u n d the xr 

axis is there fore unstable. We find a similar result for mot ion a r o u n d the #2 ~ aXIS. 
Stability exists only for the Xg -axis, i n d e p e n d e n t of whe the r /3 is greater or less 
than J\ = /2. 

A good example of the stability of rotat ing objects is seen by the satellites 
p u t into space by the space shuttle orbiter. W h e n the satellites are ejected f r o m 
the payload bay, they are normally sp inning in a stable configurat ion. In May 
1992, when the astronauts a t tempted to grab in space the Intelsat satellite (which 
originally had failed to go into its designed orbit) to at tach a rocket tha t would 
insert it in to geosynchronous orbit, the sp inning satellite was slowed down and 
s topped before the as t ronaut a t tempted to at tach a grappl ing fixture to br ing it 
into the payload bay. After each futile a t tempt, when the grappl ing fixture failed, 
the satellite tumbled even more . After spend ing two unsuccessful days trying to 
attach the grappl ing fixture, the astronauts h a d to abor t their a t tempts because 
of the increased tumbling. Ground controllers requ i red a few hours to restabi-
lize the satellite using j e t thrusters. T h e satellite was left in a stable configurat ion 
of sp inning slowly about its cyclindrical symmetry axis (a pr incipal axis) unti l the 
next recovery a t tempt . Finally, on the th i rd day, th ree astronauts went outside 
the orbiter, g rabbed the slightly rotat ing satellite, s topped it, and pu t it in to the 
payload bay where the rocket skirt was at tached. The Intelsat satellite was finally 
successfully placed into orbi t in t ime to broadcast the 1992 Barcelona Olympic 
summer games. 
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PROBLEMS 

11-1. Calculate the momen t s of inertia 71; I2, and I3 fo r a h o m o g e n e o u s sphere of radius 
R and mass M. (Choose the origin at the center of the sphere.) 

11-2. Calculate the m o m e n t s of inert ia / j , /2, a n d /9 f o r a h o m o g e n e o u s cone of mass 
M whose he igh t is h a n d whose base has a radius R Choose the x3-axis a long the 
axis of symmetry of the cone . Choose the origin at the apex of the cone, a n d 
calculate the e lements of the iner t ia tensor. T h e n make a t r ans fo rmat ion such 
tha t the cen te r of mass of the cone becomes the origin, a n d f ind the pr inc ipal 
m o m e n t s of inert ia . 

11-3. Calculate the momen t s of inertia I l t /2, and /3 for a h o m o g e n e o u s ellipsoid of mass 
Mwith axes' lengths 2a>2b> 2c. 

11-4. Consider a thin rod of length I and mass m pivoted about one end. Calculate the 
m o m e n t of inertia. Find the point at which, if all the mass were concentra ted, the 
m o m e n t of inertia about the pivot axis would be the same as the real m o m e n t of 
inertia. T h e distance f r o m this point to the pivot is called the radius of gyration. 

11-5. (a) Find the height at which a billiard ball should be struck so that it will roll with 
n o initial slipping, (b) Calculate the op t imum height of the rail of a billiard table. 
O n what basis is the calculation predicated? 

11-6. Two spheres are of the same diameter and same mass, bu t one is solid and the 
o ther is a hollow shell. Describe in detail a nondestruct ive exper iment to deter-
mine which is solid and which is hollow. 

11-7. A homogeneous disk of radius i ?and mass Mrol l s without slipping on a horizontal 
surface and is at tracted to a point a distance d below the plane. If the force of at-
traction is p ropor t iona l to the distance f r o m the disk's center of mass to the force 
center, f ind the f requency of oscillations a r o u n d the position of equilibrium. 

11-8. A door is constructed of a thin homogeneous slab of material: it has a width of 1 
m. If the door is o p e n e d through 90°, it is f o u n d that on release it closes itself in 2 
s. Assume that the hinges are frictionless, and show that the line of hinges must 
make an angle of approximately 3° with the vertical. 

11-9. A homogeneous slab of thickness a is placed a top a fixed cylinder of radius R 
whose axis is horizontal. Show that the condi t ion for stable equil ibrium of the 
slab, assuming n o slipping, is R > a/2. What is the f requency of small oscillations? 
Sketch the potent ia l energy Uas a func t ion of the angular displacement 6. Show 
that there is a m in imum at 0 = 0 for R > a/2 bu t no t for R < a/2. 

11-10. A solid sphere of mass M a n d radius R rotates freely in space with an angular ve-
locity co about a fixed diameter. A particle of mass m, initially at one pole, moves 
with a constant velocity v a long a great circle of the sphere. Show that, when the par-
ticle has reached the other pole, the rotation of the sphere will have been retarded 
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by an angle 

a = u>T 
2 M + 5m 

2 M 

where T is the total time required for the particle to move f r o m one pole to the 
other. 

11-11. A homogeneous cube, each edge of which has a length I, is initially in a position of 
unstable equil ibrium with one edge in contact with a horizontal plane. T h e cube 
is then given a small displacement and allowed to fall. Show that the angular ve-
locity of the cube when one face strikes the plane is given by 

where A = 3 / 2 if the edge cannot slide on the p lane and where A = 1 2 / 5 if slid-
ing can occur without friction. 

11-12. Show that n o n e of the principal momen t s of inertia can exceed the sum of the 
o ther two. 

11-13. A three-particle system consists of masses m, and coordinates (x,, x2, x3) as follows: 

Find the inertia tensor, principal axes, and principal momen t s of inertia. 

11-14. Determine the principal axes and principal momen t s of inertia of a uniformly 
solid hemisphere of radius b and mass m about its center of mass. 

11-15. If a physical p e n d u l u m has the same per iod of oscillation when pivoted about ei-
ther of two points of unequa l distances f r o m the center of mass, show that the 
length of the simple pen du lu m with the same per iod is equal to the sum of sepa-
rations of the pivot points f r o m the center of mass. Such a physical pendu lum, 
called Kater's reversible pendulum, at one time provided the most accurate way 
(to about 1 par t in 105) to measure the acceleration of gravity.* Discuss the advan-
tages of Kater's p e n d u l u m over a simple p e n d u l u m for such a purpose. 

11-16. Consider the following inertia tensor: 

w ,2 = A f ( V 2 - l ) 

= 3m, (b, 0, b) 

mt = 4 m, (b, b, —b) 

rru, = 2m, (~b, b, 0) 

\{A ~B) 0 

W - - B) | ( A + B) 0 

0 0 c 

*First used in 1818 by Captain Henry Kater (1777-1855), but the method was apparently suggested 
somewhat earlier by Bohnenberger. The theory of Kater's pendulum was treated in detail by 
Friedrich Wilhelm Bessel (1784-1846) in 1826. 
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Perform a rotation of the coordinate system by an angle 0 about the 
Evaluate the transformed tensor elements, and show that the choice 6 = TT/4 ren-
ders the inertia tensor diagonal with elements A, B, and C. 

11-17. Consider a thin homogeneous plate that lies in the xx-x2 plane. Show that the in-
ertia tensor takes the form 

A - c 0 
-c B 0 

0 0 A + B, 

11-18. If, in the previous problem, the coordinate axes are rotated through an angle 0 
about the x3-axis, show that the new inertia tensor is 

{» = < 
A' -C' 0 

-C' B' 0 
0 0 A' + B' 

where 

A' = A cos2 0 - C sin 20 + B sin2 0 

B' = A sin2 0 + C sin 20 + B cos2 0 

C' = C cos 20~\(B~ A) sin 20 

and hence show that the * r and x2-axes become principal axes if the angle of rota-
tion is 

„ 1 , / 2C 
0 = - t a n - 1 1 — „ 

2 \ B - A 

11-19. Consider a plane homogeneous plate of density p bounded by the logarithmic spi-
ral r = ke"e and the radii 0 = 0 and 0 = TT. Obtain the inertia tensor for the origin 
at r = 0 if the plate lies in the xx-x2 plane. Perform a rotation of the coordinate 
axes to obtain the principal moments of inertia, and use the results of the previ-
ous problem to show that they are 

I{ = pk4P(Q- R), 7j = pk4P(Q+ R), n = I[ + H, 

where 

e4™ - 1 1 + 4a 2 / r 
P= 1fin ^ . g., Q= — • R = Vl + 4a2 

16(1 + 4a2) ^ 2 a 

11-20. A uniform rod of length b stands vertically upright on a rough floor and then tips 
over. What is the rod's angular velocity when it hits the floor? 

11-21. The proof represented by Equations 11.54-11.61 is expressed entirely in the sum-
mation convention. Rewrite this proof in matrix notation. 
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11-22. T h e trace of a tensor is def ined as the sum of the diagonal elements: 

tr{l} - 2 I k k 

A 

Show, by pe r fo rming a similarity t ransformation, that the trace is an invariant 
quantity. In o ther words, show that 

tr{l} = t r{ l '} 

where {1} is the tensor in one coordinate system and {I}' is the tensor in a coordi-
nate system rotated with respect to the first system. Verify this result for the differ-
en t forms of the inertia tensor for a cube given in several examples in the text. 

11-23. Show by the m e t h o d used in the previous prob lem that the determinant of the ele-
ments of a tensor is an invariant quantity u n d e r a similarity t ransformation. Verify 
this result also for the case of the cube. 

11-24. Find the f requency of small oscillations for a thin homogeneous plate if the mo-
tion takes place in the p lane of the plate and if the plate has the shape of an equi-
lateral triangle and is suspended (a) f r o m the midpoin t of one side and (b) f rom 
one apex. 

11-25. Consider a thin disk composed of two h o m o g e n e o u s halves connec ted along a di-
ameter of the disk. If one half has density p and the o ther has density 2p, find the 
expression for the Lagrangian when the disk rolls without slipping along a hori-
zontal surface. (The rotat ion takes place in the plane of the disk.) 

11-26. Obta in the componen t s of the angular velocity vector to (see Equat ion 11.102) di-
rectly f r o m the t ransformat ion matrix A (Equation 11.99). 

11-27. A symmetric body moves without the inf luence of forces or torques. Let x3 be the 
symmetry axis of the body and L be a long x3. T h e angle between a> and x3 is a. Let 
(•> and L initially be in the x2-x3 plane. What is the angular velocity of the symmetry 
axis about L in terms of / j , I3, a>, and a? 

11-28. Show f r o m Figure l l -9c that the componen t s of to a long the fixed (x') axes are 

= 6 cos <j> + tp sin 0sin <j> 

&>2 = sin 4> — ip sin 0 cos <f> 

co3 = ip cos 0 + 4> 

11-29. Investigate the mot ion of the symmetric top discussed in Section 11.11 fo r the 
case in which the axis of rotat ion is vertical (i.e., the x3- and x3-axes coincide). 
Show that the mot ion is e i ther stable or unstable depend ing on whether the quan-
tity 4IlMhg/I\w\ is less than or greater than unity. Sketch the effective potential 
V(6) for the two cases, and poin t ou t the features of these curves that de te rmine 
whether the mot ion is stable. If the top is set spinning in the stable configurat ion, 
what is the effect as friction gradually reduces the value of w3? (This is the case of 
the "sleeping top.") 
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11-30. Refer to the discussion of the symmetric top in Section 11.11. Investigate die equa-
tion for the turning points of the nutat ional mot ion by setting 0 = 0 in Equation 
11.162. Show that the resulting equat ion is a cubic in cos 8 and has two real roots 
and o n e imaginary root for 6. 

11-31. Consider a thin homogeneous plate with principal m o m e n t a of inertia 

7i a long the principal axis x, 

/2 > ii a long the principal axis x2 

/3 = / j + /2 a long the principal axis x3 

Let the origins of the xt and x't systems coincide and be located at the center of 
mass O of the plate. At time t = 0, the plate is set rotat ing in a force-free m a n n e r 
with an angular velocity fl about an axis inclined at an angle a f r o m the p lane of 
the plate and perpendicu lar to the x2-axis. If / , / / 2 = cos 2a, show that at time t 
the angular velocity about the x2-axis is 

(o2(t) = fl cos a tanh(/2 t sin a) 

11-32. Solve Example 11.2 for the case when the physical p e n d u l u m does no t unde rgo 
small oscillations. T h e p e n d u l u m is released f r o m rest at 67° at time t = 0. Find 
the angular velocity when the p e n d u l u m angle is at 1°. T h e mass of the p e n d u l u m 
is 340 g, the distance L is 13 cm, and the radius of gyration kh 17 cm. 

11-33. Do a l i terature search and explain how a cat can always land on its feet when 
d ropped f r o m a position at rest with its fee t poin t ing upward. Estimate the mini-
m u m height a cat needs to fall in o rde r to execute such a maneuver. 

11-34. Consider a symmetrical rigid body rotat ing freely about its center of mass. A fric-
tional torque (Nf = —bw) acts to slow down the rotation. Find the c o m p o n e n t of 
the angular velocity a long the symmetry axis as a func t ion of time. 



CHAPTER 

Coupled Oscillations 

12.1 Introduction 
In Chapter 3, we examined the motion of an oscillator subjected to an external 
driving force. The discussion was limited to the case in which the driving force is 
periodic; that is, the driver is itself a harmonic oscillator. We considered the action 
of the driver on the oscillator, but we did not include the feedback effect of the os-
cillator on the driver. In many instances, ignoring this effect is unimportant , but if 
two (or many) oscillators are connected in such a way that energy can be trans-
ferred back and forth between (or among) them, the situation becomes the more 
complicated case of coupled oscillations.* Motion of this type can be quite com-
plex (the motion may no t even be periodic), but we can always describe the mo-
tion of any oscillatory system in terms of normal coordinates, which have the 
property that each oscillates with a single, well-defined frequency; that is, the nor-
mal coordinates are constructed in such a way that no coupling occurs among 
them, even though there is coupling among the ordinary (rectangular) coordi-
nates describing the positions of particles. Initial conditions can always be pre-
scribed for the system so that in the subsequent motion only one normal coordi-
nate varies with time. In this circumstance, we say that one of the normal modes 
of the system has been excited. If the system has n degrees of f reedom (e.g., w-cou-
pled one-dimensional oscillators or n/3-coupled three-dimensional oscillators), 
there are in general n normal modes, some of which may be identical. The gen-
eral motion of the system is a complicated superposition of all the normal modes 
of oscillation, but we can always f ind initial conditions such that any given one of 
the normal modes is independendy excited. Identifying each of a system's normal 

*The general theory of the oscillatory motion of a system of particles with a finite number of degrees 
of f reedom was formulated by Lagrange during the period 1762-1765, but the pioneering work had 
been done in 1753 by Daniel Bernoulli (1700-1782). 
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12.2 TWO COUPLED HARMONIC OSCILLATORS 469 

m o d e s allows us to cons t ruc t a reveal ing p ic tu re of the mot ion , even t h o u g h the 
system's general m o t i o n is a compl ica ted combina t ion of all t he n o r m a l modes . 

It is relatively easy to d e m o n s t r a t e s o m e of t h e c o u p l e d oscil lator p h e n o m -
e n a desc r ibed in this chapter . For example , two p e n d u l a c o u p l e d by a sp r ing be-
tween the i r mass bobs, two p e n d u l a h u n g f r o m a rope , a n d masses c o n n e c t e d by 
spr ings can all be exper imenta l ly e x a m i n e d in t h e classroom. Similarly, t h e tri-
a tomic mo lecu l e discussed h e r e is a r ea sonab le desc r ip t ion of C 0 2 . Similar m o d -
els can a p p r o x i m a t e o t h e r molecules . 

In t h e fol lowing chapter , we shall c o n t i n u e t h e d e v e l o p m e n t b e g u n h e r e 
a n d discuss t h e m o t i o n of v ibra t ing strings. This e x a m p l e by n o m e a n s exhaus ts 
t h e usefu lness of t h e n o r m a l - m o d e a p p r o a c h to t h e descr ip t ion of oscillatory sys-
tems; i n d e e d , appl ica t ions can b e f o u n d in m a n y areas of ma thema t i ca l physics, 
such as t h e microscopic m o t i o n s in crystalline solids a n d the oscillations of the 
e l ec t romagne t i c f ield. 

12.2 Two Coupled Harmonic Oscillators 
A physical e x a m p l e of a c o u p l e d system is a solid in which the a toms in te rac t by 
elastic fo rces be tween each o t h e r a n d oscillate a b o u t the i r equ i l ib r ium posi t ions. 
Spr ings be tween t h e a toms r e p r e s e n t t h e elastic forces . A mo lecu l e c o m p o s e d of 
a few such in t e rac t ing a toms wou ld b e a n even s impler m o d e l . We beg in by con-
s ider ing a similar system of c o u p l e d m o t i o n in o n e d imens ion : two masses con-
n e c t e d by a sp r ing to each o t h e r a n d by spr ings to f ixed posi t ions (Figure 12-1). 
We r e t u r n to this e x a m p l e t h r o u g h o u t t h e c h a p t e r as we descr ibe various in-
s tances of c o u p l e d mo t ion . 

We let each of the oscillator springs have a force constant* K: t he force constant 
of the coupl ing spr ing is /q2 . We restrict t he mo t ion to the l ine connec t ing the 
masses, so the system has only two degrees of f r e e d o m , represen ted by the c o o r d s 
nates Xj a n d x2. Each coordina te is m e a s u r e d f r o m the posit ion of equi l ibr ium. 

ml = M m^-M 
'T5BCB00000 OOOCSBOBOOOO ^ - m - ' 0 0 0 0 0 0 0 0 ! ^ 

If, = K H2 

*1 *2 

FIGURE 12-1 Two masses are connected by a spring to each other and by springs to 
fixed positions. This is a system of coupled motion in one dimension. 

•Henceforth, we denote force constants by K rather than by k as heretofore. The symbol k is re-
served for (beginning in Chapter 13) an entirely different context. 
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If mx a n d m2 a re displaced f r o m the i r equi l ib r ium posi t ion by a m o u n t s xx 

a n d x2, respectively, t he fo rce o n MX is ~KXX—K12(XJ — x2) , a n d the fo rce o n M2 is 
—KX2 — K12(X2 — XJ). T h e r e f o r e t he equa t ions of m o t i o n are 

M x i + (K + K 1 2 ) X 1 - K12X2 = OJ J 

Mx2 + (K + K1 2)X2 — K12XJ = Oj 

Because we expec t t he m o t i o n to b e oscillatory, we a t t e m p t a solut ion of the 
f o r m 

= Ble'wt\ 
= B2eiwt\ 

X l ( t ) ~ > (12.2) 
x2(t) ~ D { ' 

where the f r equency co is to b e d e t e r m i n e d a n d whe re the ampl i tudes Bx a n d B2 

may b e complex .* These trial solut ions a re complex func t ions . Thus , in t he final 
s tep of the solut ion, t he real par ts of x, (t) a n d x2(t) will b e taken, because the 
real pa r t is all tha t is physically significant. We use this m e t h o d of solut ion be-
cause of its grea t efficiency, a n d we use it again later, leaving o u t mos t of the de-
tails. Subst i tut ing these expressions fo r t he d isp lacements in to t he equa t ions of 
mo t ion , we find 

-Mco2Bie'at + (K + Kn)Bxem,t - Ki2B2e /I o o\ 
-Mco2B2eiat + (K + K12)B2eiat - KA2Bxe'wt -

iwt — QI 

,iwt - Qj 

Collect ing terms a n d cancel ing the c o m m o n exponen t i a l factor, we ob ta in 

(k + K12 - Mco2)Bx - K12B2 = 
- K12A + (K + K12 - Mco2)B2 

: o } (12.4) 

For a nontrivial solut ion to exist f o r this pa i r of s imul taneous equat ions , the de-
t e r m i n a n t of the coeff icients of Bx a n d B2 mus t vanish: 

= 0 (12.5) 
K + K12 — Mco2 ~~Kl2 

—K12 K + K12 — Mco2 

T h e expans ion of this secular d e t e r m i n a n t yields 

(k + K12 - Mca2)2 - K\2 = 0 (12.6) 

Hence , 

K + K12 — Mco2 = ± K12 

Solving fo r w, we obta in 

K + K12 ± K12 

W = M (12-?) 

"Because a complex amplitude has a magnitude and a phase, we have the two arbitrary constants nec-
essary in the solution of a second-order differential equation; that is, we could equally well write 
x(t) = exp \_i{ojt — 5)] or x(t) = | b | cos (tot — d), as in Equation 3.6b. Later (see Equation 12.9), 
we shall find it more convenient to use two distinct real amplitudes and the time-varying factors 
(•xpdcot) and exp( — itat). These various forms of solution are all entirely equivalent. 
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We therefore have two characteristic frequencies (or eigenfrequencies) for the 
system: 

01 j 
K + 2K 12 

M 
too = 

K 

M 

Thus, the general solution to the problem is 

xi(0 = + fifj + Bf2ei0'*t + B^e'^ 
x2(t) = B^e^'' + B2le-i0>lt + B^e""2' + B22e~^ 

(12.8) 

(12.9) 

where we have explicitly written bo th positive and negative frequencies, because 
the radicals in Equations 12.7 and 12.8 can carry either sign. 

In Equation 12.9, the amplitudes are no t all independent , as we may verify 
by substituting a>l and co2 into Equation 12.4. We find 

for 
for 

w 
w 

o i l . 

oi 2: 
Bn - -Bn 

B12 = B22 

The only subscripts necessary on the Bs are those indicating the particular eigen-
frequency (i.e., the second subscripts). We can therefore write the general solution 
as 

Xi(t) = B^eia'1 + Bf + B}eia^ + B2 e ' ^ ) 
x2(t) = -Bfei,0't - B{e~ia^ + B£e™** + B2 

(12.10) 

Thus, we have four arbitrary constants in the general solution—just as we expect— 
because we have two equations of mot ion that are of second order. 

We men t ioned earlier that we could always define a set of coordinates that 
have a simple time d e p e n d e n c e and that cor respond to the excitation of the 
various oscillation modes of the system. Let us examine the pair of coordinates 
def ined by 

TJ j — %2 J 
7̂ 2 ^ #2J 

(12.11) 

or 

1 
Xj ;(i72 + Vi) 

l 
x2 ~ 2(Vt Vi) 

(12.12) 

Substituting these expressions for x, and x2 into Equation 12.1, we f ind 

M ( V I + V S ) + (K + 2 X ^ ) 1 7 ! + KT]2 = 

M ( I J I ~ RJ2) + (K + 2K12)I7! - KTJ2 

which can be solved (by adding and subtracting) to yield 

Mf j i + {h (K + 2k12)T?1 = o j 
Mi] 2 + KT)2 = Oj 

(12.13) 

(12.14) 



472 12 / COUPLED OSCILLATIONS 

CO = CD, CO = C09 

-^QSlSLS^y^grO^SlSJiSU 

Antisymmetrical mode 
(out of phase) 

Symmetrical mode 
(in phase) 

FIGURE 12-2 The two characteristic frequencies are indicated schematically. One is 
the antisymmetrical mode (masses are out of phase) and the other is 
the symmetrical mode (masses are in phase). 

T h e coord ina te s Tjj a n d 17 2 a r e now uncoupled a n d a re t h e r e f o r e independent. T h e 
solut ions a re 

rh(0 = QV">' + C[e~ 

V 2W = + C^e 

• ioî t 1 
- ia)2t I (12.15) 

w h e r e t h e f r e q u e n c i e s w, a n d w 2 a re given by Equa t ions 12.8. Thus , Tjj a n d 17 2 

are the normal coordinates of t he p r o b l e m . In a la ter sect ion, we establish a gen-
eral m e t h o d fo r ob ta in ing the n o r m a l coord ina tes . 

If we impose the special initial cond i t i ons x, (0) = — x 2 (0) a n d (0) = 
- x 2 ( 0 ) , we f i n d i72(0) = 0 a n d 17 2 (0) = 0, which leads to C 2 = C2 = 0; tha t is, 
r i 2 ( t ) = 0 f o r all values of t. Thus , t h e part ic les oscillate always out of phase a n d 
with f r e q u e n c y this is t h e antisymmetrical m o d e of oscillation. However, if we 
beg in with *i(0) = x 2(0) a n d Xi(0) = x 2 (0 ) , we f i n d 17 j (t) ^ 0, a n d t h e part ic les 
oscillate in phase a n d with f r e q u e n c y w2; this is t h e symmetrical m o d e of oscilla-
t ion. T h e s e resul ts a re i l lus t ra ted schemat ical ly in F igure 12-2. T h e g e n e r a l mo-
t ion of the system is a l inear c o m b i n a t i o n of t h e symmetr ical a n d ant isymmetr i -
cal modes . 

T h e fac t t h a t t h e an t i symmet r i ca l m o d e has t h e h i g h e r f r e q u e n c y a n d the 
symmetr ica l m o d e has t h e lower f r e q u e n c y is actually a g e n e r a l resul t . In a 
c o m p l e x system of l inear ly c o u p l e d oscil lators, t h e m o d e possess ing t h e h igh-
est d e g r e e of symmet ry has t h e lowest f r equency . If t h e symmet ry is des t royed , 
t h e n t h e spr ings m u s t "work h a r d e r " in t h e an t i symmet r i ca l m o d e s , a n d t h e 
f r e q u e n c y is ra ised. 

Not ice tha t if we were to h o l d m2 f ixed a n d allow ml to oscillate, t he fre-
quency would b e \ / ( K + K1 2)/M . We would ob ta in t h e s ame resul t fo r the fre-
quency of oscil lation of m2 if mx were h e l d f ixed. T h e oscillators a re ident ical 
a n d in t h e absence of c o u p l i n g have t h e s ame oscil lation f requency . T h e effect 
of c o u p l i n g is to separa te t h e c o m m o n f requency , with o n e character is t ic fre-
q u e n c y b e c o m i n g l a rge r a n d o n e b e c o m i n g sma l l e r t h a n t h e f r e q u e n c y f o r 
u n c o u p l e d m o t i o n . If we d e n o t e by &>0 t h e f r e q u e n c y f o r u n c o u p l e d mo t ion , 
t h e n c^ > co0 > w2 , a n d we may schematical ly ind ica te t h e e f fec t of t h e cou-
p l ing as in F igure 12-3a. T h e solu t ion f o r the character is t ic f r e q u e n c i e s in the 
p r o b l e m of t h r e e c o u p l e d ident ica l masses is i l lustrated in F igure 12-3b. Again, 
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.— wx , / f / / 

®o < 0)0 f a>2 = <o0 
\ \ 

°h <a3 

n = 2 m = 3 

(a) (b) 
FIGURE 12-3 (a) Coupling separates the common frequency for two identical masses, 

with one characteristic frequency being higher and one being lower 
than the frequency <mn for uncoupled motion, (b) For three coupled 
identical masses, one characteristic frequency is smaller than (o0 and 
one is larger. For n (number of oscillators) odd, one characteristic 
frequency is equal to o)0. The separations are only schematic. 

we have a spli t t ing of the character is t ic f r equenc i e s , with o n e g rea t e r a n d o n e 
smal ler t h a n w0. This is a gene ra l result : For a n even n u m b e r n of ident ical near -
est n e i g h b o r c o u p l e d oscillators, n / 2 character is t ic f r e q u e n c i e s a re g rea t e r t h a n 
a>0, a n d n / 2 character is t ic f r e q u e n c i e s a re smal ler t h a n w0. If n is o d d , o n e char-
acteristic f r e q u e n c y is equa l to &>0, a n d t h e r e m a i n i n g n — 1 character is t ic fre-
quenc ie s a re symmetrically d is t r ibuted above a n d be low w0. T h e r e a d e r famil iar 
with the p h e n o m e n o n of t h e Z e e m a n e f fec t in a tomic spec t ra will app rec i a t e the 
similarity with this result : In each case, t h e r e is a symmetr ical spli t t ing of the fre-
quency caused by t h e i n t r o d u c t i o n of a n in te rac t ion (in o n e case by the applica-
tion of a m a g n e t i c f ie ld a n d in t h e o t h e r by t h e c o u p l i n g of part icles t h r o u g h the 
i n t e rmed ia ry of t h e spr ings) . 

12.3 Weak Coupling 
Some of the m o r e in teres t ing cases of c o u p l e d oscillations occur w h e n the cou-
p l ing is weak—that is, w h e n the fo rce cons tan t of t h e coup l ing spr ing is small com-
p a r e d with tha t of t h e oscillator springs: K12 K. Accord ing to Equa t ions 12.8, 
t h e f r e q u e n c i e s co1 a n d w 2 a re 

K + 2k1 2 
* > 1 = J M . <02 = -X/77 (12.16) 

If t he c o u p l i n g is weak, we may e x p a n d t h e express ion f o r o> 

'K / , 2K = v 
w h e r e 

K 
(12.17) 

2K 
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The frequency a)x now reduces to 

+ 2 s ) (12.18) 

T h e natural f requency of either oscillator, when the o ther is held fixed, is 

K + K12 K 

or 
1 K 
m = w 0 ( 1 - 8 ) (12.20) 

Therefore , the two characteristic frequencies are given approximately by 

(12.21) 
= ft)0(l - 8)(1 + 2s) =co0(l-s) 
= w 0 ( l + e) 

We can now examine the way a weakly coupled system behaves. If we dis-
place Oscillator 1 a distance D and release it f r o m rest, the initial conditions for 
the system are 

*!(0) = D, x2(0) = 0, xj(0) = 0, x2(0) = 0 (12.22) 

If we substitute these initial conditions into Equat ion 12.10 for xx{() and x2(t), 
we find the ampli tudes to be 

Bf = B[ = B£ = B2 = ^ (12.23) 

Then, Xi(t) becomes 

*i (0 = ^[(ei0,lt + e~i0lt) + (eia,^+ e^"**)] 

D = — (cosw^- l - cos a>2t) 

I + a>9 \ f(0, — 0)2 \ 
= D cos( ^ f j c o s l 1 t j (12.24) 

But, according to Equation 12.21, 

<i)i + (i)2 Wj — a>2 
2 = wo; 2 = S (0° (12.25) 

Therefore ,* 

*!(0 = (D cos eo)0t)cos (o0t (12.26a) 

*Note that in this fortuitous case, x, and x2 were always real, so the real part did not have to be ex-
pressly taken in the final step as outlined after Equation 12.2. 
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*i (0 

FIGURE 12-4 The solutions for Xj(t) and x2(t) have a high frequency component (w0) 
that oscillates inside a slowly varying component (eto0). Energy is 
transferred back and forth between the two oscillators. 

Because e is small, t he quant i t ies D cos ew0t a n d D sin eco0t vary slowly with 
time. T h e r e f o r e , x] (t) a n d x2{t) a re essentially sinusoidal func t ions with slowly 
varying ampl i tudes . A l though only x1 is initially d i f f e ren t f r o m zero, as time in-
creases the amp l i t ude of x1 decreases slowly with t ime, a n d the amp l i t ude of x2 in-
creases slowly f r o m zero. H e n c e , energy is t r ans fe r red f r o m the first oscillator to 
the second . W h e n t = 7T/2eto0, t h e n D cos ea)0t = 0, a n d all t he energy has b e e n 
t r ans fe r red . As t ime increases fu r the r , energy is t r ans fe r red back to the first oscil-
lator. This is t he famil iar p h e n o m e n o n of beats a n d is i l lustrated in Figure 12-4. 
(In the case i l lustrated, e = 0.08.) 

12.4 General Problem of Coupled Oscillations 
In the p r e c e d i n g sections, we f o u n d tha t t he ef fec t of coup l ing in a s imple sys-
t e m with two degrees of f r e e d o m p r o d u c e d two character is t ic f r e q u e n c i e s a n d 
two m o d e s of oscillation. We now t u r n o u r a t t en t ion to the gene ra l p r o b l e m of 
c o u p l e d oscillations. Le t us cons ide r a conservative system desc r ibed in t e rms of 
a set of genera l i zed coord ina te s qk a n d t h e t ime t. If t h e system has n deg rees of 
f r e e d o m , t h e n k = 1, 2 , . . . , n. We specify tha t a conf igu ra t ion of stable equilib-
r i u m exists fo r the system a n d tha t at equ i l ib r ium t h e genera l ized coord ina tes 
have values qk0. In such a conf igura t ion , Lagrange ' s equa t ions a re satisfied by 

Similarly, 

x2 W = iP sin e<u0Osin a>0t (12.26b) 

= o, ? * = 0 , qk = 0, fc=l,2 ,...,n 
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Every nonzero terni of the form (d/dt) (dL/dqk) must contain at least either qk or qk, 
so all such terms vanish at equilibrium. From Lagrange's equation, we therefore 
have 

dL _ dT dU 

dqk 0 dqk 0 dqk 

= 0 (12.27) 

where the subscript 0 designates that the quantity is evaluated at equilibrium. 
We assume that the equations connect ing the generalized coordinates and 

the rectangular coordinates do no t explicidy contain the time; that is, we have 

= XaAq}) or qj = qj(xa:i) 

The kinetic energy is thus a homogeneous quadratic funct ion of the generalized 
velocities (see Equation 7.121): 

2 M 
m m * (12.28) 

Therefore , in general, 

dT 

dqk 

= 0, k = 1, 2 n 

and hence, f rom Equation 12.27, we have 

dU 

dqk 

= 0, k=l,2,...,n 

(12.29) 

(12.30) 

We may fu r the r specify that the generalized coordinates qk be measured 
f rom the equilibrium positions; that is, we choose qk0 = 0. (If we originally had 
chosen a set of coordinates q'k such that q'k0 ^ 0, we could always effect a simple 
linear t ransformation of the fo rm qk = q'k + ak such that qk0 - 0.) 

The expansion of the potential energy in a Taylor series about the equilib-
rium configuration yields 

>dU l v d2U f 

2 j,h dq}dqk ( 

The second term in the expansion vanishes in view of Equation 12.30, and—with-
out loss of generality—we may choose to measure U in such a way that U0 = 0. 
Then, if we restrict the motion of the generalized coordinates to be small, we may 
neglect all terms in the expansion containing products of the qk of degree higher 
than second. This is equivalent to restricting our at tention to simple harmonic 
oscillations, in which case only terms quadratic in the coordinates appear. Thus, 

V ou 
U(qv q2,---, qn) = ^o + 4* — k dqh 

qflk + (12.31) 

where we def ine 

Ajk — 
d2U 

dq,dqk 

(12.32) 

(12.33) 
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Because the order of differentiat ion is immaterial (if U has cont inuous second 
partial derivatives), the quantity Ajk is symmetrical; that is, Ajk = Akj. 

We have specified that the mot ion of the system is to take place in the vicin-
ity of the equilibrium configuration, and we have shown (Equation 12.30) that 
Umus t have a min imum value when the system is in this configuration. Because 
we have chosen U = 0 at equilibrium, we must have, in general, f / > 0. It should 
be clear that we must also have 7" > 0.* 

Equations 12.28 and 12.32 are of a similar form: 

(12.34) 

The quantities Ajk are jus t numbers (see Equation 12.33); bu t the m^ may be 
funct ions of the coordinates (see Equat ion 7.119): 

v v dxa,i dx a i 
Zjma ZJ 1 dqk 

m,h 

We can expand the m,jk about the equilibrium position with the result 

mjk(qi, q2,---, qn) = mjk(ql0) + S 
dw,jt 

dqi 
qi + (12.35) 

We wish to retain only the first nonvanishing term in this expansion; but , unlike 
the expansion of the potential energy (Equation 12.31), we cannot choose the 
constant term m,jk(qi0) to be zero, so this leading term becomes the constant value 
of r>ijk in this approximation. This is the same order of approximation as that 
used for U, because the next higher order term in T would involve the cubic 
quantity qflkqi and the next higher order term in U would contain qfl^qi- In the 
small oscillation approximation, T should be treated similarly to U, and jus t like 
Uis normally expanded to order q2, one needs to expand T t o order q2, and m]k is 
evaluated at equilibrium. Thus, in Equation 12.34, the mjk and the A]k are n X n 
arrays of numbers specifying the way the motions of the various coordinates are 
coupled. For example, if m„ ¥= 0 for r s, then the kinetic energy contains a term 
proport ional to qrqs, and a coupling exists between the r th and sth coordinate. If, 
however, mjk is diagonal, so that1' mjk ^ 0 for j = k but vanishes otherwise, then the 
kinetic energy is of the form 

m/lr 

*That is, both Uand Ta re positive definite quantities, in that they are always positive unless the coor-
dinates (in the case of U) or the velocities (in the case of T) are zero, in which case they vanish, 
f l f a diagonal element of (say, m„) vanishes, then the problem can be reduced to one of n — 1 
degrees of freedom. 
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where m„ has been abbreviated to mr. Thus, the kinetic energy is a simple sum of 
the kinetic energies associated with the various coordinates. As we see below, if, 
in addition, Ajk is diagonal so that U is also a simple sum of individual potential 
energies, then each coordinate behaves in an uncomplicated manner , undergo-
ing oscillations with a single, well-defined frequency. The problem is therefore 
to find a coordinate transformation that simultaneously diagonalizes both m 
and Ajk and thereby renders the system describable in the simplest possible 
terms. Such coordinates are the normal coordinates. 

The equations of mot ion of the system with kinetic and potential energies 
given by Equation 12.34 are obtained f rom Lagrange's equat ion 

dL d dL 
= 0 

dqk dt dqk 

But because T is a funct ion only of the generalized velocities and Uis a funct ion 
only of the generalized coordinates, Lagrange's equat ion for the kth coordinate 
becomes 

dU d dT 
— + = 0 
dqk dt dqk 

From Equations 12.34, we evaluate the derivatives: 

dU 

(12.36) 

^ = ^ 
d T _ V 
a7" ~ • dqk 1 

The equations of mot ion then become 

-*m]kq, 

(12.37) 

1{<(Ajkqj + mjkqj) = 0 (12.38) 

This is a set of n second-order linear homogeneous differential equations with 
constant coefficients. Because we are dealing with an oscillatory system, we ex-
pect a solution of the fo rm 

qj(t) = (12.39) 

where the Oj are real amplitudes and where the phase 8 has been included to 
give the two arbitrary constants (a ; and 8) requi red by the second-order na ture 
of each of the differential equations.* (Only the real par t of the right-hand side 
is to be considered.) The frequency co and the phase 8 are to be de termined by 
the equations of motion. If co is a real quantity, then the solution (Equation 
12.39) represents oscillatory motion. That co is indeed real may be seen by the 
following physical argument . Suppose that co contains an imaginary par t ico, (in 
which d)l is real). This produces terms of the fo rm e"'1 and e~a-' in the expression 

*This is entirely equivalent to our previous procedure of writing x(l) = Bexp(icot) (see Equations 12.2) 
with Sallowed to be complex. In Equations 12.9, we exhibited the requisite arbitrary constants as real 
amplitudes by using exp(iojt) and exp( — ia>t) rather than by incorporating a phase factor as in 
Equation 12.39. 



12.4 GENERAL PROBLEM OF COUPLED OSCILLATIONS 479 

of qj. Thus, when the total energy of the system is computed, T + U contains fac-
tors that increase or decrease monotonically with the time. But this violates the 
assumption that we are dealing with a conservative system: therefore, the fre-
quency co must be a real quantity. 

With a solution of the form given by Equation 12.39, the equations of motion 
become 

- co2mjk) a; = 0 (12.40) 

where the common factor exp[i(«£ — 5)] has been canceled. This is a set of n 
linear, homogeneous , algebraic equations that the a; must satisfy. For a nontrivial 
solution to exist, the de te rminant of the coefficients must vanish: 

\Ait 
njk\ = 0 

To be more explicit, this is an n X n de te rminant of the fo rm 

0)2Wj! 

-An - co2m15 

A12 — co2mn 

A 22 — (X)2W&22 
A 23 - w2m23 

M3 <W2WI13 ' 

A 9 3 — (U2WI23 • • • 

A 
l 2 3 

2 
33 0) m 33 ' 

= 0 

(12.41) 

(12.42) 

where the symmetry of the Ajh and m]h has been explicitly included. 
The equation represented by this de terminant is called the characteristic 

equation or secular equation of the system and is an equation of degree n in co2. 
There are, in general, n roots we may label co2. The cor are called the characteristic 
frequencies or eigenfrequencies of the system. (In some situations, two or more 
of the car can be equal; this is the p h e n o m e n o n of degeneracy and is discussed 
later.) Just as in the procedure for determining the directions of the principal 
axes for a rigid body, each of the roots of the characteristic equation may be sub-
stituted into Equation 12.40 to determine the ratios a^.a^.a-,;. ••• :an for each value 
of (or. Because there are n values of cor, we can construct n sets of ratios of the a,. 
Each of the sets defines the components of the n-dimensional vector ar, called an 
eigenvector of the system. Thus ar is the eigenvector associated with the eigenfre-
quency cor. We designate by ajr the j th componen t of the r th eigenvector. 

Because the principle of superposit ion applies for the differential equation 
(Equation 12.38), we must write the general solution for q} as a l inear combina-
tion of the solutions for each of the n values of r: 

qj(t) = Sa^e^'-^ (12.43) 
Because it is only the real par t of qj(t) that is physically meaningful , we actually 
have* 

qj(t) = Re2a7re!(<"''^'» = 2 ajr cos (cort - Sr) (12.44) 

"Notice here, unlike the example of weak coupling described in Section 12.3 (Equation 12.26), the 
real part of qj(t) has to be explicitly taken so that the qt( t) in Equation 12.44 is not the same as the 
ijj(t) in Equation 12.43. But here and elsewhere, because of their close relationship, we use the same 
symbol (e.g., <j(0) for convenience. 
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T h e motion of the coordinate q; is therefore c o m p o u n d e d of motions with each 
of the n values of the frequencies o>r. The q} evidently are no t the normal coordi-
nates that simplify the problem. We cont inue the search for normal coordinates 
in Section 12.6. 

EXAMPLE 12.1 

Find the characteristic frequencies for the case of the two masses connected by 
springs of Section 12.2 by means of the general formalism jus t developed. 

Solution. The situation is that shown in Figure 12-1. T h e potential energy of 
the system is 

U = ^ K X f + IK12(X% - xx)2 + ^ / c x f 

= K + f 1 2 )*? + ^(K + Klg)*§ - K12X!X2 

(12.45) 

The term proport ional to XjX2 is the factor that expresses the coupling in the sys-
tem. Calculating the Ajh we f ind 

A,, = 
iFU 
dx2 = K + K 

A12 — 
d2U 

dx| dx% 

d2U 

12 

— k12 — A21 

2 2 d x | 
K + K 12 

(12.46) 

The kinetic energy of the system is 

T=\ Mx\ + - MxI 
2 1 2 2 

According to Equation 12.28, 

T = — 2 mikXjXk 2 j,k Jk 1 k 

Identifying terms between these two expressions for T, we f ind 

mn = OT22 = Ml 

m12 = m21 = 0 J 

Thus, the secular de te rminant (Equation 12.42) becomes 

K + K 12 — Mw2 —k12 
—k12 k + K12 — Mco2 = 0 

(12.47) 

(12.48) 

(12.49) 

(12.50) 
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This is exactly Equation 12.5, so the solutions are the same (see Equations 12.7 
and 12.8) as before: 

K + K12 ± K12 

°) = J M 

The eigenfrequencies are 

K + 2k12 K 
M V M 

The results of the two procedures are identical. 

12.5 Orthogonality of the Eigenvectors (Optional) * 

We now wish to show that the eigenvectors ar form an or thonormal set. Rewriting 
Equation 12.40 for the 5th root of the secular equation, we have 

to? 2 mjkaks = 2 Ajkah (12.51) 

Next, we write a comparable equat ion for the rth root by substituting r fo r s and 
interchanging j and k: 

w2 2 mjkajr = 2 A.ka„ (12.52) 
j J 

where we have used the symmetry of the m]k and Ajk. We now multiply Equation 
12.51 by ajr and sum overhand also multiply Equation 12.52 by ah and sum over k: 

to? = 2 A;ha]rak, j,k J ),k 

w2 2w^a / r a f a = 2 Ajkajrak, 
(12.53) 

The right-hand sides of Equations 12.53 are now equal, so subtracting the first of 
these equations f rom the second, we have 

= 0 (12.54) 

We now examine the two possibilities r = s and r # 5. For r s, the term 
(to? — to?) is, in general, different f rom zero. (The case of degeneracy, or multi-
ple roots, is discussed later.) Therefore the sum must vanish identically: 

=0, r¥= s (12.55) 

•Section 12.5 may be omitted without losing physical understanding. This highly mathematical sec-
tion is included for completeness. The method used here is a generalization of the steps used in 
Section 11.6 for the inertia tensor. 
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For the case r= s, the term (a)2 — co2) vanishes and the sum is indeterminate. The 
sum, however, cannot vanish identically. To show this, we write the kinetic energy 
for the system and substitute the expressions for and qk f rom Equation 12.44: 

2 j.k 

2 i t 

mjk<]j<]k 

jk 2 co/ijr sin(o),i — 8r) 2 cosaki sin(ws/ — 8S) 

= ^ 2 (0rws sin(0)rt - 8r) sin(a)st - 8S) 2 m]ka, 
2, r,s * J J j.k ikairaks 

Thus, for r = s , the kinetic energy becomes 

T = - 2 to2 sin2(o)rt — Sr)2 
2 r j,k 

mjkajrakr (12.56) 

We note first that 

(o2
r sin2((ort - 8r) > 0 

We also know that T is positive and can become zero only if all the velocities van-
ish identically. Therefore , 

2 mjkajrakr > 0 j,« 

Thus, the sum is, in general, positive and can vanish only in the trivial instance 
that the system is not in motion—that is, that the velocities vanish identically and 
T = 0. 

We previously remarked that only the ratios of the ajr are de te rmined when 
the o)r are substituted into Equation 12.40. We now remove this indeterminacy 
by imposing an additional condit ion on the «;r. We require that 

2 m , ; 
J.k 

m j k a j i a h = 1 (12.57) 

The ajr are then said to be normalized. Combining Equations 12.55 and 12.57, we 
may write 

J,k 
mkjajTaks ~ (12.58) 

Because a„ is the ; th componen t of the r th eigenvector, we represent ar by 

2 a, F J (12.59) 

The vectors ar def ined in this way constitute an orthonormal set; that is, they are 
orthogonal according to the result given by Equation 12.55, and they have been 
normalized by setting the sum in Equation 12.57 equal to unity. 

All the preceding discussion bears a striking resemblance to the procedure 
given in Chapter 11 for determining the principal moments of inertia and the 
principal axes for a rigid body. Indeed, the problems are mathematically identi-
cal, except that we are now dealing with a system with n degrees of f reedom. 
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The quantities m,jk and Afk are actually tensor elements, because m and A are two-
dimensional arrays that relate different physical quantities,* and as such, we write 
them as {m} and {A}. The secular equation for determining the eigenfrequen-
cies is the same as that for obtaining the principal moments of inertia, and the 
eigenvectors ar correspond to the principal axes. Indeed, the proof of the orthog-
onality of the eigenvectors is merely a generalization of the proof given in Section 
11.6 of the orthogonality of the principal axes. Although we have made a physical 
a rgument regarding the reality of the eigenfrequencies, we could carry out a 
mathematical proof using the same procedure used to show that the principal 
moments of inertia are real. 

12.6 Normal Coordinates 

As we have seen (Equation 12.43), the general solution for the motion of the coor-
dinate qj must be a sum over terms, each of which depends on an individual eigen-
frequency. In the previous section, we showed that the vectors ar are orthogonal 
(Equation 12.55) and, as a matter of convenience, we even normalized their com-
ponents a;r (Equation 12.57) to arrive at Equation 12.58; that is, we have removed 
all ambiguity in the solution for the qp so it is no longer possible to specify an arbi-
trary displacement for a particle. Because such a restriction is not physically mean-
ingful, we must introduce a constant scale factor a r (which depends on the initial 
conditions of the problem) to account for the loss of generality introduced by the 
arbitrary normalization. Thus, 

qM) = l a ^ e W - y (12.60) r 
To simplify the notation, we write 

qj(t) = S f r o ^ " - ' (12.61) 
r j 

where the quantities jSr are new scale factorsf (now complex) that incorporate 
the phases of <5r. 

We now define a quantity t]r, 
i j r(0 - (3^'' 

so that 

qj(t) = ^ajr7]r(t) 

(12.62) 

(12.63) 

The rj„ by definition, are quantities that undergo oscillation at only one fre-
quency. They may be considered as new coordinates, called normal coordinates, 
for the system. The rjr satisfy equations of the form 

TJr + <U?TJr = 0 (12.64) 

*See the discussion in Section 11.7 concerning the mathematical definition of a tensor. 
fThere is a certain advantage in normalizing the a,, to unity and introducing the scale factors a r a n d 
/3, rather than leaving the normalization unspecified. The ap are then independent of the initial con-
ditions, and a simple orthonormality equation results. 
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There are n i ndependen t such equations, so the equations of mot ion expressed 
in normal coordinates become completely separable. 

EXAMPLE 12.2 

Derive Equation 12.64 directly by using Lagrange's equations of motion. 

Solution. We note that f r o m Equation 12.63 

ij = 

and f rom Equation 12.34 we have, for the kinetic energy, 

T = \ ^ k m j k q j q h 

= \ ^ ^ki^ajrVrji^aksV 2 i* 

= r 2 (Sot,, 
2 77 \ j t m ' k C l ' , a k ' I r i r V s 

The sum in the parentheses is jus t <5„, according to the orthonormali ty condit ion 
(Equation 12.58). Therefore , 

T = ^ 2 r)rVs8rs = 
2 r,s 2 r 

Similarly, f rom Equations 12.34 we have for the potential energy, 

U = \ Z A j h m k 

= ^LAjkajrak)\ 17,17, 

(12.65) 

2 ^ [ j . k 

The first equat ion in Equation 12.53 is 

so the potential energy becomes 

w j 5 „ = \2,a>*7,* (12.66) 
I r.s 2 r 

Using Equations 12.65 and 12.66, the Lagrangian is 

L = a f t * ) (12.67) 
2 r 
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and Lagrange's equations are 

dL _ ([ dL _ 
dt]r dt dr\r 

or 

Vr + w2rj r = 0 
as found in Equation 12.64. 

Thus, when the configuration of a system is expressed in normal coordi-
nates, both the potential and kinetic energies become simultaneously diagonal. 
Because it is the off-diagonal elements of {m} and {A} that give rise to the cou-
pling of the particles' motions, it should be evident that a choice of coordinates 
that renders these tensors diagonal uncouples the coordinates and makes the 
p rob lem completely separable in to the i n d e p e n d e n t mot ions of the normal 
coordinates, each with its particular normal frequency.* 

The foregoing has been a mathematical description of the methods used to 
determine the characteristic frequencies wr and to describe the coordinates r]r of 
the normal m o d e motion. T h e actual application of the m e t h o d can be summa-
rized by several statements: 

1. Choose generalized coordinates and find T a n d U in the normal Lagrangian 
method. This corresponds to using Equations 12.34. 

2. Represent A]k and mjk as tensors in n X n arrays, and use Equation 12.42 to 
de termine the n values of eigenfrequencies <or. 

3. For each value of u»r, de termine the ratios alr\ a2r a3r: •••:anr by substituting 
into Equation 12.40: 

- (o'imjk)aF= 0 (12.68) 

4. If needed, de termine the scale factors /3r (Equation 12.60) f rom the initial 
conditions. 

5. Determine the normal coordinates T]r by appropr ia te linear combinations of 
the qj coordinates that display oscillations at the single eigenfrequency a>r. 
The description of mot ion for this single normal coordinate Tjr is called a 
normal mode . T h e general motion (Equation 12.63) of the system is a com-
plicated superposition of the normal modes. 

We now apply these steps in several examples. 

EXAMPLE 12.3 

Determine the eigenfrequencies, eigenvectors, and normal coordinates of the 
mass-spring example in Section 12.2 by using the p rocedure jus t described. 
Assume k12 = K. 

*The German mathematician Karl Weierstrass (1815-1897) showed in 1858 that the motion of a 
dynamical system can always be expressed in terms of normal coordinates. 
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Solution. The eigenfrequencies were de te rmined in Example 12.1, where we 
found T and U (step 1). We can find the components for A]k directly f rom 
Equation 12.46 or by inspection f rom Equation 12.45, making sure Ajk is sym-
metrical. 

{A} = \K + ^ " K l 2 } (12.69) 
I -K 1 2 k + K12J 

The array m,]k can easily be de te rmined f rom Equation 12.47: 

fiVf 0 1 
( m } = ( o M | (12.70) 

We use Equation 12.42 to de termine the eigenfrequencies wr. 

K + k12 — Moo2 — K12 

— K12 K + k12 — Mw2 0 

which is identical to Equation 12.50 with the results of Equation 12.8 for o>j and o>2. 
We use Equation 12.68 to de termine the eigenvector components «)r. We 

have two equations for each value of r, but because we can de te rmine only the 
ratios a l r / a 2 r , one equation for each r i s sufficient. For r = 1, k = 1, we have 

(A u - a>\mn)an + (A21 - wfw 2 1 )a 2 1 = 0 (12.71) 

or, inserting the values for Au, A21, o>f, and m n , and using the simplification that 
KJ2 == K, 

2K - ^ • MJ an - k«2i = 0 

with the result 

For r = 2, k = 1, we have 

with the result 

an = -an (12.72) 

2K — - ^ • M ] a 1 2 — K«22 = 0 

a12 = a22 (12.73) 

The general mot ion (Equation 12.63) becomes 

Xj = «„ 7j! + a12Tj2l 

+ «22't7 2J 

Using Equations 12.72 and 12.73, this becomes 

xx = an 17j + a22772 1 
x2 = -fluT?! + a227?2J 

(12.74) 

(12.75) 
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TABLE 12-1 Normal Mode Motions 
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Normal 
mode Eigenfrequency 

Particle 
oscillation Particle velocities 

2 

1 Out of phase 

In phase 

Equal but opposite 

Equal 

Adding x1 and x2 gives 

(12 .76 ) 

Subtract ing x2 f r o m x2 gives 

1 
Vi ~ 0 (xi x?) (12 .77 ) 

The no rma l coordina te 17 2 can be d e t e r m i n e d by f ind ing the condi t ions 
when the o the r no rma l coordinate 17, remains equal to zero. From Equat ion 
12.77, 7]1 = 0 when X| X<£. Thus, fo r no rma l m o d e 2(t72), the two masses oscil-
late in phase ( the symmetrical m o d e ) . T h e distance between the particles is al-
ways the same, a n d they oscillate as if the spr ing connec t ing them were a rigid, 
weightless rod. 

Similarly, we can f ind the condi t ions fo r the no rma l coordinate tj1 by deter-
min ing when t j 2 = 0(x 2 = — Xj). In no rma l m o d e 1 (t?i), the particles oscillate 
out of phase ( the antisymmetrical m o d e ) . 

This analysis (summarized in Table 12-1) conf i rms our previous results 
(Section 12.2), and the particle mot ion is as shown in Figure 12-2. Such mo-
tions fo r a toms in molecules are c o m m o n . R e m e m b e r tha t we let K = k12 dur-
ing this example . 

We may de t e rmine the componen t s of the eigenvectors (Equation 12.59), 

(12 .78 ) 

by using Equat ions 12.72 and 12.73. 

(12 .79 ) 

Although normally n o t required, we may de t e rmine the values of an a n d «22 

f r o m the or thonormal i ty condi t ion of Equat ion 12.58 with the result 
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In this example, it was no t necessary to de te rmine the scale factors /3r no r to 
write down the complete solution, because the initial condit ions were no t given. 

EXAMPLE 12.4 

Determine the eigenfrequencies and describe the normal m o d e mot ion for two 
pendula of equal lengths b and equal masses m connected by a spring of force 
constant K as shown in Figure 12-5. The spring is uns t re tched in the equilibrium 
position. 

Solution. We choose 0x and 0 2 (Figure 12-5) as the generalized coordinates. 
The potential energy is chosen to be zero in the equilibrium position. The kinetic 
and potential energies of the system are, for small angles, 

T=^m(b01)2+ ^m(b02)2 

1 

(12.81) 

U= mgb( 1 - cos 0j) + mgb( 1 - cos 02) + |k (6 sin 0X - b sin 02)2 (12.82) 

Using the small oscillation assumption sin 0 = 0 and cos 0 = 1 — 02/2, we can 
write 

mgb Kb2 

U=-^(0l + 01) + — (0! - 0 2 ) 2 

The components of {A} and {m} are 

r , fmb2 0 I 
{ m } = l o mb2] 

{A} 
{mgb + 

-kI 
+ Kb2 -Kb2 1 
c b2 mgb + Kb2) 

The de te rminant needed to find the eigenfrequencies u> is 

mgb + Kb2 — o)2mb2 —Kb2 

—Kb2 mgb + Kb2 — (o2mb2 

which gives the characteristic equation 

b2(mg+ Kb - (o2mb)2 - (Kb2)2 = 0 

(mg + Kb — w2mb)2 = (Kb)2 

or 

mg + Kb — co2mb = ±Kb 

= 0 

(12.83) 

(12.84) 

(12.85) 

(12.86) 

(12.87) 
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FIGURE 12-5 Example 12.4. Two pendula of equal lengths having equal masses are 
connected by a spring. 

Taking the plus sign, co = tox, 

mg + Kb — <yf mb = Kb 
2 _ g 

"l-'b 

Taking the minus sign in Equation 12.87, co = a>2, 

mg + Kb — a>2mb = — Kb 
g , 2k 

CO 2 - 5 m 
Putt ing the values of Wj and co2 into Equat ion 12.40 gives, for k = 1, 

(mgb + Kb2 - cofmb2)alr — Kb2a2r = 0 
If r = 1, then 

and 

If r = 2, then 

and 

mgb + Kb2 — -mb2 ) a n — Kb2a21 = 0 

a \ \ ~ a2\ 

mgb + Kb2 — -'mb2 — ~mb2 ]fli2 — Kb2a22 = 0 

(12.88) 

(12.89) 

(12.90) 

(12.91) 

a12 = -a22 (12.92) 

We write the coordinates and 0 2 in terms of the normal coordinates by 

= <2nT7i + a u r ) 2 1 
0 2 = a2lijj + a22rj2j (12.93) 
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Spring not 
compressed or 
extended 
(symmetric) 

Spring is extended 
and then compressed 
(antisymmetric) 

Normal mode 1 Normal mode 2 
FIGURE 12-6 Example 12.4. The two normal mode motions are shown. 

Using Equations 12.91 and 12.92, Equat ions 12.93 b e c o m e 

T h e normal modes are easily de te rmined , by add ing and subtract ing and 02 , 
to be 

Because normal coordina te 17, occurs when t/2 = 0, t hen 0 2 = 0\ for no rma l 
m o d e 1 (symmetrical). Similarly, normal coord ina te 172 occurs when rjj = 0 
(0, = - 0 2 ) , and normal m o d e 2 is antisymmetrical. T h e no rma l m o d e mot ions 
are shown in Figure 12-6. Notice that fo r m o d e 1, the spr ing is ne i the r com-
pressed n o r ex tended . T h e two p e n d u l a merely oscillate in un i son with their 
natural f requencies (<w, = &>0 = \Tgfb). These mot ions can be easily demon-
strated in the laboratory o r classroom. T h e h igher f requency of normal m o d e 2 
is easily displayed for a stiff spring. 

12.7 Molecular Vibrations 

We ment ioned previously that molecular vibrations are good examples of the appli-
cations of the small oscillations discussed in this chapter . A molecule conta in ing 
n a toms generally has 3 n degrees of f r eedom. T h r e e of these degrees of f r e e d o m 
are n e e d e d to describe the translational mot ion , and , generally, th ree are 
ne e ded to describe rotations. Thus, the re are 3n — 6 vibrational degrees of free-
dom. For molecules with collinear atoms, only two possible rotat ional degrees of 

( 1 2 . 9 4 ) 

(12 .95 ) 
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f r eedom exist, because rotation about the axis th rough the atoms is insignifi-
cant. In this case, there are 3n — 5 degrees of f r eedom for vibrations. 

We want to consider here only the vibrations occurr ing in a plane. We elimi-
nate the translational and rotational degrees of f r eedom by appropriate trans-
formations and choice of coordinate systems. For mot ion in a plane, there are 
2n degrees of f reedom. Because two are translational and one is rotational, gen-
erally 2n — 3 normal vibrations occur in the plane [leaving (3n — 6) — (2n — 3) 
= n — 3 degrees of f r eedom for vibrations of the atoms out of the plane] . 

Linear molecules may have both longitudinal and transverse vibrations. The 
longitudinal vibrations occur along the line of the atoms. For n atoms, there are 
n degrees of f reedom along the line, but one of them corresponds to translation. 
Thus, there are n — 1 possible vibrations in the longitudinal direction for n 
atoms in a linear molecule. If a total of 3w — 5 vibrational degrees of f r eedom 
exist for a linear molecule, there must be (3n — 5) — (n — 1) = 2n — 4 transverse 
vibrations causing the atoms to vibrate perpendicular to the line of atoms. But 
f rom symmetry, any two mutually perpendicular directions suffice—so there are 
really only half the n u m b e r of transverse frequencies, or n — 2. 

EXAMPLE 12.5 

Determine the eigenfrequencies and describe the normal mode mot ion of a 
symmetrical l inear triatomic molecule (Figure 12-7) similar to C 0 2 . The central 
atom (carbon) has mass M, and the symmetrical atoms (oxygen) have masses m. 
Both longitudinal and transverse vibrations are possible. 

Solution. For three atoms, the preceding analysis indicates that we have two 
longitudinal and one transverse vibrational degrees of f reedom if we eliminate 
the translational and rotational degrees of f reedom. 

M 
lit ^m^ lit 

O - Q Q 

1 2 3 
(a) Linear triatomic molecule (b) Longitudinal description 

o — — O o — Mode 1 
„ i o : : 

O—- Q — C > M o d e 2 y \ O " " O J 
(c) Longitudinal normal modes (d) Transverse normal mode 

FIGURE 12-7 Example 12.5. (a) A linear triatomic molecule (for example, C 0 2 with 
central mass M and symmetrical masses m. (b) The elastic forces 
between atoms are represented by springs; the atomic displacements 
from equilibrium tire and x..j. (c) The two longitudinal normal 
modes, (d) The transverse normal mode. 
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We can solve the longitudinal and transverse motions separately, because 
they are independent . In Figure 12-7b, we represent the atomic displacements 
f rom equilibrium by jc1; x2, x3. The elastic forces between atoms are represented 
by springs of force constant k1. We have three longitudinal variables but only two 
degrees of f reedom. We must eliminate the translational possibility by requiring 
the center of mass to be constant during the vibrations. This is satisfied if 

m(xi + x3) + M(x2) = 0 

Therefore , we can eliminate the variable x2: 

x2 
m 
M .(*i + *s) 

(12.96) 

(12.97) 

The kinetic energy becomes 

T = -mx f + \mxl + \mx% 
2 2 3 2 2 

1 a j. j. 771 
= - mk\ + ~ mx\ + ~ — (x§ + x\ + 2x3x!) (12.98) 

Having the x3xv coupling term in the kinetic energy (called "dynamic cou-
pling") can be inconvenient when solving Equat ion 12.42 for the eigenfrequen-
cies. We use a t ransformation to eliminate the dynamic coupling. Let 

<7i — x3 + x i 
<h = — xi. 

Then 

(12.99a) 

+ ft) lift ~ ft) 
and 

— 

m 
M •9i 

and the kinetic energy (Equation 12.98) becomes 

(mM + 2 m2) T - m -2 4. 
4 M qi 

The potential energy is 

U = ^ ^ ( x g - xj)2 + ^/<i(x3 - x2)2 

(12.99b) 

(12.100) 

(12.101) 
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and with the transformations, Equations 12.99, the potential energy becomes 
(after considerable reduct ion) 

U = 
2m + MY 

2 M 
Ki1i + (12.102) 

T h e eigenfrequencies are de te rmined by inspection, using Equation 12.42 

1 (2m + MY 
M 

Kj — (O2 

to be 

0)1 

mM + 2m2 

2 M 

{2m + M) 

2 
9 m, 

— a)4 — 
= 0 (12.103) 

mM 

2 K l 
u>i = — 

m 

(12.104) 

(12.105) 

Because the tensor fo rmed by the coefficients of Equation 12.40 is already diag-
onal, the variables qx and q2 represent the normal coordinates (unnormalized) . 

qx = au Tj! + ai2i72 1 
q2 = «2 lVl + «22172J 

But 

a12 = 0 and <z21 = 0 

?i = a ^ 
= a 22 1 72 

As usual, we determine the mot ion of one normal mode when the o ther is zero. 
The descriptions of the longitudinal normal mode motion are given in Table 12-2. 
Normal m o d e 1 has the end atoms in symmetrical motion, bu t the central atom 
(f rom Equation 12.97) moves opposite to xx and x3. Normal m o d e 2 has the 
end atoms vibrating antisymmetrically, bu t the central a tom is at rest. This mo-
tion is displayed in Figure 12-7c. 

TABLE 12-2 Longitudinal Normal Mode Motions 

Mode Eigenfrequencies Variable Motion 

(2 m + M) 
m M ' ?i = *3 + *i *s = (<k = 0) 

2 m 

q2 = *3 - Xt x3 = (qx = 0) 
x2 = 0 
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Because we have eliminated rotations in ou r system, the transverse vibra-
tions must be as shown in Figure 12-7d, with the end atoms moving in phase 
(y, = ys) opposite to that of y2. An equation similar to Equation 12.97 relates y2 

to y, and y3 to keep the center of mass constant. 

m(yi + ys) + M(ys) = 0 (12.106) 

yn 

y* = -M<x + y>) (12-107> 

We represent the single degree of f r eedom for the transverse vibration by the 
angle a representing the bending of the line of atoms. We assume a is small. 

(3>i - 3>a) + (>s - yz) a = 
b 

The kinetic energy for the transverse m o d e is 

T=\m(y ? + >?) 

Because yt = y3 and using Equation 12.107, a and T become 

2y\ 
a = ~ (2m + M) (12.108) 

bM 

T=^(M+2m)y\ 

(12.109) 
4(2 m + M ) 

The potential energy represents the b inding of the line of atoms. We assume 
the restoring force to be proport ional to the total deviation f rom a straight line 
(ba), so the potential energy is 

1 
2 ' 

U=-K2(ba)2 (12.110) 

Equations 12.109 and 12.110 are similar to those for the mass-spring, with the 
vibrational f requency de termined to be 

„ 2(M+2m) 
= - T T ^ K * (12.111) mM 

The transverse normal m o d e is represented by 

yi = yn (12.112) 

as already discussed and shown in Figure 12-7d. 
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The CO s molecule is an example of the symmetrical l inear molecule jus t 
discussed. Electromagnetic radiation resulting f rom the first and third normal 
modes is observed, because the electrical center of the molecule deviates f rom 
the center of mass (m : O " ; M: C + + ) . But no radiation emanates f rom normal 
m o d e 2, because the electrical center is coincident with the center of mass and 
thus the system has no dipole moment .* 

12.8 Three Linearly Coupled Plane Pendula— 
an Example of Degeneracy 

EXAMPLE 12.6 

Consider three identical pendula suspended f rom a slighdy yielding support . 
Because the support is not rigid, a coupling occurs between the pendula , and 
energy can be transferred f rom one p e n d u l u m to the other. Find the eigenfre-
quencies and eigenvectors and describe the normal m o d e motion. Figure 12-8 
shows the geometry of the problem. 

Solution. To simplify the notation, we adopt a system of units (sometimes 
called natural units) in which all lengths are measured in units of the length of 
the pendula I, all masses in units of the pendu la masses M, and accelerations in 
units of g. Therefore , in our equations the values of the quantities M, I, and g 
are numerically equal to unity. If the coupling between each pair of the pen-
dula is the same, we have 

T=\{o\ + e\ + e\) 

u=\(e\ + el + el- 2e0i02 - 2e0i03 - 2e0203 j 
(12.114) 

1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 

h - = l 1, Z3 - I / , 

[ i / i 

k $ M 
171] = M m% = M m3 = M 

FIGURE 12-8 Example 12.6. Three identical pendula are suspended from a slightly 
yielding support that allows energy to be transferred between pendula. 
Such an experiment is easy to set up and demonstrate. 

*For an interesting discussion of polyatomic molecules, see D. M. Dennison, Rev. Mod. Phys. 3, 280 
(1931). 
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Thus, the tensor {m} is diagonal, 
/ 

1 0 0 
{m} = < 0 1 0 > (12.115) 

,0 0 1 , 

bu t { A } has the f o r m 
/ 

1 — £ - 8 ) 
{A} = < — e 1 - 8 (12.116) 

- e — £ 1 J 
T h e secular de t e rminan t is 

1 - a>2 
- £ — 8 

- e 1 - to2 —e = 0 (12.117) 
—e — £ 1 - to2 

Expanding, we have 

(1 - co2)3 - 2e3 - 3e 2 ( l - to2) = 0 

which can be fac tored to 

(to2 - 1 - s)2(w2 - 1 + 2e) = 0 

and hence the roots are 

to! 

to. 

= VTT 
= v T T (12.118) 

to3 = V l - 2 e . 

Notice that we have a double root: toj = to2 = v T + e. T h e no rma l modes corre-
sponding to these f requencies are the re fore degenerate—that is, these two modes 
are indistinguishable. 

We now evaluate the quanti t ies a ;r, beg inn ing with a )3. Again we no te that, 
because the equat ions of mot ion de t e rmine only the ratios, we n e e d consider 
only two of the three available equations; the th i rd equa t ion is automatically sat-
isfied. Using the equat ion 

2 ( A j k - a)$m jk)aj5 = 0 'ys 

we find 

Equat ions 12.119 yield 

2ea13 — £#23 — ef l33 = 0 
-ea1 3 + 2ea 2 3

 — ea 3 3 = 0 

a 1 3 — a 2 3 — a 3 3 

and f r o m the normalizat ion condi t ion we have 

(12.119) 

(12.120) 

a ?3 + a|3 + ai3 = 1 
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or 

«13 = «23 = «33 = ( 1 2 . 1 2 1 ) 

Thus, we f ind that for r = 3 there is n o problem in evaluating the compo-
nents of the eigenvector a3. (This is a general rule: The re is no indefiniteness in 
evaluating the eigenvector components for a nondegenera te mode.) Because 
all the components of a3 are equal, this corresponds to the m o d e in which all 
three pendu la oscillate in phase. 

Let us now at tempt to evaluate the a^ and a ; 2 . From the six possible equa-
tions of mot ion (three values of j and two values of r), we obtain only two differ-
ent relations: 

*(12.122) 

* ( 1 2 . 1 2 3 ) 

(12 .124 ) 

* ( 1 2 . 1 2 5 ) 

(The o ther two possible equations are identical with Equations 12.122 and 
12.123 above.) Finally, the normalization conditions yield 

a \ i + af t + a f i = 1 *(12.126) 

a? 2 + a\2 + a f 2 = 1 * ( 1 2 . 1 2 7 ) 

Thus, we have a total of only five (starred,*) equations for the six unknowns 
a}1 and «y2. This indeterminacy in the eigenvectors corresponding to a double 
root is exacdy the same as that encounte red in constructing the principal axes 
for a rigid body with an axis of symmetry; the two equivalent principal axes may 
be placed in any direction as long as the set of three axes is or thogonal . There-
fore, we are at liberty to arbitrarily specify the eigenvectors aj and a2, as long as 
the orthogonality and normalizing relations are satisfied. For a simple system 
such as we are discussing, it should no t be difficult to construct these vectors, so 
we do not give any general rules here. 

If we arbitrarily choose a3 1 = 0, the indeterminacy is removed. We then find 

^ = - U l , - l , 0 ) , a 2 = ( 1 , 1 , —2) ( 1 2 . 1 2 8 ) 
V 2 V 6 

f rom which we can verify that the starred relations are all satisfied. 

e ( a u + a 2 j + a 3 j ) = 0 

e(a1 2 + a22 + a32) = 0 

The orthogonality equation is 

%m]ka]rak =0, s 

but, because m]k = Sjk, this becomes 

= 0, r = £ s 
i 

which leads to only one new equation: 

anai 2 -1- a 2 j a 2 2 + a 3 1a 3 2 = 0 
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Recall that the nondegenera te m o d e corresponds to the in-phase oscilla-
tion of all three pendula: 

a s = ^ = ( 1 , 1 , 1 ) (12.129) 

We now see that the degenera te modes each cor respond to out-of-phase oscil-
lation. For example, a2 in Equat ion 12.128 represents two p e n d u l a oscillating 
together with a certain ampl i tude, whereas the third is ou t of phase and has 
twice the ampl i tude . Similarly, a! in Equat ion 12.128 represents one pendu -
lum stationary a n d the o the r two in out-of-phase oscillation. T h e eigenvectors 
ax and a2 already given are only one set of an infinity of sets satisfying the con-
ditions of the p rob lem. But all such eigenvectors represen t some sort of out-
of-phase oscillation. (Fur ther details of this example are examined in 
Problems 12-19 and 12-20.) 

12.9 The Loaded String* 
We now consider a more complex system consisting of an elastic string (or a 
spring) on which a n u m b e r of identical particles are placed at regular intervals. 
The ends of the string are constrained to remain stationary. Let the mass of each 
of the n particles be m, and let the spacing between particles at equilibrium be d. 
Thus, the length of the string is L = (n + 1 )d. T h e equilibrium situation is 
shown in Figure 12-9. 

We wish to treat the case of small transverse oscillations of the particles 
about their equilibrium positions. First, we consider the vertical displacements 
of the masses n u m b e r e d j — 1, j, a n d j + 1 (Figure 12-10). If the vertical dis-
placements qj_ l t qj, and are small, then the tension T in the string is approx-
imately constant and equal to its value at equilibrium. For small displacements, 
the string section between any pair of particles makes only small angles with the 
equilibrium line. Approximating the sines of these angles by the tangents, the 
expression for the force that tends to restore the j t h particle to its equilibrium 
position is 

FJ = ~ f a ~ ^ ~ f a ~ ^ (12-130) 

The force F}- is, according to Newton's law, equal to mqf, Equation 12.130 can 
therefore be written as 

?> = i < < & - i - 2 ? / + < 1 2 1 3 1 > 

*The first attack on the problem of the loaded string (or one-dimensional lattice) was by Newton (in 
the Principia, 1687). The work was continued by Johann Bernoulli and his son Daniel, starting in 
1727 and culminating in the latter's formulation of the principle of superposition in 1753. It is from 
this point that the theoretical treatment of the physics of systems (as distinct from particles) begins. 
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(n + l)d 
0 d 2d ( j - l ) d jd (j+l)d (n-l)d nd =L 

m m m m m m m , , » » « » » 

1 2 j -1 j j+ 1 ra - 1 n 

FIGURE 12-9 A schematic of the loaded string. In equilibrium, identical masses are 
spaced equidistandy. The ends of the string are fixed. 

1 _ m 
j+ 1 ^ 

J - J ^ h m 
•— im h 

U-1[ d d 9j+ l 

Equilibrium line 

FIGURE 12-10 Vertical displacements {qr,, qp and q]+1) of masses on the loaded string. 

which is the equa t ion of mot ion for the j t h part icle. T h e system is coupled , 
because the force on the jth particle depends on the positions of the ( j — l ) t h 
and ( j + l ) t h particles; this is therefore an example of nearest neighbor interaction, 
in which the coupling is only to the adjacent particles. It is not necessary that the 
interaction be confined to nearest neighbors. If the force between pairs of parti-
cles were electrostatic, for example, then each particle would be coupled to all the 
other particles. The problem can then become quite complicated. But even if the 
force is electrostatic, the 1/r 2 dependence on distance frequently permits us to 
neglect interactions at distances greater than one interparticle spacing, so that the 
simple expression for the force given in Equation 12.130 is approximately correct. 

We have considered only the mot ion perpendicular to the line of the string: 
transverse oscillations. It is easy to show that exactiy the same fo rm for the equa-
tions of mot ion results if we consider longitudinal vibrations—that is, motions 
along the line of the string. In this case, the factor R/D is replaced by K, the force 
constant of the string (see Problem 12-24). 

Although we used Newton's equat ion to obtain the equations of motion 
(Equation 12.131), we may equally well use the Lagrangian method. The poten-
tial energy arises f rom the work done to stretch the n + 1 string segments*: 

n+l 
u = ? i)2 (12.132) 

where q0 and qn+l are identically zero, because these positions correspond to the 
fixed ends of the string. We note that Equation 12.132 yields an expression for the 
force on the j t h particle that is the same as the previous result (Equation 12.130): 

*We consider the potential energy to be only the elastic energy in the string; that is, we do not con-
sider the individual masses to have any gravitational (or any other) potential energy. 
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= J ' ! , , - 2</; + '/ , . ,) (12.133) 

The kinetic energy is given by the sum of the kinetic energies of the n individual 
particles: 

1 n 

T = - m^q] (12.134) 

Because qn+l = 0, we may extend the sum in Equation 12.134 to j = n + 1 so 
that the range of j is the same as that in the expression for the potential energy. 
Then, the Lagrangian becomes 

n+ 1 -. n-r i 

2 7=1 

T 
(12.135) 

It should be obvious that the equat ion of mot ion for the _/th particle must 
arise f rom only those terms in the Lagrangian containing ^ or q}. If we expand 
the sum in L, we find 

l = - + - Y d ( < u - i ~ q ? - I f a ~ " - ( 1 5 U 3 6 ) 

where we have written only those terms that contain ei ther qj or qj. Applying 
Lagrange's equat ion for the coordinate qp we have 

mqj - T-(qj_! - 2qj + qj+l) = 0 (12.137) 

Thus, the result is the same as that obtained by using the Newtonian method . 
To solve the equations of motion, we substitute, as usual, 

qj(t) = a]e"»l (12.138) 

where a ; can be complex. Substituting this expression for t) in to Equat ion 
12.137, we find 

T „ « L - - « . . . = n (12.139) 

where j = 1 , 2 n, bu t because the ends of the string are fixed, we must have 
Oo = «n+i = 0. 

Equation 12.139 represents a linear difference equation that can be solved 
for the eigenfrequencies ojr by setting the de te rminant of the coefficients equal 
to zero. We therefore have the following secular determinant : 
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A 
T 

~d 
0 0 0 

T 

~d 
A 

T 

~d 
0 0 

0 
T 

~d 
A 

T 
0 

0 0 
T 

~d 
A 

T 

0 0 0 . . 

= 0 (12.140) 

where we have used 

TflO) (12.141) 

This secular de te rminant is a special case of the general de te rminant (Equation 
12.42) that results if the tensor m is diagonal and the tensor A involves a cou-
pling only between adjacent particles. Thus, Equation 12.140 consists only of di-
agonal elements plus elements once-removed f rom the diagonal. 

For the case n = 1 (i.e., a single mass suspended between two identical 
springs), we have A = 0, o r 

(O = 

We may adapt this result to the case of longitudinal mot ion by replacing r / r fby k; 
we then obtain the familiar expression, 

(0 = 

For the case n = 2, and with r / d replaced by k, we have A2 = K2
, or 

m 
2 K± K 

m 

which are the same frequencies as those f o u n d in Section 12.2 for two coupled 
masses (Equation 12.8). 

T h e secular equat ion should be relatively easy to solve directly for small val-
ues of n, bu t the solution becomes quite complicated for large n. In such cases, it 
is simpler to use the following method . We try a solution of the fo rm 

a . = o^O'Y-S) (12.142) 

where a is real. The use of this device is justif ied if we can find a quantity y and a 
phase 5 such that the conditions of the problem are all satisfied. Substituting 
in this fo rm into Equat ion 12.139 and canceling the phase factor, we find 

e~iy + 
d 

- eiy = 0 
d 
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Solving for a>2, we obtain 

a> ,2 = 2r T , . 
{e'y + e~'v) 

md md 

= — (1 - cos y) 
md 
4r 

sin 

(12.143) 

mrf 2 

Because we know that the secular de te rminant is of o rder n and therefore yields 
exactly n values for co2, we can write 

wr = 2^1— sin r = 1,2,... ,n 
md 2 

(12.144) 

We now evaluate the quantity yr and the phase 8r by applying the boundary 
condition that the ends of the string remain fixed. Thus, we have 

ajr = ore<0>-W (12.145) 
or, because it is only the real par t that is physically meaningful , 

ajr = arcos(jyr — 8r) (12.146) 
The boundary condit ion is 

a0r= a{n+l)r= 0 (12.147) 
For Equation 12.146 to yield ap = 0 for j = 0, it should be clear that 8r must be 
7t /2 (or some odd integer multiple thereof) . Hence, 

f ) 
= ar sin jyr 

For j = n + 1, we have 
a(n+i)r = 0 = ar sin(n + l)yr 

Therefore , 
(n + l)yr = sir, s= 1, 2 , . . . 

or 
STT 

ajr = ar cos^yr 

(12.148) 

Jr n+1' 
1,2,... 

But there are jus t n distinct values of yr because Equation 12.144 requires n dis-
tinct values of cor. Therefore , the index s runs f rom 1 to n. Because there is a one-
to-one correspondence between the values of s and the values of r, we can simply 
replace s in this last expression by the index r: 

y r = ^ T , r=l,2,...,n (12.149) 
n+1 

The a]r (Equation 12.148) then becomes 

(12.150) 
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T h e gene ra l so lu t ion f o r q} (see Equa t ion 12.61) is 

= 2 /3 > " i a ' ' J T 

rv 
= S j S X s i n b - ^ - l e ^ 

r \ f l + 1/ 

= 2 Br s inf i———\eia<t ( 12 .151) 
r \ n + 1 / 

w h e r e we have wri t ten /3r = fi'rar. F u r t h e r m o r e , f o r t h e f r e q u e n c y we have 

(12 .152 ) 

We n o t e tha t this express ion yields the s ame results f o u n d f o r t h e case of two 
c o u p l e d oscillators (Equat ions 12.8) w h e n we inser t n = 2, r = 1 , 2 a n d rep lace 
r / d b y k( = /Cig). 

Not ice also tha t if e i ther r = 0 o r r = n + l i s subst i tuted in to Equa t ion 12.150, 
t hen all t he ampl i t ude factors ajr vanish identically. These values of r t he r e fo re 
refer to null modes. Moreover, if r takes o n the values n + 2, n + 3, . . . , 2n + 1, t hen 
the a,jr a re t h e same (except for a trivial sign change a n d in reverse o rde r ) as f o r r = 
1,2 , . . . , n; also, r = 2n + 2 yields the nex t nul l m o d e . We conclude , the re fore , tha t 
t he re are i n d e e d only n distinct m o d e s a n d that increas ing r beyond n mere ly du-
plicates the m o d e s f o r smaller n. (A similar a r g u m e n t applies fo r r < 0.) These 
conclusions are il lustrated in Figure 12-11 f o r the case n = 3. T h e distinct m o d e s 
a re specified by r = 1, 2, 3; r = 4 is a nul l m o d e . T h e d i sp lacement pa t te rns a re du-
plicated fo r r = 7, 6, 5, 8, bu t with a c h a n g e in sign. In Figure 12-11, t he dashed 
curves mere ly r ep re sen t the sinusoidal behavior of t h e ampl i tude factors a ; r f o r 
various values of r ; the only physically m e a n i n g f u l fea tures of these curves a re the 
values at t h e posi t ions occupied by the particles ( j = 1, 2 , 3 ) . T h e "high f requency" 
of the sine curves fo r r = 5, 6, 7, 8 is thus n o t at all re la ted to the f r equency of the 
particles ' mot ions ; these latter f r equenc ies a re the same as fo r r = 1, 2, 3, 4. 

T h e n o r m a l coord ina tes of t h e system (Equa t ion 12.62) are 

t ) r(t) = Pre™'1 ( 12 .153) 

so tha t 

(12 .154) 

This e q u a t i o n f o r q̂  is similar to t h e previous express ion (Equa t ion 12.63) ex-
cep t t ha t t he quant i t ies a ; r a re n o w r e p l a c e d by sin [j(rTr)/(n + 1)] . 

Because /3r may b e complex , we write f o r t h e rea l p a r t of qJt 

real: qAt) = 2 sinl ——r ] ( / i r cos o>rt — vr sin a>rt) (12.155) 
t \ n + 1 / 
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FIGURE 12-11 The normal mode motion for the case of n = 3 masses. Only r = 1,2, 
3 are distinct modes, because r = 4 is a null mode, and r = 7, 6, 5, 8 
are duplicates of 1, 2, 3, and 4, respectively, with a change in sign. The 
dashed curves represent the sinusoidal behavior of the amplitude 
factors ap and are not physically meaningful features of the motion. 
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where 

Pr = fir + ivr (12.156) 

T h e initial value of qj(t) can be ob ta ined f r o m Equat ion 12.155: 

qj(0) = 2 A t r s i n h ^ - J (12.157) 

?7(0) = - 2 o > r v r s i n ( j ^ j ) (12.158) 

If we multiply Equat ion 12.157 by sin \j(s7r)/(n + 1)] a n d sum over j, we find 

2 * < 0 ) s i n ( ; ^ ) = | M r s i n ( , ^ ) s i n ( ^ (12.159) 

A relat ionship in the f o r m of a t r igonometr ic identity is available fo r the sine 
terms: 

" V . / RIR \ . ( SIT \ n + 1 
= r ' s = 1 ' 2 ' - ' n ( 1 2 1 6 0 ) 

so tha t Equat ion 12.159 becomes 

2 qj(0) s i n ( ; - ^ — ) = 2 n r
 n + 1 " 

j - v n + 1 / r 2 
n + 1 

or 

^ = (12.161a) 
n + \ j J \ n + 1 / 

A similar p rocedure fo r vs yields 

2 - E ^ ( 0 ) s i n ( 7 ^ - ) (12.161b) v, = --
ws(n + 1) j v ' V' n + 1 

Thus , we have evaluated all the necessary quantit ies, and the descript ion of the 
vibrations of a loaded string is the re fo re complete . 

We should no te the following po in t regarding the normalization procedures 
used here . First, in Equat ion 12.57 we arbitrarily normalized the ajr to unity. Thus, 
the a]r are required, to be i ndependen t of the initial condit ions imposed on the sys-
tem. T h e scale factors a r and /3r then allowed the magni tude of the oscillations to 
be varied by the selection of the initial conditions. Next, in the problem of the 
loaded string, we f o u n d that instead of the quantities a^, there arose the sine func-
tions sin [j(rir)/(n + 1)], a n d these func t ions possess a normalizat ion proper ty 
(Equation 12.160) that is specified by tr igonometric identities. Therefore , in this 
case it is no t possible arbitrarily to impose a normalization condition; we are auto-
matically presented with the condit ion. But this is n o restriction; it means only that 
the scale factors (3r fo r this case have a slighdy d i f ferent fo rm. Thus, there are 
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certain constants that occur in the two problems that, for convenience, are sepa-
rated in different ways in the two cases. 

EXAMPLE 12.7 

Consider a loaded string consisting of three particles regularly spaced on the 
string. At t = 0 the center particle (only) is displaced a distance a and released 
f rom rest. Describe the subsequent motion. 

Solution. The initial condit ions are 

q2{ 0) = a, 9 l (0 ) = 9 s (0 ) = Ol 
<7i (0) = fc(0) = (0) = 0 J 

(12.162) 

Because the initial velocities are zero, the vr vanish. The /xr are given by 
(Equation 12.161a): 

M r n + T 2 ^ ( 0 ) s i n ; 
m 

n+1 

1 (rir 
= —a sml — 

2 V 2 
because only the term j = 2 contributes to the sum. Thus, 

1 1 

(12.163) 

Mi = 2a> H2 = 0, M3 (12.164) 

The quantities sin[j{rir)/(n + 1 ) ] that appear in the expression for q^t) 
(Equation 12.155) are 

\ r = 1 2 
J = 

1 V 2 
2 

1 

2 1 0 

V 2 
- 1 O 

2 
- 1 

V 2 
2 

- 1 

V 2 
2 

The displacements of the three particles therefore are 

V 2 

qi(t) = —— a(cos (i)xt — cos w5t) 

q2(t) = -a (cos Wji + cos co3t) V 2 
?3(0 = ~ ^ - ^ ( c o s w j i — cos ca3t) = q^(t) 

(12.165) 

(12.166) 
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where the characteristic f requencies are given by Equation 12.152: 

wr= 2 r= 1 , 2 , 3 (12.167) 

Notice that because the middle particle was initially displaced, n o vibration 
m o d e occurs in which this particle is at rest; that is, m o d e 2 with frequency <u2 

(see Figure 12-11) is absent. 

12-1. Reconsider the problem of two coupled oscillators discussed in Section 12.2 in the 
event that the three springs all have different force constants. Find the two charac-
teristic frequencies, and compare the magnitudes with the natural frequencies of 
the two oscillators in the absence of coupling. 

12-2. Continue Problem 12-1, and investigate the case of weak coupling: k12 KH K->. 
Show that the phenomenon of beats occurs but that the energy-transfer process is 
incomplete. 

12-3. Two identical harmonic oscillators (with masses M a n d natural frequencies cu0) are 
coupled such that by adding to the system a mass m common to both oscillators the 
equations of motion become 

Solve this pair of coupled equations, and obtain the frequencies of the normal 
modes of the system. 

12-4. Refer to the problem of the two coupled oscillators discussed in Section 12.2. Show 
that the total energy of the system is constant. (Calculate the kinetic energy of each of 
the particles and the potential energy stored in each of the three springs, and sum 
the results.) Notice that the kinetic and potential energy terms that have k12 as a coef-
ficient depend on C, and ojj but not on C2 or w2. Why is such a result to be expected? 

12-5. Find the normal coordinates for the problem discussed in Section 12.2 and in 
Example 12.1 if the two masses are different, mx + m2. You may again assume all 
the K are equal. 

12-6. Two identical harmonic oscillators are placed such that the two masses slide against 
one another, as in Figure 12-A. The frictional force provides a coupling of the mo-
tions proportional to the instantaneous relative velocity. Discuss the coupled oscil-
lations of the system. 

PROBLEMS 

x1 + (m/M)x2 + ai^] = 0 

x2 + (m/M)Xi + <x>lx2 = 0 
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m 

m 

FIGURE 12-A Problem 12-6. 

12-7. A particle of mass m is attached to a rigid support by a spring with force constant K. 
At equilibrium, the spring hangs vertically downward. To this mass-spring combina-
tion is attached an identical oscillator, the spring of the latter being connected to 
the mass of the former. Calculate the characteristic frequencies for one-dimensional 
vertical oscillations, and compare with the frequencies when one or the other of the 
particles is held fixed while the other oscillates. Describe the normal modes of 
motion for the system. 

12-8. A simple pendulum consists of a bob of mass m suspended by tin inextensible 
(and massless) string of length I. From the bob of this pendulum is suspended a 
second, identical pendulum. Consider the case of small oscillations (so that 
sin 0 = 0), and calculate the characteristic frequencies. Describe also the normal 
modes of the system (refer to Problem 7-7). 

12-9. The motion of a pair of coupled oscillators may be described by using a method 
similar to that used in constructing a phase diagram for a single oscillator 
(Section 3.4). For coupled oscillators, the two positions Xi(t) and x2(t) may be 
represented by a point (the system point) in the two-dimensional configuration 
space xl-x2. As t increases, the locus of all such points defines a certain curve. 
The loci of the projection of the system points onto the x t- and x2-axes repre-
sent the motions of mx and m2, respectively. In the general case, *j(f) and x2(t) 
are complicated functions, and so the curve is also complicated. But it is always 
possible to rotate the xx-x2 axes to a new set x[-x2 in such a way that the pro-
jection of the system point onto each of the new axes is simple harmonic. The 
projected motions along the new axes take place with the characteristic fre-
quencies and correspond to the normal modes of the system. The new axes are 
called normal axes. Find the normal axes for the problem discussed in Section 
12.2 and verify the preceding statements regarding the motion relative to this 
coordinate system. 

12-10. Consider two identical, coupled oscillators (as in Figure 12-1). Let each of the os-
cillators be damped, and let each have the same damping parameter j3. A force F0 
cos cot is applied to ml. Write down the pair of coupled differential equations 
that describe the motion. Obtain the solution by expressing the differential 
equations in terms of the normal coordinates given by Equation 12.11 and by 
comparing these equations with Equation 3.53. Show that the normal coordi-
nates t]i and 172 exhibit resonance peaks at the characteristic frequencies a>\ and 
a>2, respectively. 

12-11. Consider the electrical circuit in Figure 12-B. Use the developments in Section 12.2 
to find the characteristic frequencies in terms of the capacitance C, inductance L, 
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and mutual inductance M. The Kirchhoff circuit equations are 

L / j + ^ + M/2 = 0 

l L + — + m l = o 2 c 1 

?1 ?2 

M \ h 

FIGURE 12-B Problem 12-11. 

12-12. Show that the equations in Problem 12-11 can be put into the same form as 
Equation 12.1 by solving the second equation above for / 2 and substituting the re-
sult into the first equation. Similarly, substitute for 7j in the second equation. The 
characteristic frequencies may then be written down immediately in analogy with 
Equation 12.8. 

12-13. Find the characteristic frequencies of the coupled circuits of Figure 12-C. 

C 1 I I C 2 

FIGURE 12-C Problem 12-13. 

12-14. Discuss the normal modes of the system shown in Figure 12-D. 

Li 
TSCffiT- -nmp— 

FIGURE 12-D Problem 12-14. 

12-15. In Figure 12-C, replace L12 by a resistor and analyze the oscillations. 
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12-16. A thin hoop of radius R and mass Moscillates in its own plane hanging from a sin-
gle fixed point. Attached to the hoop is a small mass M constrained to move (in a 
frictionless manner) along the hoop. Consider only small oscillations, and show 
that the eigenfrequencies are 

/ - fg V 2 f g 

Find the two sets of initial conditions that allow the system to oscillate in its nor-
mal modes. Describe the physical situation for each mode. 

12-17. Find the eigenfrequencies and describe the normal modes for a system such as 
the one discussed in Section 12.2 but with three equal masses m and four springs 
(all with equal force constants) with the system fixed at the ends. 

12-18. A mass M moves horizontally along a smooth rail. A pendulum is hung from M 
with a weightless rod and mass rtl at its end. Find the eigenfrequencies and de-
scribe the normal modes. 

12-19. In the problem of the three coupled pendula, consider the three coupling con-
stants as distinct, so that the potential energy may be written as 

U = \ ( 0 \ + e\ + 0 1 - 28J20J02 - 2e130103 - 2e 230 20 3) 

with s12, £[ 3, s 2 3 all different. Show that no degeneracy occurs in such a system. 
Show also that degeneracy can occur only if e12 = e13 = e23. 

12-20. Construct the possible eigenvectors for the degenerate modes in the case of the 
three coupled pendula by requiring au = 2 a21. Interpret this situation physically. 

12-21. Three oscillators of equal mass m are coupled such that the potential energy of 
the system is given by 

TJ— ~ x3) -I- k2x2 -H /c3(xjx2 x2x3)] 

where K* 
= V2K1K2. Find the eigenfrequencies by solving the secular equation. 

What is the physical interpretation of the zero-frequency mode? 
12-22. Consider a thin homogeneous plate of mass M that lies in the xt-x-2 plane with its 

center at the origin. Let the length of the plate be 2 A (in the x2-direction) and let 
the width be 2B (in the xx-direction). The plate is suspended from a fixed support 
by four springs of equal force constant K at the four corners of the plate. The plate is 
free to oscillate but with the constraint that its center must remain on the x3-axis. 
Thus, we have three degrees of freedom: (1) vertical motion, with the center of the 
plate moving along the x3-axis; (2) a tipping motion lengthwise, with the x, - axis 
serving as an axis of rotation (choose an angle 6 to describe this motion); and (3) a 
tipping motion sidewise, with the x2-axis serving as an axis of rotation (choose an 
angle (j) to describe this motion). Assume only small oscillations and show that the 
secular equation has a double root, and hence that the system is degenerate. 
Discuss the normal modes of the system. (In evaluating the a]h for the degenerate 
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modes, arbitrarily set one of the ajk equal to zero to remove the indeterminacy.) 
Show that the degeneracy can be removed by adding to the plate a thin bar of mass 
m and length 2A situated (at equilibrium) along the - axis. Find the new eigenfre-
quencies for the system. 

12-23. Evaluate the total energy associated with a normal mode, and show that it is con-
stant in time. Show this explicitly for the case of Example 12.3. 

12-24. Show that the equations of motion for longitudinal vibrations of a loaded string are 
of exactly the same form as the equations for transverse motion (Equation 
12.131), except that the factor R/D must be replaced by K, the force constant of 
the string. 

12-25. Rework the problem in Example 12.7, assuming that all three particles are dis-
placed a distance a and released from rest. 

12-26. Consider three identical pendula instead of the two shown in Figure 12-5 with a 
spring of constant 0.20 N /m between the center pendulum and each of the side 
ones. The mass bobs are 250 g, and the pendula lengths are 47 cm. Find the nor-
mal frequencies. 

12-27. Consider the case of a double pendulum shown in Figure 12-E where the top pen-
dulum has length Lt and the bottom length is L2, and similarly, the bob masses are 
m,i and m2. The motion is only in the plane. Find and describe the normal modes 
and coordinates. Assume small osillations. 

FIGURE 12-E Problem 12-27. 

12-28. Find the normal modes for the coupled pendulums in Figure 12-5 when the pen-
dulum on the left has mass bob mx — 300 g and the right has mass bob m2 = 500 g. 
The length of both pendula is 40 cm, and the spring constant is 0.020 N/m. When 
the left pendulum is initially pulled back to 0x = — 7° and released from rest when 
02 = 02 = 0, what is the maximum angle that 02 reaches? Use the small angle ap-
proximation. 



CHAPTER 

Continuous Systems; 
Waves 

13.1 Introduction 

We have so far b e e n cons ide r ing particles, systems of particles, o r r igid bodies. 
Now, we want to cons ide r bodies (gases, l iquids, o r solids) tha t a re n o t rigid, that 
is, bodies whose part icles move (however slightly) with respec t to o n e another . 
T h e genera l study of such bod ies is qu i te complex . However, o n e aspect of these 
continuous bodies is very i m p o r t a n t t h r o u g h o u t physics—the ability to t ransmit 
wave mot ion . A d i s tu rbance o n o n e pa r t of t he body can be t r ansmi t t ed by wave 
p ropaga t ion t h r o u g h o u t the body. 

T h e simplest example of such p h e n o m e n a is a vibrating string stretched u n d e r 
un i fo rm tension between two fixed supports. As usual, the simple example repre-
sents many of the impor tan t results n e e d e d to unders tand o ther physical examples, 
such as stretched m e m b r a n e s a n d waves in solids. Waves may be ei ther transverse or 
longitudinal. An example of a longitudinal wave is the vibration of molecules along 
the direction of p ropaga t ion of a wave moving in a solid rod. Longi tudinal waves 
occur in fluids a n d solids a n d are of great impor tance in acoustics. 

Whereas b o t h transverse a n d longi tud ina l waves may occur in solids, only 
longi tudina l waves occur inside fluids, in which shea r ing forces a re n o t possible. 
We have already cons ide red ( C h a p t e r 12) bo th kinds of vibrat ions for a system of 
particles. A deta i led study of the transverse vibrat ing s t r ing is i m p o r t a n t for sev-
eral reasons. A study of a one -d imens iona l mode l of such s tr ing vibrat ions allows 
a mathemat ica l so lu t ion with results tha t a re appl icable to m o r e c o m p l e x two-
a n d th ree-d imens iona l p rob lems . T h e m o d e s of oscillation a re similar. In partic-
ular, the appl ica t ion of b o u n d a r y cond i t ions (fixed ends ) , which a re of e x t r e m e 
i m p o r t a n c e in many areas of physics, is easiest in one -d imens iona l p roblems. 

512 
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Boundary conditions play a role in the use of partial differential equations simi-
lar to the role initial conditions play in ordinary differential equations using 
Newtonian or Lagrangian techniques. 

In this chapter, we extend the discussion of the vibrations of a loaded string 
presented in Chapter 12 by examining the consequences of allowing the num-
ber of particles on the string to become infinite (while maintaining a constant 
linear mass density). In this way, we pass to the case of a continuous string. All 
the results of interest for such a string can be obtained by this limiting process— 
including the derivation of the impor tant wave equation, one of the truly funda-
mental equations of mathematical physics. 

The solutions of the wave equation are in general subject to limitations im-
posed by certain physical restrictions peculiar to a given problem. These limita-
tions frequently take the form of conditions on the solution that must be me t at 
the extremes of the intervals of space and time that are of physical interest. We 
must therefore deal with a boundary-value problem involving a partial differen-
tial equation. Indeed, such a description characterizes essentially the whole of 
what we call mathematical physics. 

We confine ourselves here to the solution to a one-dimensional wave equa-
tion. Such waves can describe a two-dimensional wave in two dimensions and can 
describe, for example, the mot ion of a vibrating string. The compression (or 
sound) waves that may be transmitted through an elastic medium, such as a gas, 
can also be approximated as one-dimensional waves if the med ium is large 
enough that the edge effects are unimpor tant . In such a case, the condit ion of 
the med ium is approximately the same at every point on a plane, and the prop-
erties of the wave motion are then funct ions only of the distance along a line 
normal to the plane. Such a wave in an extended medium, called a plane wave, is 
mathematically identical to the one-dimensional waves treated here . 

13.2 Continuous String as a Limiting Case 
of the Loaded String 

In the preceding chapter, we considered a set of equally spaced point masses 
suspended by a string. We now wish to allow the n u m b e r of masses to become in-
finite so that we have a cont inuous string. To do this, we must require that as 
n —> oo we simultaneously let the mass of each particle and the distance between 
each particle approach zero (m—>0, d—>0) in such a manne r that the ratio m/d 
remains constant. We note that m/d = p is jus t the linear mass density of the 
string. Thus, we have 

n—» oo, d—>0, such tha t (w + l)rf = L 
m 

m—>0, d-+0, such that — = p = constant 
d 

(13.1) 
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From Equation 12.154, we have 

qj(t) = 2 V r ( t ) s i n f / - ^ - (13.2) 
, n + 1 

We can now write 

rir jd x 
j = rTT —- = vtt — (13.3) J n + 1 (n+l)d L 

where jd = x now specifies the distance along the cont inuous string. Thus, qft) 
becomes a cont inuous funct ion of the variables x and t: 

SI rTrx\ 
T7 r ( / ) sm(—J (13.4) 

or 

q(x, t) = 2 / 3 ^ (!3.5) 

In the case of a loaded string containing n particles, there are n degrees of 
f r eedom of mot ion and therefore n normal modes and n characteristic f requen-
cies. Thus, in Equation 12.154 (or Equation 13.2) the sum is over the range r = 1 
to r = n. But now the n u m b e r of particles is infinite, so there is an infinite set of 
normal modes and the sum in Equations 13.4 and 13.5 runs f rom r= 1 to r = 
There are, then, infinitely many constants (the real and imaginary parts of the fir) 
that must be evaluated to completely specify the mot ion of the cont inuous 
string. This is exactly the situation encounte red in represent ing some funct ion 
as a Fourier series—the infinitely many constants are specified by certain inte-
grals involving the original funct ion (see Equations 3.91). We may view the situa-
tion in ano ther way: There are infinitely many arbitrary constants in the solution 
of the equat ion of motion, bu t there are also infinitely many initial conditions 
available for their evaluation, namely, the cont inuous funct ions q(x, 0) and 
q(x, 0). The real and imaginary parts of the /3r can thus be obtained in terms of 
the initial conditions by a procedure analogous to that used in Section 12.9. 
Using /3r = + ivr, we have f rom Equation 13.5, 

V I rTTX\ 
q(x, 0) = hfjLr sinl — I (13.6a) 

v (rtTx\ 
q(x,0) = - 2 , w ^ s i n l — J (13.6b) 

Next, we multiply each of these equations by sin(svx/L) and integrate f rom x = 0 
to x = L. We can make use of the tr igonometric relation 
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f rom which we obtain 
r i 

•do 

2 r , „, . / rirx \ 
jjLr = — | q(x, 0)sin[—— \dx 

/ rirx1 

vr = - | q(x, 0)sin —— \dx 
o)rLj0 \ L 

(13.8a) 

(13.8b) 

The characteristic f requency tor may also be obtained as the limiting value of 
the result for the loaded string. From Equation 12.152, we have 

= 2A I — , sin 
md 

rrr 
2 (n + 1). 

(13.9) 

which can be written as 

2 fr (rvd\ 

When d—» 0, we can approximate the sine term by its argument , with the result 

(13.11) 
rir T 

TVp 

EXAMPLE 13.1 

Find the displacement q(x, t) for a "plucked string," where one point of the 
string is displaced (such that the string assumes a tr iangular shape) and then 
released f rom rest. Consider the case shown in Figure 13-1, in which the center 
of the string is displaced a distance h. 

Solution. The initial conditions are 

q(x, 0 ) = < 

q(x, 0) = 0 

2 h 
-x, 0 < x < L/2 

2 h 
—(L - x), L /2 < x < L 

(13.12) 

L/2 

FIGURE 13-1 Example 13.1. A string is "plucked" by pulling the center of the string 
a distance h from equilibrium so that the string has a triangular shape. 
The string is released from rest in this position. 
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Because the string is released f rom rest, all the vr vanish. T h e fxr are given by 

Vr 
4h 
L2J 

(L/2 mx 
x sin I -

Integrating, 

so that 

V L 

Mr 

4 h . 
dx + —5 (L — x) sin 

L2 L/2 
rirx 

L j 
\ 

I dx 

0, 
8 h 

8 h rir 
sin-

r even 

( _ 1 ) i ( r - i ) ) r o d d 

Therefore , 

/ \ 8 h 

q(x, t) = —-
TT' 

sin 
TTX 

cos w, t — — sin 
37TX 

COS (Out + (13.13) 

where the cor are proportional to r a n d are given by Equation 13.11. 
From Equation 13.13, we see that the fundamenta l mode (with frequency tuj) 

and all the odd harmonics (with frequencies &»3, a>5, etc.) are excited bu t that 
n o n e of the even harmonics are involved in the motion. Because the initial dis-
placement was symmetrical, the subsequent mot ion must also be symmetrical, 
so none of the even modes (for which the center position of the string is a 
node) are excited. In general, if the string is plucked at some arbitrary point, 
none of the harmonics with nodes at that poin t will be excited. 

As we prove in the nex t section, the energy in each of the excited modes 
is p ropor t iona l to the square of the coefficient of the corresponding term in 
Equation 13.13. Thus, the energy ratios for the fundamenta l , third harmonic , 
fifth harmonic , and so on are 1: gy: : • • •. There fo re the energy in the system 
(or the intensity of the emitted sound) is domina ted by the fundamenta l . T h e 
third harmonic is 19 dB* down f rom the fundamen ta l and the fifth harmonic is 
down by 28 dB. 

13.3 Energy of a Vibrating String 

Because we have made the assumption that frictional forces are no t present, the 
total energy of a vibrating string must remain constant. We now show this explic-
idy; moreover, we show that the energy of the string is expressed simply as the 

*The decibel (dB) is a unit of relative sound intensity (or acoustic power). The intensity ratio of a 
sound with intensity / to a sound with intensity / 0 is given by 10 \o%(I/I0) dB. Thus, for the funda-
mental (/0) and third harmonic (/), we have 10 log (1/81) = -19 .1 dB or "19 dB down" in intensity. 
A ratio of 3 dB corresponds approximately to a factor of two in relative intensity. 
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sum of contributions f rom each of the normal modes. According to Equation 13.4, 
the displacement of the string is given by 

( rTTX\ 
q(x, t) = 2,17,(0 sinl — I (13.14) 

where the normal coordinates are 

TJ r{t) = (13.15) 

As always, the /3r are complex quantities and the physically meaningful normal 
coordinates are obtained by taking the real part of Equation 13.15. 

The kinetic energy of the string is obta ined by calculating the kinetic energy 
for an e lement of the string, | ( p d x ) q 2 , and then integrating over the length. 
Thus, 

t 1 

T = 2 P 
1 dx (13.16) 

dt 

or, using Equation 13.14, 
- ~ 2 1 

£ Jo 
V I rirx 
Z j I7 rsin( — dx (13.17) 

The square of the series can be expressed as a double sum, this technique ensur-
ing that all cross terms are properly included: 

™ 1 V . . fL . Imx\ . fsvx\ , ,„„ 
Jo s i n v " z r J s m v " z r J ( 1 3 - 1 8 ) 

The integral is now the same as that in Equation 13.7, so 

T= i7j5„ 
4 ns 

= (13.19) 
4 r 

In the evaluation of the kinetic energy, we must be careful to take the product 
of real quantities. We must therefore compute the square of the reed part of f) r: 

( d ^ 
(Re 17r)2 = I Re — [(/i r + ivr) (cos wrt + i sin art)] 

= (—wrfjLr sin (ort — (orvr cos coTt)2 

The kinetic energy of the string is therefore 

pL-sri 
T = — Zj(o2(p,r sin a>rt + vrcos <ort)2 

4 r (13.20) 

The potential energy of the string can be calculated easily by writing down 
the expression for the loaded string and then passing to the limit of a continuous 
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string. (Recall that we consider the potential energy to be only the elastic energy 
in the string.) For the loaded string, 

Multiplying and dividing by d, 

«7= - r 2 
2 i 

i i - i - V 2 

In passing to the limit, d—>0, the term in parentheses becomes jus t the partial 
derivative of q(x, t) with respect to x, and the sum (including the factor d) be-
comes an integral: 

f i a, 
o \dx 

dx (13.21) 

Using Equation 13.14, we have 

dq _ ^ fir j rTTx\ 
dx r \ L ) 

(13.22) 

so that 

r i v-r V TTT (TTTX 
dx (13.23) 

Again, the squared term can be written as a double sum, and because the 
tr igonometric relation (Equation 13.7) applies for cosines as well as sines, we 
have 

T TTT STT 1 (RTTX\ (STTX\ 
B C O S ^ — j c o s \ j - J d x 

T SR< VTT STT 

_ T -y r27T2 L 

~ 2 r I T ' 2 

pLy 2 2 
= —— 2a cojrj; 

4 r 

(13.24) 

where Equation 13.11 has been used in the last line to express the result in terms 
of o>2. Evaluating the square of the real par t of t]r, we have, finally, 

U = ~ to2(zx.r cos ajrt — vr sin <ort)2 

4 r 
(13.25) 
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The total energy is now obtained by adding Equations 13.20 and 13.25, in 
which the cross terms cancel and the squared terms add to unity: 

E= T+ U 

4 r 

or 

£ = ^ S f t ^ l f r l 8 (13.26b) 
4 r 

The total energy is therefore constant in time and, fu r the rmore , is given by a 
sum of contributions f rom each of the normal modes. 

The kinetic and potential energies each vary with time, so it is sometimes 
useful to calculate the time-averaged, kinetic and potential energies—that is, the 
averages over one complete period of the fundamenta l vibration r = 1: 

( T ) = vrcos cort)2) (13.27) 
4 r 

where the slanted brackets denote an average over the time interval 2ir/a>1. The 
averages of sin 2<y, T or cos -OJ (T over this interval are equal to Similarly, the av-
erages of sin2w r i and cos 2<w rt for r £ 2 are also because the period of the 
fundamenta l vibration is always some integer times the period of a h igher har-
monic vibration. The averages of the cross terms, cos a>rt sin wrt, all vanish. 
Therefore , 

= ^ 2 a > 2 | / 3 r | 2 (13.28) 
O r 

For the time-averaged potential energy, we have a similar result: 

pL V 
(U) = — ZJ (Or{((JLr cos cort — vr sin o>rt)2) 

4 r 

O r 

= ^ S W
2 | / 3 r | 2 (13.29) 

O r 

We therefore have the impor tant result that the average kinetic energy of a vibrating 
string is equal to the average potential energy.* 

<T> = (U) (13.30) 

*This result also follows from the virial theorem. 
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Notice also the simplification that results f rom the use of normal coordinates: Both 
(T) and (U) are simple sums of contributions f rom each of the normal modes. 

13.4 Wave Equation 

O u r procedure thus far has been to describe the motion of a cont inuous string 
as the limiting case of the loaded string for which we have a complete solution; 
we have not yet written down the fundamen ta l equat ion of mot ion for the con-
tinuous case. We may accomplish this by re turn ing to the loaded string and 
again using the limit technique—but now on the equation of mot ion ra ther 
than on the solution. Equation 12.131 can be expressed as 

m 
1j 

T Ml-1 
d 

Ii 
d^1 d\ d 

As d approaches zero, we have 

1j ~ 1 q{x) 

T Mj 
dl 

1j+1 
(13.31) 

q(x + d) dq 
dx x+d/2 d d 

which is the derivative at x + d/2. For the o ther term in Equation 13.31, we have 

~ Ii q(x-d)-q(x) 
d 

dq 

dx x— d/2 

which is the derivative at x 
Equation 13.31 is therefore 

(dq 

dx 
l i m r 

d/2. The limiting value of the right-hand side of 

d-> 0 

x+d/2 

dq 

dx x-d/2 

/ 

d2q 

a,? 

d2q 
"dx2 

Also in the limit, m/d becomes p, so the equat ion of mot ion is 

d2q 
PI dx2 

or 

d2q pd2q 

dx2 Tdt2 

(13.32) 

(13.33) 

This is the wave equation in one dimension. In Section 13.6, we shall discuss the 
solutions to this equation. 

We now want to show that Equation 13.33 can also be easily obtained by con-
sidering the forces on a cont inuous string. Only transverse waves are considered. 
A port ion of the string fixed at both ends, as discussed so far in this chapter, is 
shown in Figure 13-2. 
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FIGURE 13-2 A portion, length ds, of a string fixed at both ends is shown. The 
displacement from equilibrium is q on the left and q + dq on the 
right. The tensions r at each end are equal in magnitude, but not 
in direction. Only transverse waves are considered. 

We assume that the string has a constant mass density p(mass / length) . We 
consider a length ds of the string described by s(x, t). The tensions r on each 
end of the string are equal in magni tude but not in direction. This imbalance 
leads to a force and thus an acceleration of the system. We assume that the dis-
p lacement q (perpendicular to x) is small. T h e mass dm of the length of string 
ds is p ds. T h e horizontal componen t s of the tension are approximately equal 
and opposite, so we neglect the movemen t of the string in the x-direction. T h e 
force in the q-direction is 

d2q 
A F= p ds—| y dt2 (13.34) 

where AF represents the difference in tension at x and x + dx. We use partial de-
rivatives to describe the acceleration, d2q/dt2, because we are no t considering the 
x-dependence of the displacement q(x, t). 

T h e force can be f o u n d f r o m the di f ference in the y- componen t s of the 
tension. 

(AF) y = —r sin 9 1 + t sin 0 2 

= —r tan 6 1 + t tan 0 2 

d2q 

+ T 
x+ dx 

(13.35) 

where we let sin 6 ~ tan 0 because the angles 8 are small for small displace-
ments. 

We now set Equations 13.34 and 13.35 equal, letting ds ~ dx: 

d2q d2q 

d2q 

ax 2 : 

p f q 
Tdfi (13.36) 
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Equation 13.36 is identical to Equation 13.33 bu t does not provide the useful in-
formation obtained earlier f rom the normal coordinate method . 

13.5 Forced and Damped Motion 

We can easily determine Lagrange's equations of mot ion for the vibrating string 
by using the kinetic energy f rom Equation 13.19 and the potential energy f rom 
Equation 13.24: 

L = T — U 

= (13.37) 
4 r 

where the length of the string has been set equal to b to avoid confusion between 
the Ls. The ease of the normal coordinate description is apparent . The equa-
tions of motion follow f rom Equation 13.37: 

i) r + (x>2
ri)r — 0 (13.38) 

Next, we add a force per unit length F(x, t) acting along the string. We also add 
a damping force proportional to the velocity. The wave equation (Equation 13.33) 
now becomes 

d2q dq d2q 

where each term represents a force per uni t length, and D is the damping (resis-
tive) term. Equation 13.39 is solved using normal coordinates. As we did in 
Section 13.2, we use a solution 

V 1 T7Tx\ 
q(x, t) = 2 , i j r ( f ) sin I — J (13.40) 

Substitution of Equation 13.40 into Equation 13.39 gives Lagrange's equations 
of motion—similar to Equation 13.38 bu t with the damping and forced terms 
added: 

2 r= 1 
/ f~7T X 

PVr + DVr + — T ? r J s in l— F{x, t) (13.41) 

The sum over r is again f rom 1 to oo because we are considering a cont inuous 
string. The solution of Equation 13.41 parallels that of Section 13.2 (which we 
do not repeat here in detail) by compar ing real and imaginary components . We 
multiply each side of Equation 13.41 by sin (STTX/b) and integrate over dx f rom 0 
to b ( remember that b = L = length of string). Using Equation 13.7, we have 

"VI • rir-T \ b Z \pVr + DVr + VrJ ~ Sr! 

b (STTx\ 
F(x, t) sinl ^— I dx (13.42) 
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D SV 2 T 2 f ' . . (STTX 

which becomes 

v, + - i s + —pp-v* = Jb)0
F{x't} sinV~T>dx (13,43) 

We now let fs(t) be the Fourier coefficient of the Fourier expansion of F(x, t), 
which is on the right side of Equation 13.43: 

fs(t) = J o F(x ,Qs in ( £ y?Jdx (13.44) 

In normal coordinate terms, Equation 13.43 simply becomes 
D S27T2T 2 

It is now apparen t that fs(t) is the c o m p o n e n t of F(x, t) effective in driving the 
normal coordinate s. 

EXAMPLE 13.2 

Reconsider Example 13.1. A sinusoidal driving force of angular f requency co 
drives the string at x = b/2. Find the displacement. 

Solution. The driving force per uni t length is 

F(x, t) = F0 cos cot, x = b/2 \ 
= 0. x + b/21 

The driving Fourier coefficient becomes 

f jt) = F0 cos cot sin 
STT 

(13.46) 

(13.47) 

Notice that fs(t) = 0 for even values of s. Only the odd terms are driven. 
If we include a small damping term, Equat ion 13.45 becomes 

D S2tt2I 
Vs + + — T f P pb2 

2 STT 
ris = — F0 cos cot sin — 

pb 2 
(13.48) 

With the damping term effective, we need no t de termine a complementary so-
lution, which will be damped out. We need only find a particular (steady-state) 
solution, as was done in Section 3.6. Equation 13.48 may be compared with 
Equation 3.53, where 

pb2 

2-Fp sin(CT/2) 

Pb 

D 

Wo 

= A 

(13.49) 
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The solution (see Equation 3.60) for T}(t) becomes 

2Fq sin(sTr/2) cos(&>< — 8) 
VM = 

where 

pb 

8 = t a n - 1 

s 2 i r V 9 \ - u 2 — w* I H 
p&2 

D2 

Dw 

pb2 

and the displacement of ^(x, f) is 

q(x, «)=2 

r i r [ r7TX 
2 ^ sin —cos(w< — o) sinl — 

p62 a,2 + D2 

(13.50) 

(13.51) 

(13.52) 

where we have neglected the part of the solution that is damped out. Equation 
13.52 represents many of the features discussed previously. Depending on the 
driving frequency, only a few of the normal coordinates may dominate because 
of the resonance effects inherent in the denominator . If the damping term is 
negligible, the dominan t normal coordinate terms are 

w2pb2 

r2 = (13.53) 

and because of the sin ( r i r /2 ) term of Equation 13.52, only odd values of r a r e 
effective. 

13.6 General Solutions of the Wave Equation 

The one-dimensional wave equation for a vibrating string (see Equation 13.33) is* 

d2V pd2V 
= 0 (13.54) 

dX2 T dt2 

where p is the linear mass density of the string, r is the tension, and IP is called 
the wave function. The dimensions of p are [ ML - 1 ] and the dimensions of r are 
those of a force, namely, [ M L T - 2 ] . T h e dimensions of p / r are therefore 
[ T 2 L - 2 ] , that is, the dimensions of the reciprocal of a squared velocity. If we 
write V r / p = v, the wave equation becomes 

d2V _ 1 d2W 
Ite2 ~ V2 dt2 = 0 (13.55) 

* We use the notation ^ = t) to denote a time-dependent wave function and ip = ij/(x) to denote a 
time-independent wave function. 
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O n e of ou r tasks is to give a physical interpretat ion of the velocity v, it is not suf-
ficient to say that v is the "velocity of propagat ion" of the wave. 

To show that Equat ion 13.55 does indeed represent a general wave motion, 
we introduce two new variables, 

£ = x + w(| 
* > (13.56) Tj = X — Vt J 

Evaluating the derivatives of If = y ( x , t ) , which appear in Equation 13.55, we 
have 

dV dVd£ dVdr] dW dW 
— = — — + = — + — (13.57) 
dx dt; dx dr] dx dt; dr] 

Then , 

d2V _ ddS^ _ d / d ^ ; 
dx2 dx dx dx\d{; dr] J 

_ d^fd^ <W\dg d_fW dV\&n 
~ d£j\d£; dr] Jdx &n\di dr] J dx 

d2V a 2 y a 2 y 

= ^ + + V ( 1 3 - 5 8 ) 

(13.59) 

Similarly, we f ind 

lay ay ay 
v dt dg di] 

and 

i a2y _ l sAay^ _ i i / ^ y _ ay 
v2 dt2 ~~ vdt\v dt) ~ vdt\di; dr] 

a2y a2y a2y 
= ^ ~ W V ( 1 3 - 6 0 ) 

But according to Equation 13.55, the right-hand sides of Equations 13.58 and 
13.60 must be equal. This can be t rue only if 

a2y 
m : 3 5 0 <13-61> d£dr] 

The most general expression for y that can satisfy this equat ion is a sum of two 
terms, one of which depends only on £ and the o ther only on 17; no more com-
plicated funct ion of £ and 17 permits Equation 13.61 to be valid. Thus, 

^ = / ( f ) + g i v ) (13.62a) 

or, substituting for £ and TJ, 

y = /(* + vt) + g(x - vt) (13.62b) 
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where / and g are arbitrary funct ions of the variables x + vt and x — vt, respec-
tively, which are no t necessarily of a periodic nature , a l though they may be. 

As time increases, the value of x must also increase in order to maintain a 
constant value for x — vt. The funct ion g therefore retains its original fo rm as 
time increases if we shift our viewpoint along the x-direction (in a positive sense) 
with a speed v. Thus, the funct ion g must represent a disturbance that moves to 
the right (i.e., to larger values of x) with a speed v, whereas / r e p r e s e n t s the prop-
agation of a disturbance to the left. We therefore conclude that Equation 13.55 
does indeed describe wave mot ion and, in general, a traveling (or propagating) 
wave. 

Let us now at tempt to interpret Equation 13.62b in terms of the motion of a 
stretched string. At time t = 0, the displacement of the string is described by 

q(x, 0) = f(x) + g(x) 

If we take identical triangular forms for f(x) and g(x), the shape of the string at t = 
0 is as shown at the top of Figure 13-3. As time increases, the disturbance repre-
sented by f ( x + vt) propagates to the left, whereas the disturbance represented 
by g(x — vt) propagates to the right. This propagat ion of the individual distur-
bances to the left and right is illustrated in the lower par t of Figure 13-3. 

Consider next the left-going disturbance alone. If we terminate the string 
(at x = 0) by attaching it to a rigid support, we f ind the p h e n o m e n o n of reflec-
tion. Because the support is rigid, we must have f(vt) = 0 for all values of time. 
This condit ion cannot be met by the funct ion / alone (unless it trivially vanr 
ishes). We can satisfy the condition at x = 0 if we consider, in addition to f(x + vt), 

(C) 

FIGURE 13-3 The propagation of a string is shown as a function of time from (a) to 
(d). At time t = 0 the string is described as fix) + g(x) as shown in (a). 
As time progresses, the disturbance f(x + vt) propagates to the left 
and g(x — vt) propagates to the right. 
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(a) 

(b) 

(c) 

v / 

/ N. 

(d) 

FIGURE 13-4 Consider only the left moving disturbance of Figure 13-3. The end of 
the string is fixed, and the wave reflects, because f(vt) = 0 always at 
the end. We can visualize the motion as if an imaginary disturbance 
(dashed line) was moving from the left to the right as time proceeds 
from (a) to (d). 

an imaginary disturbance, —f( — x + vt), which approaches the boundary point 
f rom the left, as in Figure 13-4. The disturbance f(x+ vt) continues to propa-
gate to the left, even into the imaginary section of the string (x < 0), while the 
disturbance —f( — x + vt) propagates across the boundary and along the real 
string. T h e net effect is that the original disturbance is reflected at the support 
and thereaf ter propagates to the right. 

If the string is terminated by rigid supports at x = 0 and also at x = L, the 
disturbance propagates periodically back and for th with a per iod 2L/v. 

13.7 Separation of the Wave Equation 
If we require a general solution of the wave equation that is harmonic (as for the 
vibrating string or, for that matter, for a large n u m b e r of problems of physical in-
terest) , we can write 

V{x, t) = tp(x)eiat (13.63) 

so that the one-dimensional wave equat ion (Equation 13.55) becomes 

+ = Q dx2 w2 (13.64) 

where i/f is now a funct ion of x only. 
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The general wave mot ion of a system is not restricted to a single f requency 
w. For a system with n degrees of f reedom, there are n possible characteristic fre-
quencies, and for a cont inuous string there is an infinite set of frequencies.* If 
we designate the r th frequency by o>r, the wave funct ion corresponding to this 
f requency is 

%(x, t) = ^r{x)eia''t (13.65) 

The complete wave funct ion is a superposit ion (recall that we are dealing with a 
linear system) of all the particular wave funct ions (or modes). Thus 

V(x, t) = 0 = 2 ijjr(x)e,a>'* (13.66) 
r r 

In Equation 13.63, we assumed that the wave funct ion was periodic in time. 
But now we see that this assumption entails n o real restriction at all (apart f rom 
the usual assumptions regarding the continuity of the funct ions and the conver-
gence of the series), because the summation in Equation 13.66 actually gives a 
Fourier representation of the wave funct ion and is therefore the most general 
expression for the t rue wave funct ion. t 

We now wish to show that Equation 13.65 results naturally f rom a powerful 
method that can often be used to obtain solutions to partial differential equa-
tions—the method of separation of variables. First, we express the solution as 

V{x, t) ^4,{x)-X{t) (13.67) 

that is, we assume that the variables are separable and therefore that the complete 
wave funct ion can be expressed as the p roduc t of two functions, one of which is 
a spatial funct ion only, and one of which is a temporal funct ion only. It is no t 
guaranteed that we will always f ind such functions, but many of the partial differ-
ential equations encountered in physical problems are separable in at least one 
coordinate system; some (such as those involving the Laplacian operator) are 
separable in many coordinate systems. In short, the justification of the me thod 
of separation of variables, as is the case with many assumptions in physics, is in its 
success in producing mathematically acceptable solutions to a problem that 
eventually are found to properly describe the physical situation, i.e., are "experi-
mentally verifiable." 

Substituting ty = into Equation 13.55, we have 

X dx2 v2 dt2 

* An infinite set of frequencies would exist for a truly continuous string, but because a real string is 
composed fundamentally of atoms, there does exist an upper limit for to (see Section 13.8). 
f Euler proved in 1748 that the wave equation for a continuous string is satisfied by an arbitrary func-
tion of * ± lit, and Daniel Bernoulli showed in 1753 that the motion of a string is a superposition of 
its characteristic frequencies. These two results, taken together, indicated that an arbitrary function 
could be described by a superposition of trigonometric functions. This Euler could not believe, and 
so he (as well as Lagrange) rejected Bernoulli's superposition principle. The French mathematician 
Alexis Claude Clairaut (1713-1765) gave a proof in an obscure paper in 1754 that the results of 
Euler and Bernoulli were actually consistent, but it was not until Fourier gave his famous proof in 
1807 that the question was settled. 
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or 

v2 d2if> _ 1 d2x 

But, in view of the definitions of ifi(x) and x(t)> the left-hand side of Equat ion 
13.68 is a func t ion of x alone, whereas the r ight-hand side is a func t ion of t 
alone. This situation is possible only if each par t of the equat ion is equal to the 
same constant. To be consistent with our previous notat ion, we choose this con-
stant to be — w2. Thus, we have 

d f y to2 

~ + ^ = 0 (13.69a) 
dx' tr 

and 

d2y 

- ^ + <o2X = 0 (13.69b) 

These equat ions are of a familiar form, a n d we know that the solutions are 

ip{x) = Aei(a/V)* + Be~*0'/v)x (13.70a) 

X{t) = Ceiat + De-™' (13.70b) 
where the constants A, B, C, D are de te rmined by the boundary condit ions. We 
may write the solution x, t) in a shor thand m a n n e r as 

t) = ip(x)x(t) ~ exp[±? ' (w/f)x] exp [±icot] 

~ e x p [ ± i ( w / v ) ( x ± vt)] (13.71) 

This notat ion means that the wave funct ion y varies as a linear combination of the 
terms 

exp [i((o/v)(x+ vt)] 

exp[i(w/t/) (x — vt)] 

exp [ - i{<o/v) (x + vt) ] 

exp [ — i(co/v) (x — vt) ] 

T h e separation constant for Equat ion 13.68 was chosen to be —<o2. The re is 
no th ing in the mathematics of the p rob lem to indicate that there is a un ique 
value of io; hence , there must exist a set* of equally acceptable f requencies wr. To 
each such frequency, there corresponds a wave funct ion: 

%(x, t) ~ exp[±i(wr/v) (x ± vt)] 

T h e general solution is therefore no t only a l inear combinat ion of the ha rmonic 
terms but also a sum over all possible f requencies: 

V(x, t) ~ 2aryr 
r 

~ 2 a r exp[± i (a> r / v ) (x ± (13.72) 

*At this stage of the development, the set is in fact infinite, because no frequencies have yet been 
eliminated by boundary conditions. 
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The general solution of the wave equat ion therefore leads to a very compli-
cated wave funct ion. There are, in fact, an infinite n u m b e r of arbitrary constants 
ar. This is a general result for partial differential equations; bu t this infinity of 
constants must satisfy the physical requirements of the problem (the boundary 
conditions), and therefore they can be evaluated in the same m a n n e r that the 
coefficients of an infinite Fourier expansion can be evaluated. 

For much of our discussion, it is sufficient to consider only one of the four 
possible combinations expressed by Equation 13.71; that is, we select a wave 
propagat ing in a particular direction and with a particular phase. Then , we can 
write, for example, 

%{x, t) ~ exp[ — i(cor/v) (x — vt) ] 

This is the r th Fourier componen t of the wave funct ion, and the general solu-
tion is a summation over all such components . T h e funct ional fo rm of each 
componen t is, however, the same, and so they can be discussed separately. Thus, 
we shall usually write, for simplicity, 

t) ~ exp[-i(eo/v) (x - vt)] (13.73) 

The general solution must be obtained by a summation over all f requencies that 
are allowed by the particular physical situation. 

It is customary to write the differential equat ion for tfi(x) as 

(13.74) 

which is the t ime-dependent form of the one-dimensional wave equation, also 
called the Helmholtz equation,* and where 

k2 = ~ (13.75) 
i r 

The quantity k, called the propagation constant or the wave number (i.e., pro-
portional to the n u m b e r of wavelengths per uni t length) , has dimensions [ L - 1 ] . 
The wavelength A is the distance required for one complete vibration of the 
wave, 

_ v _ 2vv 
A — — — 

V 0) 

and thus the relation^ between k and A is 

A 

*Hermann von Helmholtz (1821-1894) used this form of the wave equation in his treatment of 
acoustic waves in 1859. 
fMore properly the wave number should be defined as k = 1/A rather than 2ir/A, because 1/A is the 
number of wavelengths per unit distance. However, k = 2tt/A is more commonly used in theoretical 
physics, and we follow that usage here. 
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We can therefore write, in general, 

%(x, t) ~ e
±ik'(-x±vt'> 

or, for the simplified wave funct ion, 

t) ~ e-mx-vt) = ei(o>t-kx) (13.76) 

If we superimpose two traveling waves of the type given by Equation 13.76 
and if these waves are of equal magni tude (amplitude) bu t moving in opposite 
directions, then 

y = y + + = Ae~ih(x+Vt) + Ae~iHx~vt) (13.77) 

or 

y = Ae~ikx(eia" + e~i0") 

= 2Ae~'kx cos <ot 

the real par t of which is 

V = 2A cos kx cos cot (13.78) 

Such a wave no longer has the property that it propagates; the wave fo rm does 
not move forward with time. There are, in fact, certain positions at which there 
is no motion. These positions, the nodes, result f rom the complete cancellation 
of one wave by the other. The nodes of the wave funct ion given by Equation 
13.78 occur at x = (2n + 1 )ir/2k, where n is an integer. Because there are fixed 
positions in waves of this type, they are called standing waves. Solutions to the 
problem of the vibrating string are of this fo rm (but with a phase factor attached 
to the term kx such that the cosine is t ransformed into a sine funct ion satisfying 
the boundary conditions). 

EXAMPLE 13.3 

Consider a string consisting of two densities, p, in region 1 where x < 0 and p2 

in region 2 where x > 0. A cont inuous wave train is incident f rom the left (i.e., 
f rom negative values of x). What are the ratios of the square of the ampli tude 
magnitudes for the reflected and transmitted waves to the incident wave? 

Solution. The wave will be both reflected and transmitted at x = 0 where the 
mass density discontinuity occurs. Therefore , in region 1 we have the superposi-
tion of the incident and reflected waves, and in region 2 we have only the trans-
mitted wave. If the incident wave is Ae'(ojt~ k'x), then we have for the waves 
%(x, t) and %(x, t) in regions 1 and 2, respectively (see Equation 13.77) 

y ^ x , t) = y i n c + y r e f l = Aei^t~k'x> + Beii,ot+k'x) 

t) = ^ t r a n s = Cei(at~ 
(13.79) 
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In Equation 13.79, we have explicitly taken into account the fact that the 
waves in both regions have the same frequency. But because the wave velocity 
on a string is given by 

v = 

we have vx # v2, and therefore kx k2. We also have 

so, in terms of the wave n u m b e r of the incident wave, 

(13.80) 

(13.81) 

T h e ampli tude A of the incident wave (see Equation 13.79) is given and is 
real. We must then obtain the ampli tudes B and C of the reflected and transmit-
ted waves to complete the solution of the problem. There are as yet n o restric-
tions on B and C, and they may be complex quantities. 

The physical requirements on the problem may be stated in terms of 
the boundary conditions. These are, simply, that the total wave func t ion 
ty = + and its derivative must be cont inuous across the boundary. T h e 
continuity of ty results f rom the fact that the string is continuous. T h e condi-
tion on the derivative prevents the occurrence of a "kink" in the string, for if 
dW/dx0+ dW/dxQ-, then d2ty/dx2 is infinite at x = 0; bu t the wave equat ion re-
lates d2ty/dx2 and d2ty/dt2; and if the fo rmer is infinite, this implies an infinite 
acceleration, which is no t allowed by the physical situation. We have, therefore, 
for all values of the time t, 

i = 0 — T f g l K=0 

d% 
dx x = 0 dx x= 0 

From Equations 13.79 and 13.82a, we have 

A + B = C 

and f rom Equations 13.79 and 13.82b we obtain 

— kxA + M = -k2C 

The solution of this pair of equations yields 

— k2 
B = 

and 
ki + k2 

2*i 
C = —A 

kx + k2 

(13.82a) 

(13.82b) 

(13.83a) 

(13.83b) 

(13.84a) 

(13.84b) 
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The wave numbers kY and *2
 a r e both real, so ampli tudes B and C are likewise 

real. Fur thermore, kx, *2, and A are all positive, so Cis always positive. Thus, the 
transmitted wave is always in phase with the incident wave. Similarly, if > *2> 
then the incident and reflected waves are in phase, bu t they are out of phase for 
*2 > *1 ; that is, for p 2 > 

The reflection coefficient JJis def ined as the ratio of the squared magni-
tudes of the amplitudes of the reflected and incident waves: 

W* / * j - kX 

Because the energy conten t of a wave is propor t ional to the square of the ampli-
tude of the wave funct ion, R represents the ratio of the reflected energy to the 
incident energy. The quantity | B|2 represents the intensity of the reflected wave. 

No energy can be stored in the junc t ion of the two strings, so the incident 
energy must be equal to the sum of the reflected and transmitted energies; that 
is, R+ T= 1. Thus, 

or 

, , h | c l ! 

• *, U | ! ( , s - 8 ' > 
In the study of the reflection and transmission of electromagnetic waves, we 

find quite similar expressions for R and T. 

13.8 Phase Velocity, Dispersion, and Attenuation 
We have seen in Equations 13.71 that the general solution to the wave equation 
produces, even in the one-dimensional case, a complicated system of exponen-
tial factors. For the purposes of fur ther discussion, we restrict our at tention to 
the particular combination 

V{x,t) = Ae^''^ (13.88) 

This equation describes the propagation to the r ight (larger x) of a wave possess-
ing a well-defined angular f requency &>. Certain physical situations can be quite 
adequately approximated by a wave funct ion of this type—for example, the 
propagation of a monochromat ic light wave in space or the propagat ion of a si-
nusoidal wave on a long (stricdy, infinitely long) string. 

If the a rgument of the exponential in Equation 13.88 remains constant, 
then the wave funct ion W(x, t) also remains constant. The a rgumen t of the ex-
ponential is called the phase <}> of the wave, 

= cat - kx (13.89) 
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If we move our viewpoint along the x-axis at a velocity such that the phase at 
every point is the same, we always see a stationary wave of the same shape. T h e 
velocity Vwith which we must move, called the phase velocity of the wave, corre-
sponds to the velocity with which the wave form propagates. To ensure (f> = con-
stant, we set 

d<p = 0 (13.90) 

or 

(odt = kdx 

f rom which 

dx co 
dt k 

so that the phase velocity in this case is jus t the quantity originally in t roduced as 
the velocity. It is possible to speak of a phase velocity only when the wave func-
tion has the same fo rm throughout its length. This condit ion is necessary so we 
can measure the wavelength by taking the distance between any two successive 
wave crests (or between any two successive corresponding points on the wave). If 
the wave form were to change as a funct ion of t ime or of distance along the 
wave, these measurements would not always yield the same results. T h e wave-
length is not a funct ion of time or space (i.e., that co is pure) only if the wave train 
is of infinite length. If the wave train is of finite length, there must be a spectrum 
of frequencies present in the wave, each with its own phase velocity. We will of ten 
assign a single frequency and phase velocity to a wave of finite length as a con-
venient approximation. 

Let us re turn to the example of the loaded string and examine the proper-
ties of the phase velocity in that case. We have previously found (Equation 
12.152) that the f requency for the r th m o d e of the loaded string when termi-
nated at both ends is given by 

= 2 sin 
md 

rir 
2 (n + 1). 

(13.92) 

where the notat ion is the same as in Chapter 12. Recall that we take only positive 
values for the frequencies. When r = 1, there is a node at each end, and none 
between; hence, the length of the string is one-half of a wavelength. Similarly, 
when r = 2, then L= A and, in general, Ar = 2 L / r . Therefore , 

rir rird rird ird krd 
2(n + 1) 2d(n+l) 2 L Ar 2 

and 

(13.93) 

W r = 2 V ^ S i n V 2 / ^ 

Because this expression no longer contains n or L, it applies equally well to a ter-
minated or infinite loaded string. 
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To study the p ropagadon of a wave in the loaded string, we initiate a distur-
bance by forcing one of the particles, say, the zeroth one, to move according to 

q0(t) = Aeimt (13.95) 

If the string contains many particles,* then any angular f requency less than 
2 Vr/md is an allowed frequency (actually an eigenfrequency), satisfying 
Equation 13.95. After the transient effects have subsided and the steady-state 
conditions are attained, the phase velocity of the wave is given by* 

to [rd 1 s'm(kd/2) \ 
V='k = ^Jm kd/2 = V ( k ) (13.96) 

Thus the phase velocity is a funct ion of the wave number ; that is, Vis frequency-
dependent . When V = V(k) for a given medium, that med ium is said to be dis-
persive, and the wave exhibits dispersion. The best-known example of this phe-
n o m e n o n is the simple optical prism. T h e index of refraction of the prism 
depends on the wavelength of the incident light (i.e., the prism is a dispersive 
medium for optical light); on passing through the prism, the light is separated 
into a spectrum of wavelengths (i.e., the light wave is dispersed). 

For a longitudinal wave propagat ing down a long, slender rod, most of the 
energy is associated with the direction of the longitudinal wave propagation. 
There is, however, a small amoun t of energy dissipated in a transverse wave mov-
ing at right angles. This lateral disturbance causes the phase velocity of the lon-
gitudinal wave to be decreased, and the effect depends on wavelength. For large 
wavelengths, the effect is small; for short wavelengths, especially those approach-
ing the radius of the rod, the velocity dispersion is p ronounced . 

From Equation 13.96, we see that, as the wavelength becomes very long 
(A —» oo or k —> 0), the phase velocity approaches the constant value 

frd 
V(A—>oo) = , / — (13.97) 

V m 
Otherwise, V = V(k), and the wave is dispersive. We note that the phase velocity 
for the cont inuous string (see Equation 13.55) is 

Vent = v = sj1
p (13.98) 

and because m/d for the loaded string corresponds to p for the cont inuous 
string, the phase velocities for the two cases are equal in the long-wavelength 
limit (but only in this limit). This is a reasonable result because as A becomes 

•Strictly, we need an infinite number of particles for this type of analysis, but we may approach the 
ideal conditions as closely as desired by increasing the finite number of particles, 
f i n Equation 13.92 the values of rare required to be s n (see Equation 12.144), so we automatically 
have (or ^ 0 because sin[rir/2(n + 1)] a 0 for 0 £ r < n. We no longer have such a restriction on kd, 
so sin(kd/2) can become negative. We continue to consider only positive frequencies by always tak-
ing only the magnitude of sin (kd/2). 

This result was obtained by Baden-Powell in 1841, but William Thomson (Lord Kelvin) 
(1824-1907) realized the full significance only in 1881. 
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large compared with d, the propert ies of the wave are less sensitive to the spacing 
between particles, and in the limit, d may vanish without affecting the phase ve-
locity. 

In Equation 13.94, the restriction o n r i s l S r S n. Then , because kr = rrr/L, 
we see that the value of kr that maximizes (or in Equat ion 13.94 is 

kmax = ir/d (13.99) 

The corresponding frequency, f rom Equation 13.96, is 2 Vr/md. What is the re-
sult of forcing the string to vibrate at a f requency greater than 2 Vr/md ? For this 
purpose, we allow k to become complex and investigate the consequences: 

k = K - i/3, K, p > 0 (13.100) 

The expression for oi (Equation 13.94) then becomes 

(a = 2a I — sin 
md 

d 
~(K - ifi) 

„ nr ( dK ipd Kd ipd 
= 2 a / — I s i n — c o s cos— s i n — 

V md\ 2 2 2 2 

„ f T ( . Kd Pd Kd Pd\ 
= 2+ —; s i n—cosh— i c o s — s i n h — (13.101) 

V md\ 2 2 2 2 ) v ' 

If the f requency is to be a real quantity, the imaginary par t of this expression 
must vanish. Thus, we may have either cos(/cd/2) = 0 or sinh(/3rf/2) = 0. But the 
latter choice requires p = 0, contrary to the requ i rement that k be complex. We 
therefore have 

c o s y = 0 (13.102) 

For this case, we must also have 

s i n y = 1 (13.103) 

The expression for the angular f requency becomes 

r r pd 
(O = 2 J — , cosh (13.104) 

V md 2 

Thus, we have the result that, for (o < 2 Vr/md, the wave n u m b e r k is real and 
the relation between w and k is given by Equation 13.94; whereas, for 
u> > 2 Vr/md, k is complex with the real par t K fixed by Equation 13.102 at the 
value K = TT/D and with the imaginary par t P given by Equat ion 13.104. The situ-
ation is shown in Figure 13-5. 

What is the physical significance of a complex wave number? O u r original 
wave funct ion was of the fo rm 

Ip = Agi(at-kx) 
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FIGURE 13-5 In the case of the loaded string the wave number k is real for angular 
frequencies co s 2 Vr/mrf. For co > 2 Vr/mrf, the wave number ft is 
complex (K — i/3) with the real part denoted by K (displayed as fixed at 
TT/D) and the imaginary part denoted by fi (dashed line). 

but, if k = K — i/3, then ^f can be written as 

iff = Ag-ptgiW-Kx) (13 .105 ) 

and the factor exp(— fix) represents a damping, or attenuation, of the wave with 
increasing distance x. We therefore conclude that the wave is propagated with-
out at tenuation for co ̂  2 VV/md (this region is called the passing band of fre-
quencies), and that a t tenuat ion sets in at w t = 2 V T / m d (called the critical or 
cutoff frequency*) and increases with increasing frequency. 

The physical significance of the real and imaginary parts of k is now appar-
ent: f3 is the at tenuat ion coefficient* (and exists only if co > a>c), whereas K is the 
wave n u m b e r in the sense that the phase velocity V' is given by 

co co 
V' = - = — r (13.106) 

K Re k 

rather than by V= co/k. If k is real, these expressions for Vand V' are identical. 
This example emphasizes the fact that the fundamenta l definit ion of the 

phase velocity is based on the requi rement of the constancy of the phase and not 
on the ratio co/k. Thus, in general, the phase velocity Vand the so-called wave ve-
locity v are distinct quantities. We no te also that if co is real and if the wave num-
ber k is complex, then the wave velocity v must also be complex so that the prod-
uct kv yields a real quantity for the f requency th rough the relation co = kv. On 
the o ther hand , the phase velocity, which arises f r o m the requ i rement that cf> = 
constant, is necessarily always a real quantity. 

In the preceding discussion, we considered the system to be conservative 
and argued that this requires w to be a real quantity.* We f o u n d that if co exceeds 

*The occurrence of a cutoff frequency was discovered by Lord Kelvin in 1881. 
fThe reason for writing k = K — i).3 rather than k = K + if3 in Equation 13.100 is now clear; if/3 > 0 
for the latter choice, then the amplitude of the wave increases without limit rather than decreasing 
toward zero. 
JSee the discussion in Section 12.4 in the paragraph following Equation 12.39. 
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the critical f requency coc, a t tenuat ion results and the wave n u m b e r becomes 
complex. If we relax the condit ion that the system is conservative, the f requency 
may then be complex and the wave n u m b e r real. In such a case, the wave is 
damped in time ra ther than in space (see Problem 13-13). Spatial a t tenuat ion (co 
real, k complex) is of particular significance for traveling waves, whereas tempo-
ral at tenuation (to complex, k real) is impor tant for standing waves. 

Although at tenuation occurs in the loaded string if co > coc, the system is still 
conservative and n o energy is lost. This seemingly anomalous situation results 
because the force applied to the particle in the a t tempt to initiate a traveling 
wave is (after the steady-state condit ion of an a t tenuated wave is set up) exacdy 
90° out of phase with the velocity of the particle, so that the power transferred, P = 
F • v, is zero. 

In this t rea tment of the loaded string, we have tacitly assumed an ideal situa-
tion; that is, the system was assumed to be lossless. As a result, we f o u n d that 
there was at tenuation for co > coc bu t n o n e for co < u>c. However, every real sys-
tem is subject to loss, so in fact there is some at tenuat ion even for co < coc. 

13.9 Group Velocity and Wave Packets 

It was demonstra ted in Section 3.9 that the superposit ion of various solutions of 
a linear differential equation is still a solution to the equation. Indeed, we 
fo rmed the general solution to the problem of small oscillations (see Equation 
12.43) by summing all the particular solutions. Let us assume, therefore, that we 
have two almost equal solutions to the wave equation represented by the wave 
functions ,$r

1 and each of which has the same amplitude, 

(13.107) 

but whose frequencies and wave numbers differ by only small amounts: 

(13.108) 

Forming the solution that consists of the sum ^ , and *P2>we have 

V(x,t) = *p! + Tf 2 = A [ e x p ( « ' w O e x p ( - f c ) 

+ exp{i(o> + Aft))j} exp{-z(A + AA)x}] 

= A ex 

• exp 
(Ao)f - (Afe)x 
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FIGURE 13-6 W h e n two wave funct ions having frequencies very close together are 
summed, the p h e n o m e n o n of beats (slowly varying amplitude) is 
observed. 

The second bracket is jus t twice the cosine of the a rgument of the exponential , 
and the real par t of the first bracket is also a cosine. Thus, the real par t of the 
wave funct ion is 

V(x,t) = 2A cos 
(A(o)t - (Ak)x 

cos (13.109) 

This expression is similar to that obtained in the problem of the weakly coupled 
oscillators (see Section 12.3), in which we f o u n d a slowly varying amplitude, cor-
responding to the term 

2A cos 
(Aw)t - (Ak)x 

which modulates the wave funct ion. The primary oscillation takes place at a fre-
quency w + (Aw/2), which, according to our assumption that Aw is small, differs 
negligibly f rom w. T h e varying ampli tude gives rise to beats (Figure 13-6). 

The velocity U (called the group velocity*) with which the modulations (or 
groups of waves) propagate is given by the requ i rement that the phase of the 
ampli tude term be constant. Thus, 

_ dx _ Aw 
dt Ak 

(13.110) 

In a nondispersive med ium Aw/Ak = V, so the group and phase velocities are 
identical.* If dispersion is present, however, U a n d F a r e distinct. 

Thus far, we have considered only the superposit ion of two waves. If we wish 
to superpose a system of n waves, we must write 

W(x,t) = ^Arexp[i(wrt - krx)] (13.111a) 

*The concept of group velocity is due to Hamilton, 1839; the distinction between phase and group 
velocity was made clear by Lord Rayleigh (Theory of Sound, 1st edition, 1877; see Ra94). 
•fThis identity is shown explicitiy in Equation 13.117. 
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where Ar represents the amplitudes of the individual waves. In the event that n 
becomes very large (stricdy, infinite), the f requencies are continuously distrib-
uted, and we may replace the summation by an integration, obtaining* 

r + oo 
¥(x,t) = AWe^-^dk (13.111b) 

J - 00 

where the factor A(k) represents the distribution ampli tudes of the componen t 
waves with different frequencies, that is, the spectral distribution of the waves. 
The most interesting cases occur when A(k) has a significant value only in the 
ne ighborhood of a particular wave n u m b e r (say, kQ) and becomes vanishingly 
small for k outside a small range, denoted by k0 ± A*. In such a case, the wave 
funct ion can be written as 

rk„+Ak 
V(x,t) = A(*)««"'-fa><ft (13.112) 

J*„-AA 

A funct ion of this type is called a wave packet.* T h e concept of g roup velocity 
can be applied only to those cases that can be represented by a wave packet, that 
is, to wave funct ions containing a small range (or band) of frequencies. 

For the case of the wave packet represented by Equation 13.112, the con-
tributing frequencies are restricted to those lying near w(k0). We can therefore 
expand w(k) about k = k0: 

w(k) = w(k0) + ) • ( * - * „ ) + • • • (13.113a) 
o 

which we can abbreviate as 

<o = <o0 + o)'0(k - k0) + ••• (13.113b) 

The a rgument of the exponential in the wave packet integral becomes, approxi-
mately, 

<at — kx = (to0t — k0x) + to'0(k — k0)t — (k— k0)x 

where we have added and subtracted the term k0x. Thus, 

cot — kx = (toQt - k0x) + (k — k0)(ct>ot — x) (13.114) 

and Equation 13.112 becomes 
rko + Ak 

V(x, t) = A(k)exp[i(k - k0)(toQt - x)]exp[i(to0t - k0x)]dk (13.115) 
J*O-A* 

*We have previously made the tacit assumption that k a O . However, k is defined by fe2 = tos/vs (see 
Equation 13.75), so there is no mathematical reason why we may not also have k < 0. We may there-
fore extend the region of integration to include — °° < k < 0 without mathematical difficulty. This 
procedure allows the identification of the integral representation of ¥(x, t) as a Fourier integral. 
fThe term wave packet is due to Erwin Schrodinger. 
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The wave packet, expressed in this fashion, may be in terpre ted as follows. 
The quantity 

A(fc)exp[i(& — k0)((o'0t— x)] 

constitutes an effective ampli tude that, because of the small quantity (k - k0) in 
the exponential , varies slowly with time and describes the mot ion of the wave 
packet (or envelope of a g roup of waves) in the same m a n n e r that the term 

2 A cos 
( A c o ) * - (Ak)x 

describes the propagat ion of the packet fo rmed f rom two superposed waves. 
The requi rement of constant phase for the ampli tude term leads to 

U= <Wo — 
dk/ k=kB 

(13.116) 

for the g roup velocity. As stated earlier, only if the med ium is dispersive does U 
differ f rom the phase velocity V. To show this explicitly, we write Equation 13.116 
as 

I - f j ^ 
U~ W o 

where the subscript zero means "evaluated at k = k0 or, equivalently, at w = <w0." 
Because k = co/v, 

I 
U 

Thus, 

d (M 

d(o\v 
{(odv/dw)0 

vl 

U = V0 

(Oof dv 
v0\dco 

(13.117) 

If the med ium is nondispersive, v = V — constant, so dv/dw = 0 (see Equation 
13.91); hence U= v0= V. 

The remaining quantity in Equation 13.115, exp[ i (w 0 i — k0x)], varies rap-
idly with time; and if this were the only factor in % it would describe an infinite 
wave train oscillating at frequency (o0 and traveling with phase velocity V = (o0/k0. 

We should note that an infinite train of waves of a given f requency cannot 
transmit a signal or carry information f rom one point to another. Such transmis-
sion can be accomplished only by starting and stopping the wave train and 
thereby impressing a signal on the wave—in other words, by forming a wave 
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packet. As a consequence of this fact, it is the g roup velocity, not the phase ve-
locity, that corresponds to the velocity at which a signal may be transmitted.* 

PROBLEMS 

13-1. Discuss the m o t i o n of a cont inuous string w h e n the initial condit ions are 
q(x, 0) = 0, q(x, 0) = A sin(37r*/L). Resolve the solution into normal modes . 

13-2. Rework the problem in Example 13.1 in the event that the plucked point is a dis-
tance L/S from o n e end. C o m m e n t o n the nature of the allowed modes . 

13-3. Refer to Example 13.1. Show by a numerical calculation that the initial displace-
m e n t of the string is well represented by the first three terms of the series in 
Equation 13.13. Sketch the shape of the string at intervals of time of | o f a period. 

13-4. Discuss the m o t i o n of a string w h e n the initial condit ions are q(x, 0) = 
4 x ( L — x)/L'', q(x,0) = 0. Find the characteristic frequencies and calculate the 
amplitude of the nth mode . 

13-5. A string with n o initial displacement is set into m o t i o n by be ing struck over a 
length 2s about its center. This center section is given an initial velocity v0. 
Describe the subsequent motion. 

13-6. A string is set into mot ion by be ing struck at a po int L/4 f rom o n e e n d by a trian-
gular hammer. T h e initial velocity is greatest at x = L/4 and decreases linearly to 
zero at x = 0 and x = L/2. T h e region L/2 s jt < I is initially undisturbed. 
Determine the subsequent m o t i o n of the string. Why are the fourth, eighth, and 
related harmonics absent? H o w many decibels down from the fundamental are 
the second and third harmonics? 

13-7. A string is pul led aside a distance h at a po int 3 L / 7 from o n e end. At a point SL/7 
from the other end, the string is pul led aside a distance h in the opposite direc-
tion. Discuss the vibrations in terms of normal modes . 

13-8. Compare, by plotting a graph, the characteristic frequencies (or as a funct ion of the 
m o d e number r for a loaded string consisting of 3, 5, and 10 particles and for a 
cont inuous string with the same values of r and m/d = p. C o m m e n t o n the results. 

*The group velocity corresponds to the signal velocity only in nondispersive media (in which case 
the phase, group, and signal velocities are all equal) and in media of normal dispersion (in which 
case the phase velocity exceeds the group and signal velocities). In media with anomalous disper-
sion, the group velocity may exceed the signal velocity (and, in fact, may even become negative or in-
finite). We need only note here that a medium in which the wave number k is complex exhibits at-
tenuation, and the dispersion is said to be anomalous. If k is real, there is no attenuation, and the 
dispersion is normal. What is called anomalous dispersion (due to a historical misconception) is, in 
fact, normal (i.e., frequent), and so-called normal dispersion is anomalous (i.e., rare). Dispersive ef-
fects are quite important in optical and electromagnetic phenomena. 

Detailed analyses of the interrelationship among phase, group, and signal velocities were made 
by Arnold Sommerfeld and by Leon Brillouin in 1914. Translations of these papers are given in the 
book by Brillouin (Br60). 
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13-9. In Example 13.2, the complementary solution (transient part) was omitted. If 
transient effects are included, what are the appropriate conditions for over-
damped, critically damped, and underdamped motion? Find the displacement 
q(x, t) that results when underdamped motion is included in Example 13.2 (as-
sume that the motion is underdamped for all normal modes). 

13-10. Consider the string of Example 13.1. Show that if the string is driven at an arbi-
trary point, none of the normal modes with nodes at the driving point will be 
excited. 

13-11. When a particular driving force is applied to a string, it is observed that the string 
vibration is purely of the nth harmonic. Find the driving force. 

13-12. Determine the complementary solution for Example 13.2. 

13-13. Consider the simplified wave function 

t) = Ae«<"»-**> 

Assume that a> and v are complex quantities and that k is real: 

co — a + i/3 

v = u + iw 

Show that the wave is damped in time. Use the fact that k2 = OJ2/V2 to obtain ex-
pressions for a and /3 in terms of u and w. Find the phase velocity for this case. 

13-14. Consider an electrical transmission line that has a uniform inductance per unit 
length L and a uniform capacitance per unit length C. Show that an alternating 
current / i n such a line obeys the wave equation 

M r ^ 1 „ 

so that the wave velocity is v = 
I/VLC. 

13-15. Consider the superposition of two infinitely long wave trains with almost the same 
frequencies but with different amplitudes. Show that the phenomenon of beats 
occurs but that the waves never beat to zero amplitude. 

13-16. Consider a wave g(x — vt) propagating in the + x-direction with velocity v. A rigid 
wall is placed at x = x0. Describe the motion of the wave for x < x(!. 

13-17. Treat the problem of wave propagation along a string loaded with particles of two 
different masses, m' and m", which alternate in placement; that is, 

fm', for j even 
wi • —• \ 1 \m", for j odd 

Show that the <a — k curve has two branches in this case, and show that there is at-
tenuation for frequencies between the branches as well as for frequencies above 
the upper branch. 
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13-18. Sketch the phase velocity V(k) and the group velocity U(k) for the propagation of 
waves along a loaded string in the range of wave numbers 0 £ k < tr/d. Show that 
U{ir/d) = 0, whereas V{ir/d) does not vanish. What is the interpretation of this re-
sult in terms of the behavior of the waves? 

13-19. Consider an infinitely long continuous string with linear mass density px for x < 0 
and for x > L, but density p2 > px for 0 < x < L. If a wave train oscillating with an 
angular frequency co is incident from the left on the high-density section of the 
string, find the reflected and transmitted intensities for the various portions of the 
string. Find a value of L that allows a maximum transmission through the high-
density section. Discuss briefly the relationship of this problem to the application 
of nonreflective coatings to optical lenses. 

13-20. Consider an infinitely long continuous string with tension T. A mass Mis attached 
to the string at x = 0. If a wave train with velocity co/k is incident from the left, 
show that reflection and transmission occur at x = 0 and that the coefficients R 
and Tare given by 

R= sin2 0, T= cos2 6 

where 
Mco2 

Consider carefully the boundary condition on the derivatives of the wave functions 
at x = 0. What are the phase changes for the reflected and transmitted waves? 

13-21. Consider a wave packet in which the amplitude distribution is given by 

f l , |* — *0 | < Afc 
10, 

Show that the wave function is 

2sin [(oo'0t - x)AK\ 

^ ^ otherwise 

¥(x,t) = „i(a}0t-k0x) 
co'o t — x 

Sketch the shape of the wave packet (choose t = 0 for simplicity). 

13-22. Consider a wave packet with a Gaussian amplitude distribution 

A(k) = Bexp[~cr(k - k0)2] 

where 2 / V a is equal to the 1/e width* of the packet. Using this function for A(k), 
show that 

r +oo 
^(x.O) = B exp[~cr(k - k0)2]exp(~ikx)dk 

J -oo 
frr ~ exp(—x2/4o")exp( — ik0x) 

*At t h e p o i n t s k — k0 ± l/Va, t h e a m p l i t u d e d i s t r i b u t i o n is 1 / e o f its m a x i m u m v a l u e A(k0). T h u s 

2 / V a is t h e w i d t h of t h e c u r v e a t t h e 1/e h e i g h t . 
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Sketch the shape of this wave packet. Next, expand w(k) in a Taylor series, retain 
the first two terms, and integrate the wave packet equation to obtain the general 
result 

Finally, take one additional term in the Taylor series expression of co(k) and show 
that cr is now replaced by a complex quantity. Find the expression for the 1/e 
width of the packet as a function of time for this case and show that the packet 
moves with the same group velocity as before but spreads in width as it moves. 
Illustrate this result with a sketch. 



14 CHAPTER - J - - J J 

Special Theory 
of Relativity 

14.1 Introduction 

In Section 2.7, it was poin ted ou t that the Newtonian idea of the complete sepa-
rability of space and time and the concept of the absoluteness of time break 
down when they are subjected to critical analysis. T h e final overthrow of the 
Newtonian system as the ult imate description of dynamics was the result of sev-
eral crucial experiments, culminating with the work of Michelson and Morley in 
1881-1887. The results of these experiments indicated that the speed of light is 
i ndependen t of any relative un i fo rm mot ion between source and observer. This 
fact, coupled with the finite speed of light, required a fundamenta l reorganiza-
tion of the structure of dynamics. This was provided dur ing the period 1904-
1905 by H. Poincare, H. A. Lorentz, and A. Einstein,* who formula ted the the-
ory of relativity in order to provide a consistent description of the experimental 
facts. The basis of relativity theory is contained in two postulates: 

* A l t h o u g h A l b e r t E i n s t e i n ( 1 8 7 9 - 1 9 5 5 ) is usua l ly a c c o r d e d t h e c r e d i t f o r t h e f o r m u l a t i o n of relat iv-
ity t h e o r y ( see , h o w e v e r , W h 5 3 , C h a p t e r 2 ) , t h e bas ic formalism h a d b e e n d i s c o v e r e d by P o i n c a r e a n d 
L o r e n t z b y 1904 . E i n s t e i n was u n a w a r e of s o m e of th i s p r e v i o u s w o r k a t t h e t i m e ( 1 9 0 5 ) o f t h e p u b l i -
c a t i o n o f h i s f i r s t p a p e r o n relativity. ( E i n s t e i n ' s f r i e n d s o f t e n r e m a r k e d t h a t " h e r e a d l i t t le , b u t 
t h o u g h t m u c h . " ) T h e i m p o r t a n t c o n t r i b u t i o n of E i n s t e i n t o spec i a l re lat ivi ty t h e o r y was t h e r e p l a c e -
m e n t o f t h e m a n y ad hoc a s s u m p t i o n s m a d e b y L o r e n t z a n d o t h e r s w i th b u t two bas i c p o s t u l a t e s f r o m 
w h i c h al l t h e r e su l t s c o u l d b e d e r i v e d . [ T h e q u e s t i o n o f p r e c e d e n c e in re la t iv i ty t h e o r y is d i s c u s s e d 
by G. H o l t o n , Am. J. Phys. 2 8 , 6 2 7 ( I 9 6 0 ) ; s e e a l so A m 6 3 . ] I n a d d i t i o n , E i n s t e i n l a t e r p r o v i d e d t h e 
f u n d a m e n t a l c o n t r i b u t i o n t o t h e f o r m u l a t i o n o f t h e general t h e o r y o f re la t iv i ty in 1916 . H i s f i r s t p u b -
l i ca t ion o n a t o p i c of i m p o r t a n c e i n g e n e r a l r e l a t i v i t y — s p e c u l a t i o n s o n t h e i n f l u e n c e of gravity o n 
l i g h t — w a s in 1907 . I t is i n t e r e s t i n g t o n o t e t h a t E i n s t e i n ' s 1921 N o b e l P r i z e was a w a r d e d , n o t f o r c o n -
t r i b u t i o n s t o relat ivi ty t h e o r y , b u t f o r h i s w o r k o n t h e p h o t o e l e c t r i c e f f e c t . 

546 
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I. The laws of physical phenomena are the same in all inertial reference frames (that is, 
only the relative motion of inertial frames can be measured; the concept of motion rela-
tive to "absolute rest" is meaningless). 

II. The velocity of light (in free space) is a universal constant, independent of any rela-
tive motion of the source and the observer. 

Using these postulates as a foundat ion, Einstein was able to construct a 
beautiful, logically precise theory. A wide variety of p h e n o m e n a that take place 
at high velocity and cannot be in terpre ted in the Newtonian scheme are accu-
rately described by relativity theory. 

Postulate I, which Einstein called the principle of relativity, is the fundamental 
basis for the theory of relativity. Postulate II, the law of propagation of light, follows 
f rom Postulate I if we accept, as Einstein did, that Maxwell's equations are funda-
mental laws of physics. Maxwell's equations predict the speed of light in vacuum to 
be c, and Einstein believed this to be the case in all inertial reference frames. 

We do not attempt here to give the experimental background for the theory of 
relativity; such information can be found in essentially every textbook on modern 
physics and in many others concerned with electrodynamics.* Rather, we simply ac-
cept as correct the above two postulates and work out some of their consequences 
for the area of mechanics.* The discussion here is limited to the case of special rela-
tivity, in which we consider only inertial reference frames, that is, frames that are in 
uniform motion with respect to one another. The more general treatment of accel-
erated reference frames is the subject of the general theory of relativity. 

14.2 Galilean Invariance 
In Newtonian mechanics, the concepts of space and time are completely separa-
ble; fur thermore , time is assumed to be an absolute quantity susceptible of pre-
cise definit ion independen t of the reference f rame. These assumptions lead to 
the invariance of the laws of mechanics u n d e r coordinate transformations of the 
following type. Consider two inertial reference frames K and K', which move 
along their x r and xj-axes with a un i form relative velocity v (Figure 14-1). The 
transformation of the coordinates of a poin t f rom one system to the o ther is 
clearly of the form 

Xj — Xj X)t 

X2 X2 

x3 = x3 

(14.1a) 

Also, we have 

t' = t (14.1b) 

*A p a r t i c u l a r l y g o o d d i s cus s ion of t h e e x p e r i m e n t a l necess i ty f o r relat ivi ty t h e o r y c a n b e f o u n d in 
P a n o f s k y a n d Ph i l l i p s (Pa62 , C h a p t e r 15 ) . 
fRe la t iv i s t i c e f f e c t s i n e l e c t r o d y n a m i c s a r e d i s c u s s e d i n H e a l d a n d M a r i o n ( H e 9 5 , C h a p t e r 14) . 



548 14 / SPECIAL THEORY OF RELATIVITY 

K' 

*i 
xi 

FIGURE 14-1 Two inertial reference frames K and K' move along their xr and 
x{-axes with a uniform relative velocity v. 

Equations 14.1 def ine a Galilean transformation. Fur thermore , the e lement of 
length in the two systems is the same and is given by 

ds2 = 2dxf 
j 

= Srfx'2 = ds'2 (14.2) 
3 

The fact that Newton's laws are invariant with respect to Galilean transforma-
tions is te rmed the principle of Newtonian relativity or Galilean invariance. 
Newton's equations of mot ion in the two systems are 

Fj = triXj 

= mx] = F'j (14.3) 

The fo rm of the law of mot ion is then invariant to a Galilean transformation. 
T h e individual terms are no t invariant, however, bu t they transform according to 
the same scheme and are said to be covariant. 

We can easily show that the Galilean t ransformation is inconsistent with 
Postulate II. Consider a light pulse emanat ing f r o m a flashbulb positioned in 
f rame K'. The velocity transformation is f o u n d f rom Equat ion 14.1a, where we 
consider the light pulse only along X\: 

= *i ~ v (14.4) 

In system K', the velocity is measured as x[ — c; Equation 14.4 therefore indi-
cates the speed of the light pulse to be Xj = c + v, clearly in violation of 
Postulate II. 

14.3 Lorentz Transformation 
The principle of Galilean invariance predicts that the velocity of light is different 
in two inertial reference frames that are in relative motion. This result is in con-
tradiction to the second postulate of relativity. Therefore , a new transformation 
law that renders physical laws relativistically covariant must be found . Such a 
transformation law is the Lorentz transformation. T h e original use of the 
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Lorentz transformation preceded the development of Einsteinian relativity the-
ory,* bu t it also follows f r o m the basic postulates of relativity; we derive it on this 
basis in the following discussion. 

If a light pulse f rom a flashbulb is emitted f rom the common origin of the 
systems .Kand K' (see Figure 14-1) when they are coincident, then according to 
Postulate II, the wavefronts observed in the two systems must be described* by 

s 
E x ? - ch* = 0 
j= 1 1 

s 
2 x ' 2 - cY 2 = 0 
7=1 1 

(14.5) 

We can already see that Equations 14.5, which are consistent with the two postu-
lates of the theory of relativity, cannot be reconciled with the Galilean transfor-
mations of Equations 14.1. T h e Galilean transformation allows a spherical light 
wavefront in one system bu t requires the center of the spherical wavefront in the 
second system to move at velocity v with respect to the first system. The interpre-
tation of Equations 14.5, according to Postulate II, is that each observer believes 
that his spherical wavefront has its center fixed at his own coordinate origin as 
the wavefront expands. 

We are faced with a quandary. We must abandon either the two relativity 
postulates or the Galilean transformation. Much experimental evidence, includ-
ing the Michelson-Morley exper iment and the aberration of starlight, requires 
the two postulates. However, the belief in the Galilean transformation is en-
t renched in our minds by our everyday experience. T h e Galilean transformation 
had produced satisfactory results, including those of the preceding chapters of 
this book, for centuries. Einstein's great contr ibution was to realize that the 
Galilean transformation was approximately correct, bu t that we needed to reexam-
ine our concepts of space and time. 

Notice that we do not assume t = t' in Equations 14.5. Each system, -Kand K', 
has its own clocks, and we assume that a clock may be located at any point in space. 
These clocks are all identical, run the same way, and are synchronized. Because the 
flashbulb goes off when the origins are coincident and the systems move only in the 
Xj-direction with respect to each other, by direct observation we have 

** (14.6) 
2 — X 2 I 

3 = X V X 3 

At time t=t' = 0, when the flashbulb goes off, the mot ion of the origin O' of K' 
is measured in K to be 

xj - vt = 0 (14.7) 

*The transformation was originally postulated by Hendrik Anton Lorentz (1853-1928) in 1904 to ex-
plain certain electromagnetic phenomena, but the formulas had been set up as early as 1900 by J. J. 
Larmor. The complete generality of the transformation was not realized until Einstein derived the result. 
W. Voigt was actually the first to use the equations in a discussion of oscillatory phenomena in 1887. 
fSee Appendix G. 
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and in system K', the mot ion of O' is 

x[ = 0 (14.8) 

At time t—t' = 0 we have x[ = x, — vt, bu t we know that Equat ion 14.1a is in-
correct. Let us assume the next simplest t ransformation, namely, 

x[ = y(xl - vt) (14.9) 

where y is some constant that may depend on v and some constants, but not on the 
coordinates X], X], tf or t'. Equation 14.9 is a linear equation and assures us that 
each event in K corresponds to one and only one event in K'. This additional as-
sumption in our derivation will be vindicated if we can produce a transformation 
that is consistent with all the experimental results. Notice that y must normally be 
very close to 1 to be consistent with the classical results discussed in earlier chapters. 

We can use the preceding arguments to describe the mot ion of the origin O 
of system .Kin bo th .fiTand K' to also de termine 

xj = y\x[ + vt') (14.10) 

where we only have to change the relative velocities of the two systems. 
Postulate I demands that the laws of physics be the same in bo th reference 

systems such that y = y'. By substituting x[ f r o m Equat ion 14.9 into Equation 
14.10, we can solve the remaining equation for t': 

= yt + fv{l ~ y2) (14,11) 

Postulate II demands that the speed of light be measured to be the same in 
both systems. Therefore , in both systems we have similar equations for the posi-
tion of the flashbulb light pulse: 

Cj = ct 1 
t[ = ct'J 
Xi — _. . 

(14.12) 

Algebraic manipulat ion of Equations 14.9-14.12 gives (see Problem 14-1) 

_ 1 
1 ~ V l - vVc2 

The complete t ransformation equations can now be written as 

— Vt > 

X l ~ V l - v2/c2 

#2 — #2 

fXj 

(14.13) 

(14.14) 

f = 
V l - v2/c2 , 

These equations are known as the Lorentz (or Lorentz-Einstein) transfor-
mation in hono r of the Dutch physicist H. A. Lorentz, who first showed that the 
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equations are necessary so that the laws of electromagnetism have the same fo rm 
in all inertial reference frames. Einstein showed that these equations are re-
quired for all the laws of physics. 

The inverse transformation can easily be obtained by replacing v by — v and 
exchanging pr imed and unpr imed quantities in Equations 14.14. 

x{ + vt' Xl~ vr 
#2 — #2 

v2/c2 

5% — 3C3 
(14.15) 

t 
C* 

V l - v2/c2, 
As required, these equations reduce to the Galilean equations (Equations 14.1) 
when v—>0 (or when c—»oo). 

In electrodynamics, the fields propagate with the speed of light, so Galilean 
transformations are never allowed. Indeed, the fact that the electrodynamic field 
equations (Maxwell's equations) are no t covariant to Galilean transformations 
was a main factor in the realization of the need for a new theory. It seems ra ther 
extraordinary that Maxwell's equations, which are a complete set of equations 
for the electromagnetic field and are covariant to Lorentz transformations, were de-
duced f rom exper iment long before the advent of relativity theory. 

The velocities measured in each of the systems are deno ted by u. 

dx, 
ui — 

dt 1 
(14.16) 

UXI I U'i = 

Using Equations 14.14, we de termine 

dx[ dx\ — vdt 
dt' ~ ~ v ~ 

dt 7>dX\ 
"1 

ux = 

Similarly, we de termine 

— V 

mv 
1 - - T 

Mg = 

M 3 = 

w2 

U]V 

u s 

UjV 

(14.17a) 

(14.17b) 

(14.17c) 
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Now we can de termine whether Postulate II is satisfied directly. An observer in 
system K measures the speed of the light pulse f rom the f lashbulb to be ux = c in 
the Xj-direction. From Equation 14.17a, an observer in K' measures 

v 
ux = = c 

\ - v -
c 

as required by Postulate II, i ndependen t of the relative system speed v. 

EXAMPLE 1 1.1 

Determine the relativistic length contraction* using the Lorentz transformation. 

Solution. Consider a rod of length I lying along the x,-axis of an inertial f rame 
K. An observer in system K moving with un i form speed v a long the x raxis (as 
in Figure 14-1) measures the length of the rod in the observer's own coordinate 
system by determining at a given instant of time t' the difference in the coordi-
nates of the ends of the rod, xj(2) - x j ( l ) . According to the t ransformation 
equations (Equations 14.14), 

x[(2) ~ x j ( l ) 
[x :(2) - « , ( ! ) ] - v[t(2) - f(l)] 

(14.18) 
V l - vVc2 

where Xj(2) — Xj(l) = I. Note that times t(2) and <(1) are the times in the K 
system at which the observations are made; they do no t correspond to the in-
stants in K' at which the observer measures the rod. In fact, because 
t'(2) = £'(1), Equations 14.14 give 

t(2) - t{ 1) = [xx(2) - x x ( l ) ] ^ 
c1 

The length V as measured in the K' system is therefore 

V = xj(2) - x j ( l ) 

Equation 14.18 now becomes 

length contraction I' = zVi - vVc2 (14.19) 

and, to a stationary observer in K, objects in K' also appear contracted. Thus, to 
an observer in mot ion relative to an object, the dimensions of objects are con-
tracted by a factor v r — /32 in the direction of motion, in which /3 = v/c. 

An interesting consequence of the FitzGerald-Lorentz contraction of length 
was repor ted in 1959 by James Terrell.+ Consider a cube of side I moving with 
uni form velocity v with respect to an observer some distance away. Figure 14-2a 

* T h e c o n t r a c t i o n of l e n g t h i n t h e d i r e c t i o n o f m o t i o n was p r o p o s e d by G . F. F i t z G e r a l d ( 1 8 5 1 - 1 9 0 1 ) 
in 1892 as a p o s s i b l e e x p l a n a t i o n of t h e M i c h e l s o n - M o r l e y e t h e r - d r i f t e x p e r i m e n t . T h i s h y p o t h e s i s 
was a d o p t e d a l m o s t i m m e d i a t e l y by L o r e n t z , w h o p r o c e e d e d t o a p p l y i t i n h i s t h e o r y o f e l e c t r o d y -
n a m i c s . 
f j . Te r re l l , Phys. Rev. 116 , 1041 ( 1 9 5 9 ) . 
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O b s e r v e r 

FIGURE 14-2 (a) An observer far away sees a cube of sides la l rest in system K 
(b) Terrell pointed out that surprisingly, the same cube appears to 
be rotated if it is moving to the right with velocity v relative to 
system K. 

shows the projec t ion of the cube on the p lane conta in ing the velocity vector v 
a n d the observer. T h e cube moves with its side AB pe rpend icu la r to the ob-
server's l ine of sight. We wish to de t e rmine what the observer "sees"; that is, at a 
given instant of time in the observer 's rest f r ame , we wish to de t e rmine the rela-
tive or ienta t ion of the corners A, B, C, and D. T h e tradit ional view (which went 
unques t ioned for m o r e than 50 years!) was that the only effect is a foreshor tening 
of the sides AB a n d CD such tha t the observer sees a distorted tube of he ight I 
b u t of length Z V 1 — /32. Terrell po in ted ou t tha t this in te rpre ta t ion overlooks 
certain facts: For light f r o m corners A and D to reach the observer at the same 
instant, the light f r o m D, which mus t travel a distance / f a r t h e r than tha t f rom A, 
must have been emitted when corner D was at position E. The length DE is equal to 
(l/c)v= 1/3. There fo re , the observer sees no t only face AB, which is perpendicu-
lar to the line of sight, bu t also face AD, which is parallel to the line of sight. Also, 
the length of the side AB is fo reshor t ened in the no rma l way to Z V 1 — j S 2 . T h e 
ne t result (Figure 14-2b) cor responds exactiy to the view the observer would 
have if the cube were ro ta ted t h r o u g h an angle sin There fo re , the cube is 
n o t distorted; it unde rgoes an apparent rotat ion. Similarly, the customary state-
men t* that a moving sphere appears as an ellipsoid is incorrect ; it appears still as 
a sphere.* Compute r s can be used to show extremely interest ing results of the 
type* we have been discussing (Figure 14-3). 

*See , f o r e x a m p l e , J o o s a n d F r e e m a n ( Jo50 , p . 2 4 2 ) . 
f A n i n t e r e s t i n g d i s c u s s i o n o f a p p a r e n t r o t a t i o n s a t h i g h ve loc i ty is g i v e n by V. F. We i s skop f , Phys. 
Today 13, n o . 9, 2 4 ( 1 9 6 0 ) , r e p r i n t e d i n A m 6 3 . 
J S e e a l so a n i n t e r e s t i n g w e b s i t e a t t h e A u s t r a l i a n N a t i o n a l Univers i ty , w w w . a n u . e d u . a u / P h y s i c s / 
S e a r l e / i n d e x . h t m l . A n t o n y C. S e a r l e ( 2 0 0 3 ) a n d a n a r t i c l e by M . C. C h a n g , F. Lai , a n d W. C. C h e n , 
ACM Transactions on Graphics 15, N o . 4, 2 6 5 ( 1 9 9 6 ) . 

http://www.anu.edu.au/Physics/
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FIGURE 14-3 An array of rectangular bars is seen from above at rest in the figure on 
the left. In the right figure the bars are moving to the right with v = 
0.9c. The bars appear to contract and rotate. Quoted from P.-K. Hsiung 
and R.H.P. Dunn, see Science News 137, 232 (1990). 

EXAMPLE 14.2 

Use the Lorentz transformation to determine the time dilation effect. 

Solution. Consider a clock fixed at a certain position (xj) in the ^sys tem that 
produces signal indications with the interval 

At= t(2) - t( 1) 

According to the Lorentz transformation (Equations 14.14), an observer in the 
moving system K' measures a time interval A t' (on the same clock) of 

A t' = t'( 2) 

t{ 2) 

f { l ) 

vxl(2) 
f (D 

v x ^ l ) 

V l - v2/c* 

Because x1(2) = X[ (1) and because the clock is fixed in the Ksystem, we have 

t(2) - <(1) 
At' = 

(14.20) 

Thus, to an observer in motion relative to the clock, the time intervals appear 
to be lengthened. This is the origin of the phrase "moving clocks run more 
slowly." Because the measured time interval on the moving clock is lengthened, 
the clock actually ticks slower. Notice that the clock is fixed in the K system, 
XJ(L) = XJ (2), but no t in the K' system, X5(L) *i(2) . 
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The a rgument in the previous example can be reversed and the clock fixed 
in the K' system. T h e same result occurs; moving clocks r u n slower. The effect is 
called time dilation. It is impor tant to no te that the physical system is unimpor-
tant. The same effect occurs for a tuning fork, an hourglass, a quartz crystal, and 
a heartbeat . T h e problem is one of simultaneity. Events simultaneous in one sys-
tem may not be simultaneous in ano the r one moving with respect to the first. 
The same clock may be viewed f r o m n d i f ferent reference frames and f o u n d to 
be runn ing at n different rates, simultaneously. Space and time are intricately in-
terwoven. We shall re turn to this poin t later. 

The time measured on a clock fixed in a system present at two events is 
called the proper time and given the symbol r . For example, At = AT when a 
clock fixed in system Kis present for bo th events, x,(l) and x,(2). Equation 14.20 
becomes 

At' = Y A R (14.21) 

Notice that the p roper time is always the min imum measurable time difference 
between two events. Moving observers always measure a longer time period. 

14.4 Experimental Verification of the Special Theory 

The special theory of relativity explains the difficulties existing before 1900 with 
optics and electromagnetism. For example, the problems with stellar aberrat ion 
and the Michelson-Morley exper iment are solved by assuming n o e ther bu t re-
quir ing the Lorentz transformation. 

But what about the new starding predictions of the special theory—length 
contraction and time dilation? These topics are addressed every day in the accel-
erator laboratories of nuclear and particle physics, where particles are acceler-
ated to speeds close to that of light, and relativity must be considered. Other ex-
periments can be pe r fo rmed with natural phenomena . We examine two of these. 

Muon Decay 
When cosmic rays enter the earth 's outer a tmosphere, they interact with parti-
cles and create cosmic showers. Many of the particles in these showers are TT-
mesons, which decay to o ther particles called muons. Muons are also unstable 
and decay according to the radioactive decay law, N = N0 exp (—0.693 t/t1/2), 
where N0 and N are the n u m b e r of muons at time t = 0 and t, respectively, and 
ti/2 is the half-life. However, enough muons reach the earth 's surface that we can 
detect them easily. 

Let us assume that we m o u n t a detector on top of a 2,000-m mounta in and 
count the n u m b e r of muons traveling at a speed near v = 0.98c. Over a given pe-
riod of time, we count 10s muons. T h e half-life of muons is known to be 
1.52 X 10 - 6 s in their own rest f r ame (system K ) . We move our detector to sea 
level and measure the n u m b e r of muons (having v = 0.98c) detected dur ing an 
equal per iod of time. What do we expect? 
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Determined classically, muons traveling at a speed of 0.98c cover the 2,000 m 
in 6.8 X 10~6 s, and 45 muons should survive the flight f r o m 2,000 m to sea level 
according to the radioactive decay law. But experimental measurement indicates 
that 542 muons survive, a factor of 12 more. 

This p h e n o m e n o n must be t reated relativistically. T h e decaying muons are 
moving at a high speed relative to the exper imenters fixed o n the earth. We 
therefore observe the muons ' clock to be runn ing slower. In the muons ' rest 
f rame, the time per iod of the muons ' flight is no t At = 6.8 X 10~6 s bu t ra ther 
A t / y . For v = 0.98c, y = 5, so we measure the flight t ime on a clock at rest in 
the muons ' system to be 1.36 X 10~6 s. T h e radioactive decay law predicts that 
538 muons survive, m u c h closer to ou r measurement and within the experi-
mental uncertainties. An exper iment similar to this has verified the time dila-
tion prediction.* 

EXAMPLE 14.3 

Examine the m u o n decay jus t discussed f rom the perspective of an observer 
moving with the muon . 

Solution. The half-life of the m u o n according to its own clock is 1.52 X 10~6 s. 
But an observer moving with the m u o n would no t measure the distance f r o m 
the top of the mounta in to sea level to be 2,000 m. According to that observer, 
the distance would be only 400 m. At a speed of 0.98c, it takes the m u o n only 
1.36 X 10~6 s to travel the 400 m. An observer in the m u o n system would pre-
dict 538 muons to survive, in agreement with an observer on the earth. 

Muon decay is an excellent example of a natural p h e n o m e n o n that can be 
described in two systems moving with respect to each other. O n e observer sees 
time dilated and the o ther observer sees length contracted. Each, however, pre-
dicts a result in agreement with experiment . 

Atomic Clock Time Measurements 
An even more direct confirmation of special relativity was repor ted by two 
American physicists, J . C. Hafele and Richard E. Keating, in 1972.* They used 
four extremely accurate cesium atomic clocks. Two clocks were flown on regu-
larly scheduled commercial j e t airplanes a round the world, one eastward and 
one westward; the o ther two reference clocks stayed fixed on the ear th at the 
U.S. Naval Observatory. A well-defined, hyperf ine transition in the g round state 
of the 133Cs atom has a f requency of 9,192,631,770 Hz and can be used as an ac-
curate measurement of a time period. 

*The experiment was reported by B. Rossi and D. B. Hall in the Phys. Rev., 59, 223 (1941). A film en-
tided "Time Dilation—An Experiment with fi-Mesons" by D. H. Frisch and J. H. Smith is available 
from the Education Development Center; Newton, Mass. See also D. H. Frisch and J. H. Smith, Am. 
J. Phys., 31, 342 (1963). 
fSeeJ . C. Hafele and Richard E. Keating, Science, 177,166-170 (1972). 
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T h e time measured on the two moving clocks was c o m p a r e d with that of the 
two re fe rence clocks. T h e eastward trip lasted 65.4 hours with 41.2 flight hours . 
T h e westward trip, a week later, took 80.3 hours with 48.6 fl ight hours . T h e pre-
dictions are complicated by the rapid rota t ion of the ear th and by a gravitational 
effect f r o m the general theory of relativity. 

We can gain some insight to the expected effect by neglect ing the correc-
tions a n d calculating the time d i f fe rence as if the ear th were n o t rotat ing. T h e 
c i rcumference of the ear th is abou t 4 X 107 m, a n d a typical j e t a i rp lane speed is 
almost 300 m / s . A clock f ixed on the g r o u n d measures a flight time T0 of 

To = 4 * 1 Q 7
/

m = 1-33 X 103s( ~ 37 hr) (14.22) 
300 m/s 

Because the moving clock runs m o r e slowly, the observer o n the ear th would say 
tha t the moving clock measures only T = T0V1 — /32. T h e time d i f ference is 

A T = T0 - T= T0( 1 - Vl - /32) 
i (14.23) 

= 2 

where only the first and second terms of the power series expansion for 
Vl — f32 are kept because /32 is so small. 

A r = i f ^ m ^ y o 5 

2 \ 3 X 108 m / s / ( M < 2 4 ) 

= 6.65 X 10~8s = 66.5 ns 

This t ime di f ference is grea ter t han the uncer ta inty of the measurement . Notice 
that in this case, the clock left on the ear th actually measures m o r e t ime in sec-
onds than the moving clock. This seems at variance with ou r earlier commen t s 
(see Equat ion 14.21 and discussion). But the t ime per iod re fe r red to in 
Equat ion 14.21 is the time between two ticks, in this case, a transition in 133Cs, 
which we measure in seconds. It is easy to r e m e m b e r tha t moving clocks r u n 
m o r e slowly, so tha t in seconds the measu red time d i f ference involves fewer ticks 
and , according to the def ini t ion of a second, fewer seconds. 

T h e actual predic t ions a n d observations fo r the time d i f ference are 

Travel Predicted Observed 

E a s t w a r d - 4 0 ± 2 3 n s - 5 9 ± 10 n s 
W e s t w a r d 2 7 5 ± 21 n s 2 7 3 ± 7 n s 

Again, the special theory of relativity is verified within the exper imenta l uncer-
tainties. A negative sign indicates that the t ime o n the moving clock is less than 
the ear th re fe rence clock. T h e moving clocks lost t ime (ran slower) du r ing the 
eastward trip and gained time (ran faster) dur ing the westward trip. This difference 
is caused by the rotat ion of the ear th , indicat ing tha t t he flying clocks actually 
ticked faster o r slower than the r e fe rence clocks on the ear th . T h e overall posi-
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tive t ime di f ference is a result of the gravitational potent ia l effect (which we d o 
not discuss he re ) . 

We have only briefly described two of the many exper iments tha t have veri-
fied the special theory of relativity. The re are n o known exper imenta l measure-
ments that are inconsistent with the special theory of relativity. Einstein's work in 
this regard has so far withstood the test of time. 

14.5 Relativistic Doppler Effect 

The Doppler effect in sound is represen ted by an increased pi tch of sound as a 
source approaches a receiver a n d a decrease of pi tch as the source recedes. T h e 
change in f requency of the sound depends on whe ther the source or receiver is 
moving. This effect seems to violate Postulate I of the theory of relativity until we 
realize that the re is a special f r a m e for sound waves because there is a m e d i u m 
(e.g., air or water) in which the waves travel. In the case of light, however, there 
is no such med ium. Only relative mot ion of source a n d receiver is mean ingfu l in 
this context , and we should there fore expect some dif ferences in the relativistic 
Doppler effect for light f r o m the normal Dopple r effect of sound. 

Consider a source of light (e.g., a star) a n d a receiver app roach ing one an-
other with relative speed v (Figure 14-4a). First, consider the receiver fixed in 
system K a n d the light source in system K' moving toward the receiver with 
speed v. Dur ing time A t as measured by the receiver, the source emits n waves. 
Dur ing that t ime At, the total distance between the f r o n t and rear of the waves is 

length of wave train = cAt — vAt (14.25) 

The wavelength is t hen 

cAt - vAt 
A = (14.26) 

and the f requency is 

c cn 
v = - = — — (14.27) 

A cAt - vAt 

According to the source, it emits n waves of f requency vf] du r ing the p rope r t ime 
At': 

n = v0At' (14.28) 

This p r o p e r time A t' measured on a clock in the source system is related to the 
time At measured o n a clock f ixed in system Kof the receiver by 

. , A* 
At' = — (14.29) 

7 
T h e clock moving with the source measures the p r o p e r time, because it is pres-
ent at bo th the beg inn ing and end of the waves. 
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J4L 
(b ) S o u r c e a n d r e c e i v e r r e c e d i n g 

FIGURE 14-4 (a) An observer in system Ksees light coming from a source fixed in 
system K'. System K' is moving toward the observer with speed v. The 
frequency of the light is observed in Kto be increased over the value 
observed in K'. (b) When system K' is moving away from the observer, 
the frequency of the light decreases (the wavelength increases). This 
is the source of the term redshifled. 

Subst i tu t ing E q u a t i o n 14.29 i n to Equa t ion 14.28, which in t u r n is substi-
t u t e d f o r n in E q u a t i o n 14.27, gives 

= 1 vo 
(1 - v/c) y 

V l - vVc2 

which can be written as 

V l + j8 
v — —, v0 source and receiver approaching (14.31) 

V I - 0 
It is lef t f o r the r e a d e r ( P r o b l e m 14-14) to show tha t E q u a t i o n 14.31 is also valid 
w h e n t h e source is fixed a n d t h e receiver a p p r o a c h e s it with s p e e d v. 

Next , we cons ide r t h e case in which t h e source a n d receiver r e c e d e f r o m 
each o t h e r with velocity v (Figure 14-4b). T h e der iva t ion is similar to the o n e 
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just presented—with one small exception. In Equation 14.25, the distance be-
tween the beginning and end of the waves becomes 

length of wave train = c At + v At (14.32) 

This change in sign is propagated through Equations 14.30 and 14.31, giving 

V i - fVc2 
v = 1 . / — v 0 1 + v/c 

V l - 0 
v = —, v0 source and receiver receding (14.33) 

V l + j8 
Equations 14.31 and 14.33 can be combined into one equation, 

V l + j8 
v = —, v0 relativistic Doppler effect (14.34) 

V l - j8 
if we agree to use a + sign for /3 (+ v/ c) when the source and receiver are ap-
proaching each o ther and a — sign for (3 when they are receding. 

The relativistic Doppler effect is impor tant in astronomy. Equation 14.34 in-
dicates that, if the source is receding at high speed f rom an observer, then a 
lower frequency (or longer wavelength) is observed for certain spectral lines or 
characteristic frequencies. This is the origin of the term red shift, the wavelengths 
of visible light are shifted toward longer wavelengths (red) if the source is reced-
ing f rom us. Astronomical observations indicate that the universe is expanding. 
The far ther away a star is, the faster it appears to be moving away (or the greater 
its red shift). These data are consistent with the "big bang" origin of the uni-
verse, which is estimated to have occurred some 13 billion years ago. 

E X A M P L E 14.4 

During a spaceflight to a distant star, an astronaut and her twin b ro ther on the 
earth send radio signals to each other at annual intervals. What is the frequency 
of the radio signals each twin receives f rom the o ther dur ing the flight to the 
star if the astronaut is moving at v = 0.8c? What is the f requency dur ing the re-
turn flight at the same speed? 

Solution. We use Equation 14.34 to determine the f requency of radio signals 
that each receives f rom the other. The f requency v0 = 1 signal/year. O n the leg 
of the trip away f rom the earth, /3 = —0.8 and Equat ion 14.34 gives 

V l - 0.8 

= ^ 3 

The radio signals are received once every 3 years. 
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O n the r e tu rn trip, however, fi = + 0 . 8 and Equat ion 14.34 gives v = 3v0, so 
the radio signals are received every 4 months . In this way, the twin on the ear th 
can mon i to r the progress of his as t ronaut twin. 

14.6 Twin Paradox 

Consider twins who choose d i f fe ren t career paths. Mary becomes an astronaut , 
a n d Frank decides to be a stockbroker. At age 30, Mary leaves on a mission to a 
p lane t in a nearby star's system. Mary will have to travel at a high speed to reach 
the p lane t a n d re turn . According to Frank, Mary's biological clock will tick m o r e 
slowly d u r i n g h e r trip, so she will age m o r e slowly. H e expects Mary to look and 
appea r younger than h e does when she re turns . According to Mary, however, 
Frank will appea r to be moving rapidly with respect to h e r system, a n d she thinks 
Frank will be younger when she returns. This is the paradox. Which twin, if ei-
ther, is younger when Mary (the moving twin) re turns to the ear th where Frank 
( the f ixed twin) has remained? Because the two expectat ions are so contradic-
tory, doesn ' t Nature have a way to prove they will be the same age? 

This p a r a d o x has existed a lmost since Einste in first pub l i shed his special 
theory of relativity. Variat ions of t he a r g u m e n t have b e e n p r e s e n t e d many 
times. T h e cor rec t answer is t ha t Mary, t h e as t ronau t , will r e t u r n younge r 
than h e r twin b ro the r , Frank, who r ema ins busy on Wall Street . T h e cor rec t 
analysis is as follows. Accord ing to Frank, Mary's spaceship blasts off a n d 
quickly reaches a coast ing speed of v = 0.8c, travels a dis tance of 8 ly (ly = a 
l ight year, t he d is tance l ight travels in 1 year) to t h e p lane t , a n d quickly decel-
era tes fo r a shor t visit to the p lane t . T h e acce le ra t ion a n d dece le ra t ion t imes 
a re negl igible c o m p a r e d with the total travel t ime of 10 years to the p lane t . 
T h e r e t u r n tr ip also takes 10 years, so o n Mary's r e t u r n to Ear th , F rank will be 
30 + 10 + 10 = 50 years old. F rank calculates tha t Mary's clock is t icking 
slower a n d tha t each leg of the t r ip takes only l O V T — 0.82 = 6 years. Mary 
t h e r e f o r e is only 30 + 6 + 6 = 42 years o ld w h e n she re turns . Frank 's clock is 
(almost) in a n iner t ia l system. 

W h e n Mary pe r fo rms the time measurements on h e r clock, they may be in-
valid according to the special theory because h e r system is no t in an inertial 
f r a m e of re fe rence moving at a constant speed with respect to the ear th . She ac-
celerates and decelerates at bo th the ear th and the planet , and to make valid 
time measurements to compare with Frank's clock, she must account fo r this ac-
celerat ion a n d decelerat ion. T h e ins tan taneous rate of Mary's clock is still given 
by Equat ion 14.20, because the ins tantaneous rate is de t e rmined by the instanta-
neous speed v.* Thus, there is n o pa radox if we obey the two postulates of the 

*See t h e c l o c k h y p o t h e s i s of W. R i n d l e r (Ri82, p . 3 1 ) . 
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special theory. It is also clear which twin is in the inertial f rame of reference. 
Mary will actually feel the forces of acceleration and deceleration. Frank feels no 
such forces. When Mary re turns home, he r twin b ro the r has invested her 20 
years of salary, making her a rich woman at the young age of 42. She was paid a 
20-year salary for a j o b that took her only 12 years! 

E X A M P L E 14.5 

Mary and Frank send radio signals to each o ther at 1-year intervals after she 
leaves Earth. Analyze the times of receipt of the radio messages. 

Solution. In Example 14.4, we calculated that such radio signals are received 
every 3 years on the trip out and every | year on the trip back. First, we examine 
the signals Mary receives f rom Frank. During the 6-year trip to the planet, Mary 
receives only two radio messages, bu t on the 6-year re turn trip, she receives 
eighteen signals, so she correcdy concludes that her twin b ro ther Frank has 
aged 20 years and is now 50 years old. 

In Frank's system, Mary's trip to the planet takes 10 years. By the time Mary 
reaches the planet, Frank receives 1 0 / 3 signals (i.e., three signals plus one-third 
of the time to the next one) . However, Frank continues to receive a signal every 
3 years for the 8 years it takes the last signal Mary sends when she reaches the 
planet to travel to Frank. Thus, Frank receives signals every 3 years for 8 more 
years (total of 18 years) for a total of six radio signals f rom the period of travel to 
the planet. Frank has n o way of knowing that Mary has s topped and turned 
around until the radio message, which takes 8 years, is received. Of the remain-
ing 2 years of Mary's journey according to Frank (20 — 18 = 2), Frank receives 
signals every | year, or six more signals. Frank correctly determines that Mary 
has aged 6 + 6 = 12 years dur ing her journey because he receives a total of 12 
signals. 

Thus, both twins agree about their own ages and about each other 's . Mary is 
42 and Frank is 50 years old. 

14.7 Relativistic Momentum 

Newton's Second Law, F = dp/dt, is covariant unde r a Galilean transformation. 
Therefore , we do no t expect it to keep its fo rm u n d e r a Lorentz t ransformation. 
We can foresee difficulties with Newton's laws and the conservation laws unless 
we make some necessary changes. According to Newton's Second Law, for exam-
ple, an acceleration at high speeds might cause a particle's velocity to exceed c, 
an impossible condit ion according to the special theory of relativity. 

We begin by examining the conservation of l inear m o m e n t u m in a force-
free (no external forces) collision. There are no accelerations. Observer A at 
rest in system K holds a ball of mass m, as does observer B in system K' moving to 
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K xj K Xj 

(a) Co l l i s i on a c c o r d i n g t o sys tem K ( b ) Co l l i s i on a c c o r d i n g t o sys tem A" 

FIGURE 14-5 Observer A, at rest in fixed system K, throws a ball s t raight u p in system 
K. Observer B, a t rest in system K', which is mov ing to t he r igh t with 
velocity v, throws a ball s traight d o w n so tha t t he two balls collide, 
(a) T h e collision acco rd ing to observer A in system K. (b) T h e collision 
acco rd ing to observer B in system K . Each observer measu re s t he speed 
of his o r h e r ball to b e u0. We e x a m i n e t he l inear m o m e n t u m of the ball, 

t he r ight with relative speed v with respec t to system K, as in F igure 14-1. T h e 
two observers th row the i r ( identical) balls a l ong the i r respective x 2 -axes , which 
results in a p e r f e c d y elastic collision. T h e collision, a c c o r d i n g to observers in the 
two systems, is shown in F igure 14-5. Each observer measu re s t h e s p e e d of his o r 
h e r ball to be u0. 

We first e x a m i n e t h e conserva t ion of m o m e n t u m acco rd ing to system K. 
T h e velocity of the ball t h rown by observer A has c o m p o n e n t s 

«oJ 
Ua-I = . , 

1 (14.35) 
uA2 ' " 

T h e m o m e n t u m of ball A is in t h e XG-direction: 

PAS. = muo (14.36) 

T h e collision is perfec t ly elastic, so the ball r e t u r n s down with s p e e d u0. T h e 
c h a n g e in m o m e n t u m observed in system K is 

kpA2 = - 2 mu0 (14.37) 

Does Equa t ion 14.37 also r e p r e s e n t t h e c h a n g e in m o m e n t u m of the ball th rown 
by observer B in the mov ing system K'? We use t h e inverse velocity t ransforma-
tion of Equa t ions 14.17 (i.e., we i n t e r c h a n g e p r imes a n d u n p r i m e s a n d let 
v —> — v) to d e t e r m i n e 

Mb1 = v 1 ^ ^^ 

Mb2
 = "MflVl - V2/c2j 
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where u^i = 0 and = — M0. T h e m o m e n t u m of ball B and its change in mo-
m e n t u m dur ing the collision become 

pB2 = -muoVl - v2/c2 (14.39) 

Afa = +2OTMOVI - v2/c2 (14.40) 

Equations 14.37 and 14.40 do no t add to zero: Linear momentum is not conserved 
according to the special theory if we use the conventions for momentum of classical physics. 
Rather than abandoning the law of conservation of m o m e n t u m , we look for a 
solution that allows us to retain bo th it and Newton's Second Law. 

As we did for the Lorentz transformation, we assume the simplest possible 
change. We assume that the classical fo rm of m o m e n t u m mu is multiplied by a 
constant that may d e p e n d on speed k(u)\ 

p = k(u)mu (14.41) 

In Example 14.6, we show that the value 

k (u) = , 1 (14.42) 
V l - u2/c2 

allows us to retain the conservation of l inear m o m e n t u m . Notice that the form of 
Equation 14.42 is the same as that f o u n d for the Lorentz transformation. In fact, 
the constant k(u) is given the same label: y. However, this y contains the speed 
of the particle u, whereas the Lorentz t ransformation contains the relative speed 
v between the two inertial reference frames. This distinction must be kept in 
mind; it of ten causes confusion. 

We can make a plausible calculation for the relativistic mo me n t u m if we use 
the proper time r (see Equation 14.21) rather than the normal time t. In this case. 

dx. dx dt 
p = m— = m~~~ — (14.43) 

dr dt dT 
dx. 1 

= m . (14.44) 
dt V l - MVC2 

mu 
= y w u 

V l - u2/c2 
relativistic m o m e n t u m (14.45) 

where we retain u = dx/dt as used classically. Al though all observers do no t 
agree as to dx/dt, they do agree as to dx/dr, where the p rope r time dr is meas-
ured by the moving object itself. T h e relation dt/dr is obtained f rom Equation 
14.21, where the speed u has been used in y to represent the speed of a refer-
ence f rame fixed in the object that is moving with respect to a fixed f rame. 

Equation 14.45 is our new definit ion of m o m e n t u m , called relativistic mo-
mentum. Notice that it reduces to the classical result for small values of u/c. It 
was fashionable in past years to call the mass in Equation 14.45 the rest mass m0 

and to call the term 

m = — = (old-fashioned notation) 
V l - u2/c2 

(14.46) 



14.7 RELATIVISTIC MOMENTUM 565 

the relativistic mass. The term rest mass resulted f rom Equation 14.46 when u = 0, 
and the classical form of m o m e n t u m was thus retained: p = ma. Scientists spoke 
of the mass increasing at high speeds. We prefer to keep the concept of mass as 
an invariant, intrinsic property of an object. The use of the two terms relativistic 
and rest mass is now considered old-fashioned, a l though the terms are still some-
times used. We always refer to the mass m, which is the same as the rest mass. The use of 
relativistic mass of ten leads to mistakes when using classical expressions. 

E X A M P L E 14.6 

Show that linear m o m e n t u m is conserved in the ^ -d i r ec t ion for the collision 
shown in Figure 14-5 if relativistic m o m e n t u m is used. 

Solution. We can modify the classical expressions for m o m e n t u m already ob-
tained for the two balls. T h e m o m e n t u m for ball A becomes (from Equation 
14.36) 

muQ 

< 1 4 ' 4 7 ) 

and 

— 2wm0 

^ " v r ^ p ( 1 4 - 4 8 ) 

Before modifying Equat ion 14.39 for the m o m e n t u m of ball B, we must first 
f ind the speed of ball B as measured in system K We use Equation 14.38 to de-
termine 

% = V w l j + M| 2 

= V i / 2 + «jj(l - v2/c2) (14.49) 

The m o m e n t u m pR2 is f ound by modifying Equation 14.39: 

J&B2 = - W M 0 Y V L - V2/C2 

where 

1 
7 = 

V l - u\/c2 

— WMnVl — V2/C2 

Using % f rom Equation 14.49 gives 

— OTM0Vl - v2/c2 

/>B2 = 
V ( 1 - m§/c2)(1 - v2/c2) 

— mu0 

V l - ul/c2 
(14.51) 

+ 2mun 
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Equat ions 14.48 a n d 14.52 a d d to zero, as r e q u i r e d f o r t h e conserva t ion of lin-
ear m o m e n t u m . 

With a new def in i t ion of l inear m o m e n t u m (Equa t ion 14.45) in h a n d , we t u r n 
o u r a t t en t ion to ene rgy a n d force . We k e e p o u r f o r m e r de f in i t i on (Equa t ion 
2.86) of kinet ic energy as b e i n g t h e work d o n e o n a par t ic le . T h e work d o n e is 
d e f i n e d in E q u a t i o n 2.84 to be 

Equa t ion 2.2 fo r Newton ' s S e c o n d Law is m o d i f i e d to a c c o u n t fo r the new defi-
n i t ion of l inear m o m e n t u m : 

dp d 
F = - F = - ( Y W U ) (14.54) 

dt dt 

If we start f r o m rest, Tx = 0, a n d the velocity u is initially a long t h e d i rec t ion of 
the force . 

14.8 Energy 

Wu= F • dr = T2 - Tx (14.53) 

d 
W = T = — (ymu) • u dt 

dt 
(14.55) 

m u d(yu) 
Jo 

(14.56) 

Equa t ion 14.56 is i n t eg ra t ed by par ts to ob ta in 

T = ymu2 — m 
udu 

• o V l - w2/c2 

u 

0 

.2/.2 _ mc .2 (14.57) 

With algebraic m a n i p u l a t i o n , Equa t ion 14.57 b e c o m e s 

T = y mc2 — mc2 relativistic kinet ic ene rgy (14.58) 

E q u a t i o n 14.58 seems to r e s e m b l e in n o way o u r f o r m e r resu l t f o r k inet ic en-
ergy, T = | m u 2 . However, E q u a t i o n 14.58 m u s t r e d u c e to |TOM2 f o r small values 
of velocity. 
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E X A M P L E 14.7 

Show that Equation 14.58 reduces to the classical result for small speeds, u c. 

Solution. The first term of Equation 14.58 can be expanded in a power series: 

1/2 mc T = mc2(l — uWY 

nl 1 M2 

= mc2[l+-- + 

where all terms of power (w/c)4 or greater are neglected because u 

(14.59) 

c. 

1 
mc2 

• mu (14.60) 

which is the classical result. 

It is impor tant to note that nei ther ^ mu2 nor |ywiw2 gives the correct rela-
tivistic value for the kinetic energy. 

The term mc2 in Equation 14.58 is called the rest energy and is denoted by E0. 

E0 = mc2 rest energy (14.61) 

Equation 14.58 is rewritten 

Thus, 

where 

ymc2 = T + mc2 

E= T+ E0 

E = ymc2 = T + £, total energy 

(14.62) 

(14.63) 

The total energy, E = ymc2, is def ined as the sum of kinetic energy and the rest 
energy. Equations 14.58-14.63 are the origin of Einstein's famous relativistic re-
sult of the equivalence of mass and energy (energy = mc2). These equations are 
consistent with this interpretat ion. Note that when a body is no t in mot ion (u = 
0 = T), Equation 14.63 indicates that the total energy is equal to the rest energy. 

If mass is simply ano ther fo rm of energy, then we must combine the classical 
conservation laws of mass and energy into one conservation law of mass-energy 
represented by Equation 14.63. This law is easily demonstra ted in the atomic nu-
cleus, where the mass of consti tuent particles is converted to the energy that 
binds the individual particles together. 
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Use the atomic masses of the particles involved to calculate the b inding energy 
of a deuteron. 

Solution. A deu te ron is composed of a neu t ron and a pro ton . We use atomic 
masses, because the electron masses cancel. 

This difference in mass-energy is equal to the b inding energy holding the neu-
tron and pro ton together as a deuteron. T h e mass units are atomic mass units 
(u), which can be converted to kilograms if necessary. However, the conversion 
of mass to energy is facilitated by the well-known relation between mass and 

Nuclear experiments of the fo rm y + 2 H —> n + p indicate that gamma rays of 
energy jus t greater than 2.22 MeV are required to break the deu te ron apart into 
a neut ron and a proton. Conversely, when a neu t ron and p ro ton j o in at rest to 
form a deuteron , 2.22 MeV of energy is released in the fo rm of kinetic energy 
of the deu te ron and gamma ray. 

Because physicists believe that m o m e n t u m is a more fundamenta l concept 
than kinetic energy (for example, there is n o general law of conservation of ki-
netic energy), we would like a relation for mass-energy that includes m o m e n t u m 
rather than kinetic energy. We begin with Equat ion 14.45 for momen tum: 

mass of neu t ron = 1.008665 u 

mass of p ro ton ( JH) = 1.007825 u 

sum = 2.016490 u 

mass of deu te ron (2H) = 2.014102 u 

difference = 0.002388 u 

uc 

(14.64) 

p = ymu 

p2c2 = y2m2u2c ; 

(14.65) 

It is easy to show that 

u ,2 1 
. 2 

1 -
,2 (14.66) 

C r 
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so Equa t ion 14.65 b e c o m e s 

p2c2 = y2m2c4[ 1 - - j 

- y2m2c4 -

= E2- El 

£2 = p2c2 + £2 (14.67) 

Equa t ion 14.67 is a very usefu l k inemat ic re la t ionship . I t relates t he total energy 
of a part icle to its m o m e n t u m a n d rest energy. 

Not ice tha t a p h o t o n has n o mass, so tha t Equa t i on 14.67 gives 

E= pc p h o t o n 

T h e r e is n o such th ing as a p h o t o n a t rest. 

(14.68) 

14.9 Spacetime and Four-Vectors 
I n Sect ion 14.3 (Equa t ion 14.5), we n o t i c e d t ha t t h e quant i t ies 

3 
C?t2 = 0 

7=1 7 

3 

2 X ; 2 - C2t'2 = 0 
7=1 1 

are invariant because the speed of l ight is the same in all inert ial systems in rela-
tive mot ion . Cons ide r two events separa ted by space a n d time. In system K, 

A = XJ(event2) - x,(event 1) 

A t = t(event 2) - «(event 1) 

T h e interval As2 is invar iant in all inert ial systems in relative m o t i o n (see 
P r o b l e m 14-34): 

3 

As2 = S ( A x / - (?At2 (14.69) 

3 

As2 = As'2 = 2 (Ax-)2 - (?At'2 (14.70) 

Equa t ion 14.69 can be wri t ten as a d i f ferent ia l equa t ion : 

ds2 = dx\ + dx\ + dx| - c2dt2 (14.71) 

Cons ide r t he system K', whe re t he par t ic le is ins tantaneously a t rest. Because 
dx[ = dx2 = dx3 = 0 in this case, dt' = dr, the p r o p e r t ime interval discussed 
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FIGURE 14-6 The variable ct is plotted versus xwith the origin being the present. The 
heavy solid lines indicate the past and future paths of light and form a 
light cone. To the right and left of these lines is considered "elsewhere," 
because we cannot reach this region from the present. The path from A 
to B represents a worldline, a path that we can take traveling at speeds less 
than or equal to light. 

above (Equation 14.21). Equation 14.70 becomes 

-c2dr2 = dx? + dx\ + dx\ - c2dt2 (14.72) 

Using the Lorentz transformation, Equation 14.72 gives a similar result to 
Equation 14.21: 

dt 
dr = - (14.73) 

7 
The proper time r is, a long with the length quantity As2, ano ther Lorentz invari-
ant quantity. 

A useful concept in special relativity is that of the light cone. The invariant 
length As2 suggests adding ct as a four th dimension to the three space dimen-
sions *i, x2, and x3. In Figure 14-6, we plot ct versus one of the Euclidean space 
coordinates. The origin of (x, ct) is the present (0, 0). The solid lines represent 
the paths taken in the past and in the fu tu re by light. A particle traveling the 
path f rom A to B is said to be moving along its worldline. For time t<0, the par-
ticle has been in the lower cone, the past. Similarly, for t > 0 the particle will 
move in the uppe r cone, the future . It is no t possible for us to know about events 
outside the light cone; this region, called "elsewhere," requires v> c. 

There are two possibilities concerning the value of As2. If As2 > 0, the two 
events have a spacelike interval. O n e can always f ind an inertial f rame traveling 
with v < c such that the two events occur at different space coordinates bu t at the 
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same time. When As2 < 0, the two events are said to have a timelike interval. 
One can always find a suitable inertial f r ame in which the events occur at the 
same point in space but at d i f ferent times. In the case As2 = 0, the two events 
are separated by a light ray. 

Only events separated by a timelike interval can be causally connected . 
The p resen t event in the light cone can be causally related only to events in 
the past region of the light cone. Events with a spacelike interval cannot be 
causally connec ted . Space a n d time, a l though distinct, are nonetheless intri-
cately related. 

T h e previous discussion of space and t ime suggests using ct as a four th di-
mensional parameter. We cont inue this line of thought by defining x4 = ict and 
x4 = ict'. The use of the imaginary n u m b e r i( V'— 1) does no t indicate that this 
componen t is imaginary. The imaginary n u m b e r simply allows us to represent 
the relations in concise, mathematical form. The rest of this section could jus t as 
well be carried out without the use of i(e.g., x4 = ct), but the mathematics 
would be more cumbersome. The useful results are in terms of real, physical 
quantities. 

Using x4 = ict and x4 = ict', we can write Equations 14.5 as* 

ixi = o 
tL = 1 

4 (14.74) 

From these equations, it is clear that the two sums must be proport ional , and be-
cause the mot ion is symmetrical between the systems, the proportionality con-
stant is unity.^ Thus, 

2 X 2 = I X ? (14.75) 

This relation is analogous to the three-dimensional, distance-preserving, ortho-
gonal rotations we have studied previously (see Section 1.4) and indicates that 
the Lorentz transformation corresponds to a rotat ion in a four-dimensional space 
(called world space or Minkowski space^). The Lorentz transformations are then 
orthogonal transformations in Minkowski space: 

* ; = (14.76) 

*In accordance with standard convention, we use Greek indices (usually /j. or v) to indicate summa-
tions that run from 1 to 4; in relativity theory, Latin indices are usually reserved for summations that 
run from 1 to 3. 
f A "proof ' is given in Appendix G. 
J Herman Minkowski (1864-1909) made important contributions to the mathematical theory of rela-
tivity and introduced ict as a fourth component. 
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where the AM„ are the elements of the Lorentz t ransformation matrix. From 
Equations 14.14, the transformation A is 

A = 

/ 7 
0 
0 

\-i/3y 

0 
1 
0 
0 

0 
0 
1 
0 

0 

0 

y ) 

(14.77) 

A quantity is called a four-vector if it consists of four components , each of 
which transforms according to the relation* 

2 A™ Ay 

where the AM„ def ine a Lorentz transformation. Such a four-vector* is 

— (*i, Xj, ict) 

or 

— (x, ict) 

(14.78) 

(14.79a) 

(14.79b) 

where the notat ion of the last line means that the first th ree (space) compo-
nents of X def ine the ordinary three-dimensional position vector x and that the 
four th componen t is ict. Similarly, the differential of X is a four-vector: 

dX = (dx, ic dt) (14.80) 

In Minkowski space, the four-dimensional e lement of length is invariant. Its 
magni tude is unaffected by a Lorentz t ransformation, and such a quantity is 
called a four-scalar or world scalar. Equation 14.71 can be written as 

ds = \flLdxl (14.81) 

and Equation 14.72 as 

dr = W ^ d x l = ds (14.82) 

T h e proper time dr is invariant because it is simply i/c times the e lement of 
length ds. The ratio of the four-vector dX to the invariant dr is therefore also a 
four-vector, called the four-vector velocity V: 

(14.83) 

The components of the ordinary velocity u are 

dxj 
U> = Tt 

*We do not distinguish here between covariant and contravariant vector components; see, for exam-
ple, Bergmann (Be46, Chapter 5). 
fFour-vectors are denoted exclusively by openface capital letters. 



14.9 SPACETIME AND FOUR-VECTORS 573 

so, using Equat ions 14.71 a n d 14.82, dr can be expressed as 

dr = d t , 
dx? 

or 

c2 j dF 

dT = dt V l - /32 
(14.84) 

as we f o u n d in Equat ion 14.73. T h e four-vector velocity can the re fore be written 
as 

(14.85) 

where u represents the th ree space componen t s of ordinary velocity, ux, M2, Us. 
(Remember that the particle's velocity is now d e n o t e d by u to distinguish it f rom 
the moving f r a m e velocity v.) T h e four-vector m o m e n t u m is now simply the mass 
times four-vector velocity,* because mass is invariant: 

P = mV (14.86) 

(14.87) 

where 

P* 
mc 

(14.88) 
V l - /32 

T h e first th ree componen t s of the four-vector m o m e n t u m IP a re the compo-
nen ts of the relativistic m o m e n t u m (Equation 14.45): 

Pj = pj - ymuj, j = 1 , 2 , 3 (14.89) 

Using Equat ion 14.63, the f o u r t h c o m p o n e n t of the m o m e n t u m is related to the 
total energy E: 

pi = ymc = -

T h e four-vector m o m e n t u m can the re fo re be writ ten as 

p, i~ 

(14.90) 

(14.91) 

where p stands fo r the three space componen t s of m o m e n t u m . Thus , in relativ-
ity theory, m o m e n t u m a n d energy are l inked in a m a n n e r similar to that which 
joins the concepts of space and time. If we apply the Lorentz transformation matrix 

*A four-vector multiplied by a four-scalar is also a four-vector. 
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(Equation 14.77) to the m o m e n t u m P , we f ind 

Pl 
Pi ~ (v/c2)E 

Pl V l - (32 

Pk = Pi 
p's = Ps 
E' 

E- vp1 

V i - p2 

(14.92) 

E X A M P L E 14.9 

Using the me thods of this section, derive Equat ion 14.67. 

Solution. If we place the origin of the moving system K' f ixed on the particle, 
we have u = v. T h e square of the four-vector velocity (Equat ion 14.85) is 
invariant: 

V 2 = E v 2 = ^ ^ = - C 2 (14.93) 
p- 1 ~ p 

Hence , the square of the four-vector m o m e n t u m is also invariant: 

P 2 = 2 P 2 = wi2V2 = -m2c2 (14.94) 

From Equat ion 14.91, we also have, using p • p = p2 = p\ + p\ + p\, 

E2 

P 2 = p2 - — (14.95) 
c1 

Combin ing the last two equat ions gives Equat ion 14.67. 

E2 = p2c2 + mV = p2c2 + El 

If we def ine an angle <f> such tha t /3 = sin </>, the relativistic relations between 
velocity, m o m e n t u m , and energy can be obta ined by t r igonometr ic relations in-
volving the so-called "relativistic triangle" (Figure 14-7). 

E X A M P L E 14 .10 

Derive the velocity addi t ion rule. 

Solution. Suppose that there are three inertial re ference frames, K, K', and K", 
which are in collinear mot ion along their respective x,-axes. Let the velocity of 
K' relative to AT be vY and let the velocity of K" relative to K' be v2- The speed of 
K" relative to K cannot be w, + v2, because it must be possible to propagate a sig-
nal between any two inertial frames, and if bo th Uj and v2 are greater than c /2 
(but less than c), then vx + > c. Therefore , the rule fo r the addit ion of veloci-
ties in relativity must be di f ferent f r o m that in Galilean theory. The relativistic 
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FIGURE 14-7 The relativistic triangle allows us to f ind relations between velocity, 
momentum, and energy by using trigonometric relations. 

velocity addition rule can be obtained by considering the Lorentz transforma-
tion matrix connect ing .Kand K". The individual transformation matrices are 

XK->K 

/ 7i 0 0 *0 i r A 
0 1 0 0 

0 0 1 0 

\ - *'0i7i 0 0 n / 

/ y2 0 0 Z02 y 2 \ 
0 1 0 0 

V 
0 0 1 0 

V -«02 y2 0 0 •y2 / 

The transformation f rom K" to K is jus t the p roduc t of these two transforma-
tions: 

VK"->K = A 

I Ti72(1 + 0 i0 2 ) o 0 0 ^ ( 0 ! + 0 2 ) \ 
0 1 0 0 
0 0 1 0 

\ - i y I T 2 ( 0 I + 0 2 ) 0 0 y l T 2 ( l + 0 ! 0 2 ) / 

So that the elements of this matrix correspond to those of the normal Lorentz 
matrix (Equation 14.77), we must identify 0 and y for the K" —>• K transforma-
tion as 

y = rir2(i 
0 r = r i r 2 ( 0 

+ 0 i 0 2 ) l 
i + 0 2 ) J 

f rom which we obtain 

0 = 
0i + 02 

1 + 0 i0 2 

(14.96) 

(14.97) 
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If we multiply this last expression by c, we have the usual fo rm of the velocity 
(speed) addition rule: 

(14.98) 

It follows that if w, < c and v2 < c, then v < c also. 

Even though signal velocities can never exceed c, there are o ther types of ve-
locity that can be greater than c. For example, the phase velocity of a light wave in 
a med ium for which the index of refraction is less than unity is greater than c, 
bu t the phase velocity does no t correspond to the signal velocity in such a 
medium; the signal velocity is indeed less than c. Or consider an electron gun 
that emits a beam of electrons. If the gun is rotated, then the electron beam de-
scribes a certain pa th on a screen placed at some appropriate distance. If the an-
gular velocity of the gun and the distance to the screen are sufficiently large, 
then the velocity of the spot traveling across the screen can be any velocity, arbi-
trarily large. Thus, the writing speed of an oscilloscope can exceed c, bu t again the 
writing speed does no t correspond to the signal velocity; that is, information 
cannot be transmitted f rom one point on the screen to ano ther by means of the 
electron beam. In such a device, a signal can be transmitted only f rom the gun 
to the screen, and this transmission takes place at the velocity of the electrons in 
the beam (i.e., < c). 

E X A M P L E 14.11 

Derive the relativistic Doppler effect if the angle between the light source and 
direction of relative mot ion of the observer is 0 (Figure 14-8). 

Solution. This example can easily be solved using the momentum-energy four-
vector by treating the light as a pho ton with total energy E= hv. T h e light 
source is at rest in system A -and emits a single frequency v0. 

E = hv0 (14.99) 

E hv o 
p = - = — (14.100) 

c c 

The observer moving to the right in system K' measures the energy E' for a pho-
ton of frequency v'. From Equation 14.92, we have 

E' = y(hv0 - vpi) (14.101) 

hv' = yl hv0 - — cos0 I (14.102) 

where p\= p cos 0. Equation 14.102 reduces to 

v' = yv0{\ - /3cos0) (14.103) 
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#2 K 

Observer 

*l 
(b) 

(a) 

FIGURE 14-8 A light source fixed in system R e m i t s l ight at a single frequency p0. An 
observer in system K', moving to the right at velocity v with 
respect to K, measures the light frequency to be v'. 

which is equivalent to Equat ion 14.34, d e p e n d i n g on the value of 6. For an early 
time, the observer is far to the left of the source, and as the observer ap-
proaches the source (0 = tr), 

V l + 0 
v = v0 —/ observer approach ing source ( 1 4 . 1 0 4 ) 

V l - j8 
as in Equat ion 14.31. At a m u c h later t ime, the observer is receding (6 = 0) and 

observer receding f r o m source " — "o / 
V l + 0 

as in Equat ion 14.33. W h e n the observer jus t passes the source (6 = TT/2), 

vo 

( 1 4 . 1 0 5 ) 

v = observer passing source ( 1 4 . 1 0 6 ) 
V l - /32 

We can also treat the case where the observer is at rest and the source is 
moving (see Prob lem 14-18). We still obtain Equat ions 14.104—14.106 because, 
according to the pr inciple of relativity, it is n o t possible to distinguish between 
the mot ion of the observer and the mot ion of the source. 
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14.10 Lagrangian Function in Special Relativity 

Lagrangian and Hamil tonian dynamics (discussed in Chapter 7) must be adjusted 
in light of the new concepts p resen ted here . We can ex tend the Lagrangian for-
malism into the realm of special relativity in the following way. For a single (non-
relativistic) particle moving in a veloci ty-independent potential , the rectangular 
m o m e n t u m componen t s (see Equat ion 7.150) may be written as 

dL 
Pi = ~ ( 1 4 . 1 0 7 ) 

dUi 

According to Equat ion 14.87, the relativistic expression fo r the ordinary (i.e., 
space) m o m e n t u m c o m p o n e n t is 

mUj 
( 1 4 . 1 0 8 ) 

" V T ^ 

We now requi re tha t the relativistic Lagrangian, when di f ferent ia ted with respect 
to Uj as in Equat ion 14.107, yield the m o m e n t u m c o m p o n e n t s given by Equat ion 
14.108: 

dL mu: 
— = . ( 1 4 . 1 0 9 ) 
d ^ V l - /32 

This r equ i r emen t involves only the velocity of the particle, so we expect tha t the 
velocity-independent pa r t of the relativistic Lagrangian is u n c h a n g e d f r o m the 
nonrelativistic case. T h e velocity-dependent par t , however, may n o longer be equal 
to the kinetic energy. We the re fore write 

L= T* - U ( 1 4 . 1 1 0 ) 

where U = U(x{) and T* = T*(Ui). The func t ion T* must satisfy the relation 

dT* mui 
= , ( 1 4 . 1 1 1 ) 

dUi V l - /32 

It can be easily verified that a suitable expression fo r T* (apar t f r o m a possible 
constant of integrat ion that can be suppressed) is 

T* = -mcWl ~ P2 (14.112) 

Hence , the relativistic Lagrangian can be written as 

L= -mcW 1 - p2 - U ( 1 4 . 1 1 3 ) 

and the equat ions of mot ion are ob ta ined in the s tandard way f r o m Lagrange's 
equations. 

Notice tha t the Lagrangian is not given by T — U, because the relativistic ex-
pression for the kinetic energy (Equation 14.58) is 

mc2 

T= , - mc2 ( 1 4 . 1 1 4 ) 
V i - p2 
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The Hamiltonian (see Equation 7.153) can be calculated f rom 

H = S u^ - L 

i ymc2 y 
where we have used Equations 14.108 and 14.113 and changed £T to y 
Thus, 

ph2 

ymc2 y ymc2 H = f ^ + + t / = i (/>2c2 + m 2 c 4 ) + U 

£ 2 

+ [/ 
ymc2 

= E+U=T+U+E0 (14.115) 

The relativistic Hamiltonian is equal to the total energy def ined in Section 14.8 
plus the potential energy. It differs f rom the total energy used previously in 
Chapter 7 by now including the rest energy. 

14.11 Relativistic Kinematics 

In the event that the velocities in a collision process are not negligible with respect 
to the velocity of light, it becomes necessary to use relativistic kinematics. In the dis-
cussion in Chapter 9, we took advantage of the properties of the center-of-mass co-
ordinate system in deriving many of the kinematic relations. Because mass and en-
ergy are interrelated in relativity theory, it no longer is meaningful to speak of a 
"center-of-mass" system; in relativistic kinematics, one uses a "center-of-momentum" 
coordinate system instead. Such a system possesses the same essential property as the 
previously used center-of-mass system—the total linear momentum in the system is 
zero. Therefore, if a particle of mass mx collides elastically with a particle of mass mh 

then in the center-of-momentum system we have 

pl = Pi (14.116) 

Using Equation 14.87, the space components of the m o m e n t u m four-vector can 
be written as 

m1u[y[ = m2u'%y2 (14.117) 

where, as before, y = 1 / V T — j S 2 and j8 = u/c. 
In a collision problem, it is convenient to associate the laboratory coordi-

nate system with the inertial system K and the center-of-momentum system 
with K' (see Figure 14-9). A simple Lorentz t ransformat ion then connects the 
two systems. To derive the relativistic kinematic expressions, the p rocedure is 
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System K 

Laboratory System 

System K' 
Center-of-Momentum System 

U2 = 0 

mj 

(a) Initial condition 

(c) Final condition 

" i 

(b) Initial condition 

(d) Final condition 

FIGURE 14-9 T h e elastic collision schematic of Figure 9-10 is redisplayed with 
systems X a n d K' indicated. 

to obtain the center -of-momentum relat ions and then p e r f o r m a Lorentz 
t ransformat ion back to the laboratory system. We choose the coordinate axes 
so that Wj moves a long the x-axis in ^ with speed ux. Because m2 is initially at 
rest in K, u2 = 0. In K', m^ moves with speed u2 and so K' moves with respect to 
.Kalso with speed u2 and in the same direct ion as the initial mot ion of ml. 

Using the fact that f3y = Vy¥ — 1, we have 

P'\ = "hu[y I = m1cP[ y[ 

= rriiC V y ^ — 1 = m^c \ / y 2 — 1 

= p2 (14.118) 

which expresses the equality of the m o m e n t a in the center-of-momentum 
system. 

According to Equation 14.92, the t ransformation of the m o m e n t u m px 

(from X t o K') is 

We also have 

fc = m^yA 
Ei = m,c2yj 

(14.119) 

(14.120) 
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so Equation 14.118 can be used to obtain 

mxc V-yi2 - 1 = {mxq3xyx - P'2mxcyx)y2 

= mlC(y^Vy?- 1 - 7 l V y ? - l) 

= m2c Vy? - 1 (14.121) 

These equations can be solved for y{ and y2 in terms of yx: 

JWi 

y'i = / , . v . (14.122a) 
1 + 2y4 — + . 

\ m 2 J \ m 2 

m2 

Next, we write the equations of the transformation of the m o m e n t u m components 
f rom K' back to K after the scattering. We now have both x- and y-components: 

A.* = + 7 

= {mxcP[yJ cos 9 + Tn^p^yDyk 

= ™,xcy[y'2{p[ cos 9 + P'2) (14.123a) 

(Note that, because the transformation is f rom K' to K, a plus sign occurs before 
the second term, in contrast to Equation 14.119.) Also, 

= m^Plyl sin 9 (14.123b) 

The tangent of the laboratory scattering angle ip is given by pXy/pXx\ therefore, 
dividing Equation 14.123b by Equation 14.123a, we obtain 

1 sin 6 
tan ill = V y'2 cos 9 + (P2/P[) 

Using Equation 14.117 to express P ' ^P i , the result is 

1 sin 9 
tan* = — — — (14.124) 

y 2 cos 9 + \mxyx/m2y2) 

For the recoil particle, we have 

p2,x = [Pix + 7 £ 2 )r2 

= (— m^cPhy!) cos 9 + m^cP^y2)y2 

= mtcpfrpil - cos 9) (14.125a) 
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where a minus sign occurs in the first te rm because p'%x is directed opposite to 
px x. Also, 

p2y = ~m2cfl 2y'2sm 6 (14.125b) 

As before, the tangent of the laboratory recoil angle £ is given by p2,y/p2tX: 

U N H - ^ (14-126) y 2 1 — cos 6 

The overall minus sign indicates that if TO, is scattered toward positive values of 
i f f , then m2 recoils in the negative ^-direction. 

A case of special interest is that in which TO, = m2. From Equations 14.122, 
we f ind 

y'l = 72 = J ^ A = ^ <14-127> 

The tangents of the scattering angles become 

t a n ^ = a / t t — • T T 6
 a ( 14 .128 ) 1 + y j 1 + cos 9 

. a n f ( 14 .129 ) 

1 + 7 ! 1 - cos 6 

T h e produc t is therefore 

2 tan <J/ tan £ = —- , m, = m2 (14.130) 1 + y! 

(The minus sign is of no essential importance; it only indicates that ip and £ are 
measured in opposite directions.) 

We previously f o u n d that in the nonrelativistic limit there was always a right 
angle between the final velocity vectors in the scattering of particles of equal 
mass. Indeed, in the limit —> 1, Equations 14.128 and 14.129 become equal to 
Equations 9.69 and 9.73, respectively, and so i/f + £ = tt/2. Equation 14.130, 
however, shows that in the relativistic case iff + £ < TT/2; thus, the included angle 
in the scattering is always smaller than in the nonrelativistic limit. For equal scat-
tering and recoil angles (t[/ = £), Equation 14.130 becomes 

, ( 2 Y / 2 
tan <fr = I — , wij = m2 

\1 + 7i/ 

and the included angle between the directions of the scattered and recoil parti-
cles is 

4> = if> + ( = 2iff 

( 2 \ 1 / 2 

= 2 t a n " 1 - , m i = m2 (14.131) 
\ i + yd 
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FIGURE 14-10 T h e included scattering angle, <t> = ip + £, is shown as a funct ion of 
the relativistic parameter y, for m, = m2. For nonrelativistic 
scattering (y, = 1), this angle is always 90°. 

Figure 14-10 shows <f> as a funct ion of •y1 u p to yx = 20. At = 10, the included 
angle is approximately 46°. This value of yx corresponds to an initial velocity that 
is 99.5% of the velocity of light. According to Equation 14.58, the kinetic energy 
is given by Tx = — 1); the re fore , a p ro ton with yx = 10 would have a 
kinetic energy of approximately 8.4 GeV, whereas an electron with the same ve-
locity would have 1\ = 4.6 MeV.* 

By using the transformation propert ies of the four th componen t of the mo-
m e n t u m four-vector (i.e., the total energy), it is possible to obtain the relativistic 
analogs of all the energy equations we have previously derived in the nonrela-
tivistic limit. 

PROBLEMS 

14-1. Prove Equation 14.13 by using Equations 14.9-14.12. 

14-2. Show that the transformation equations connect ing the K' and K systems 
(Equations 14.14) can be expressed as 

x\ = Xy cosh a — ct s inh a 

X2 X2, 

t' = t cosh a s inh a 
c 

where tanh a = v/c. Show that the Lorentz transformation corresponds to a rota-
tion through an angle ia in four-dimensional space. 

•These units of energy are defined in Problem 14-39: 1 GeV = 103 MeV = 109 eV = 1.602 X 
10~serg = 1.602 X 10"10J. 
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14-3. Show that the equat ion 

1 d2V 
V 2 ^ - = 0 

c dt2 

is invariant under a Lorentz transformation but no t under a Galilean transforma-
tion. (This is the wave equat ion that describes the propagation of l ight waves in 
free space.) 

14-4. Show that the expression for the FitzGerald-Lorentz contraction (Equation 14.19) 
can also be obtained if the observer in the K' system measures the t ime necessary 
for the rod to pass a f ixed point in that system and then multiplies the result by v. 

14-5. What is the apparent shape o f a c u b e m o v i n g with a u n i f o r m velocity directly 
toward or away from an observer? 

14-6. Consider two events that take place at different points in the AT system at the same in-
stant t. If these two points are separated by a distance Ax, show that in the K' system 
the events are not simultaneous but are separated by a time interval At' = — vy A x/c2. 

14-7. Two clocks located at the origins of the K and K' systems (which have a relative 
speed v) are synchronized w h e n the origins coincide . After a time t, an observer at 
the origin of the K system observes the K' clock by means of a telescope. What 
does the K' clock read? 

14-8. In his 1905 paper (see the translation in Lo23) , Einstein states: "We conc lude that 
a balance-clock at the equator must g o more slowly, by a very small amount , than a 
precisely similar clock situated at o n e of the poles u n d e r otherwise identical con-
ditions." Neg lec t the fact that the equator clock does no t undergo uni form mo-
tion and show that after a century the clocks will differ by approximately 0 .0038 s. 

14-9. Consider a relativistic rocket whose velocity with respect to a certain inertial frame 
is v and whose exhaust gases are emitted with a constant velocity V with respect to 
the rocket. Show that the equation of m o t i o n is 

dt dt 
where m = m(t) is the mass of the rocket in its rest frame and /3 = v/c. 

14-10. Show by algebraic methods that Equations 14.15 fol low from Equations 14.14. 

14-11. A stick of l ength I is f ixed at an angle 0 f rom its x r axis in its own rest system K 
What is the length and orientation of the stick as measured by an observer moving 
a long Xj with speed v? 

14-12. A racer attempting to break the land speed record rockets by two markers spaced 
100 m apart o n the ground in a time of 0 .4 /x.s as measured by an observer o n the 
ground. H o w far apart d o the two markers appear to the racer? What e lapsed time 
does the racer measure? What speeds d o the racer and ground observer measure? 

14-13. A m u o n is moving with speed v = 0 .999c vertically down through the atmosphere. 
If its half-life in its own rest frame is 1.5 fis, what is its half-life as measured by an 
observer o n Earth? 
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14-14. Show that Equation 14.31 is valid when a receiver approaches a fixed light source 
with speed v. 

14-15. A star is known to be moving away from Earth at a speed of 4 X 104 m / s . This 
speed is determined by measuring the shift of the Ha line (A = 656.3 nm). By how 
much and in what direction is the shift of the wavelength of the Ha line? 

14-16. A photon is emitted at an angle 0' by a star (system K') and then received at an 
angle 0 on Earth (system K). The angles are measured from a line between the 
star and Earth. The star is receding at speed v with respect to Earth. Find the rela-
tion between 0 and 0'; this effect is called the aberration of light. 

14-17. The wavelength of a spectral line measured to be A on Earth is found to increase 
by 50% on a far distant galaxy. What is the speed of the galaxy relative to Earth? 

14-18. Solve Example 14.11 for the case of the observer at rest and the source moving. 
Show that the results are the same as those given in Example 14.11. 

14-19. Equation 14.34 indicates that a red (blue) shift occurs when a source and observer 
are receding (approaching) with respect to one another in purely radial motion 
(i.e., /3 = f3r). Show that, if there is also a relative tangential speed pi, Equation 
14.34 becomes 

and that the condition for always having a red shift (i.e., no blue shift), A > A0 or 
v < v0, is* 

14-20. An astronaut travels to the nearest star system, 4 light years away, and returns at 
speed 0.3c. How much has the astronaut aged relative to those people remaining 
on Earth? 

14-21. The expression for the ordinary force is 

Take u to be in the ^-direction and compute the components of the force. Show 
that 

A0 _ v _ V l ~ |B» ~ ;8f 
A v0 1 - f3r 

ft > 2 / 3 r ( l - Pr) 

= miiiy, F2 = mtuv Fs = m,us 

where m, and m, are, respectively, the longitudinal mass and the transverse mass: 

m m 

*SeeJ.J. Dykla, Am.]. Phys. 47, 381 (1979). 
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14-22. T h e average rate at which solar radiant energy reaches Earth is approximately 
1.4 X 103 W/m 2 . Assume that all this energy results f rom the conversion of mass 
to energy. Calculate the rate at which the solar mass is be ing lost. If this rate is 
maintained, calculate the remaining l i fet ime of the Sun. (Pertinent numerical 
data can be f o u n d in Table 8-1.) 

14-23. Show that the m o m e n t u m and the kinetic energy of a particle are related by 
p2c2 = 2 Tmc2 + T2 . 

14-24. What is the m i n i m u m proton energy n e e d e d in an accelerator to produce an-
tiprotons J) by the reaction 

p + p ^ p + p+ (p + p) 

T h e mass of a proton and antiproton is mp. 

14-25. A particle of mass m, kinetic energy T, and charge q is moving perpendicular to a 
magnet ic f ield B as in a cyclotron. Find the relation for the radius r of the parti-
cle's path in terms of m, T, q, and B. 

14-26. Show that an isolated p h o t o n cannot be converted into an electron-positron pair, 
y —> e~ + e" . (The conservation laws allow this to happen only near another object.) 

14-27. Electrons and positrons col l ide from opposi te directions head-on with equal ener-
gies in a storage ring to produce protons by the reaction 

e~ + e+ ->p + p 

The rest energy of a proton and antiproton is 938 MeV. What is the m i n i m u m ki-
netic energy for each particle to produce this reaction? 

14-28. Calculate the range of speeds for a particle of mass m in which the classical rela-
tion for kinetic energy, | mv2, is within o n e percent of the correct relativistic value. 
Find the values for an e lectron and a proton. 

14-29. T h e 2-mile l ong Stanford Linear Accelerator accelerates electrons to 50 GeV 
(50 X 109 eV). What is the speed of the electrons at the end? 

14-30. A free neutron is unstable and decays into a proton and an electron. H o w m u c h 
energy other than the rest energies of the proton and e lectron is available if a neu-
tron at rest decays? (This is an example of nuclear beta decay. Another particle, 
called a neutrino—actually an antineutrino v is also produced. ) 

14-31. A neutral p ion 7r° moving at speed v = 0.98c decays in f l ight into two photons . If 
the two photons emerge o n each side of the pion's direction with equal angles 0, 
f ind the angle 0 and energies of the photons . T h e rest energy of 7r° is 135 MeV. 

14-32. In nuclear and particle physics, m o m e n t u m is usually quoted in M e V / c to facili-
tate calculations. Calculate the kinetic energy of an e lectron and proton if each 
has a m o m e n t u m of 1000 MeV/c . 

14-33. A neutron (mn = 939.6 MeV/c2) at rest decays into a proton (mp = 938.3 MeV/c 2 ) , 
an electron (me = 0.5 MeV/c 2 ) , and an antineutrino (mv ~ 0). T h e three particles 
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emerge at symmetrical angles in a plane, 120° apart. Find the momentum and ki-
netic energy of each particle. 

14-34. Show that As2 is invariant in all inertial systems moving at relative velocities to 
each other. 

14-35. A spacecraft passes Saturn with a speed of 0.9c relative to Saturn. A second 
spacecraft is observed to pass the first one (going in the same direction) at rel-
ative speed of 0.2c. What is the speed of the second spacecraft relative to 
Saturn? 

14-36. We define the four-vector force F (called the Minkowski force) by differentiating 
the four-vector momentum with respect to proper time. 

14-37. Consider a one-dimensional, relativistic harmonic oscillator for which the 
Lagrangian is 

Obtain the Lagrange equation of motion and show that it can be integrated to 
yield 

where a is the maximum excursion from equilibrium of the oscillating particle. 
Show that the period 

Show that the four-vector force transformation is 

F'i = 7 (F, + i m 
Fi = F2 

F*S = F3 

F4 = r ( f 4 - im) 

E = mc2 + - Aa2 1 

can be expressed as 

Expand the integrand in powers of K = (a/2) Vk/ mc2 and show that, to first 
order in K, 

where r 0 is the nonrelativistic period for small oscillations, 2TT\/m/k. 
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14-38. Show that the relativistic form of Newton's Second Law becomes 

du/ M 2Y V 2 

F = m J t 

14-39. A common unit of energy used in atomic and nuclear physics is the electron volt 
(eV), the energy acquired by an electron in falling through a potential difference 
of one volt: 1 MeV = 106 eV = 1.602 X 10~13 J. In these units, the mass of an elec-
tron is OTpC2 = 0.511 MeV and that of a proton is mpc2 = 938 MeV. Calculate the 
kinetic energy and the quantities f3 and y for an electron and for a proton each 
having a momentum of 100 MeV/ c. Show that the electron is "relativistic" whereas 
the proton is "nonrelativistic." 

14-40. Consider an inertial frame K that contains a number of particles with masses ma, 
ordinary momentum components pap and total energies Ea. The center-of-mass 
system of such a group of particles is defined to be that system in which the net or-
dinary momentum is zero. Show that the velocity components of the center-of-
mass system with respect to K are given by 

^Pa.jC a J 

14-41. Show that the relativistic expression for the kinetic energy of a particle scattered 
through an angle if/ by a target particle of equal mass is 

II 
To 

2cos2t^ 

(7i + 1) - (7i - l ) c o s V 

The expression evidently reduces to Equation 9.89a in the nonrelativistic limit 
-yj —> 1. Sketch T, (if/) for neutron-proton scattering for incident neutron energies 
of 100 MeV, 1 GeV, and 10 GeV. 

14-42. The energy of a light quantum (or photon) is expressed by E = hv, where h is 
Planck's constant and v is the frequency of the photon. The momentum of the 
photon is hv/ c. Show that, if the photon scatters f rom a free electron (of mass me), 
the scattered photon has an energy 

E' 1 + ; (1 - cos 6) 
meC 

where 0 is the angle through which the photon scatters. Show also that the elec-
tron acquires a kinetic energy 

T = 
E2 1 — cos d 

m,.cA 

1 + 
E 

m,.c% (1 - cos«) 

"Better is the end of a thing than the beginning thereof."—Ecclesiastes 



APPENDIX 

Taylor's Theorem 

A theorem of considerable importance in mathematical physics is Taylor's theo-
rem,* which relates to the expansion of an arbitrary function in a power series. 
In many instances, it is necessary to use this theorem to simplify a problem to a 
tractable form. 

Consider a function / (x) with continuous derivatives of all orders within a 
certain interval of the independent variable x. If this interval includes ^ < 
x ^ *<) + h, we may write 

where f'(x) is the derivative of f(x) with respect to x. If we make the change of 
variable 

(A.1) 

x = x0 + h — t (A.2) 

we have 

/ = f'(x0 + h-t)dt (A.3) 
o 

Integrating by parts 
h rh 

I = tf'(x0 + h — t) + tf"(x0 + h - t)dt 
0 0 

rh 
= hf'(x0) + tf"(x0 + h - t)dt (A.4) 

o 

*First publ i shed in 1715 by the English mathemat ic ian Brook Taylor (1685-1731) . 
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Integrating the second term by parts, we find 

/= hfixo) +-/"(Xo) + -/'"(xo + h - t)dt (A.5) 

Continuing this process, we generate an infinite series for /. From the definition 
of /, we then have 

(A.6) 

This is the Taylor series expansion* of the function f(x0 + h). A more common 
form of the series results if we set x0 = 0 and h — x [i.e., the function / ( x ) is ex-
panded about the origin]: 

(A.7) 

where 

dn 

(A.8) 
x = 0 

Equation A.7 is usually called the Maclaurin's series* for the function /(x). 
The series expansions given in Equations A.6 and A.7 possess two important 

properties. Under very general conditions, they may be differentiated or inte-
grated term by term, and the resulting series converge to the derivative or inte-
gral of the original function. 

EXAMPLE A.l 

Find the Taylor series expansion of ex. 

Solution. Because the derivative of exp(x) of any order is just exp (x), the expo-
nential series is 

X 2 X 3 

ex = 1 + x + — + — + • • • 

2! 3! 
(A.9) 

This result is of considerable importance and will be used often. 

* T h e remainder t e r m of a series t ha t is t e r m i n a t e d a f t e r a f in i te n u m b e r of t e rms is discussed, fo r 
e x a m p l e , by Kaplan (Ka84). 
•[Discovered by J a m e s Stirling in 1717 and pub l i shed by Colin Maclaur in in 1742. 
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Taylor's series can be used to restructure a function as well as to approximate it. 
For some applications, such a restructuring may be more useful to work with. We 
may, for example, want to expand the polynomial/(x) = 4 + 6x + 3x2 + 2x3 + x4 

about x = 2 rather than x = 0. 

Solution. First, we compute the various derivatives and evaluate them at x = 2: 

Using Equation A.6 with h = (x — 2) 

f(x) = 60 + 74(x - 2) + 39 (x - 2)2 + 10(x - 2)3 + (x - 2)4 (A.15) 

There are a great many important integrals arising in physics that cannot be in-
tegrated in closed form, that is, in terms of elementary functions (polynomials, 
exponentials, logarithms, trigonometric functions, and their inverses). Integrals 
with integrands 

are a few such examples. Nevertheless, the values of the integrals or good ap-
proximations of their values are needed. A Taylor series expansion of all or part 
of the integrand followed by a term-by-term integration of the resulting series 
produces an answer as precise as is wished. As an example, solve the following 
integral: 

/ ( 2 ) = 6 0 

/ ' ( 2 ) = (6 + 6x + 6x2 + 4X3)|x=2 = 74 

/ " ( 2 ) = (6 + 12x + 12X2)|x=2 = 78 

/ " ' (2 ) = (12 + 24x) 1̂ =2 = 60 
yiv( 2) = 24 

/
v
(2) = 0 

x 

(A. 16) 

Solution. Using Equation A.9, 

(A.17) 
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EXAMPLE A.2 

Find the Taylor series expansion of sin x. 

Solution. To expand J{x) = sinx, we need 

/(x) = sinx, / (0) 
f'{x) = cosx, / ' ( 0 ) 

/ " (x) = - s inx , / " ( 0 ) 
/ '"(x) = -cosx, / " ' (0) 

Therefore, 

Similarly, 

0 

1 

0 

- 1 

(A. 10) 

(A.11) 

EXAMPLE A.3 

Use the Taylor series expansion of (1 + t) 1 to integrate 
rx dt 
o 1 + t 

Solution. A series expansion can often be profitably used in the evaluation of a 
definite integral. (This is particularly true for those cases in which the indefinite 
integral cannot be found in closed form.) 

J o l + * Jo 
)dt, \t\ < 1 

I n t e g r a t i n g t e r m by t e r m , we find 

(x dt x2 x3 

= X + 
'ol + z 2 3 

Because 

We also have the result 

d 1 
- l n ( l + x) =—— 
dx 1 + x 

X 2 X 3 

ln( l + * ) = * - - + - -

(A. 12) 

(A. 13) 

(A 14) 
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(* dt r , t x f 
— + dt + — dt + —dt + 

.1 t Ji i 2 Ji 3! 

= l n x - ( x - 1) + 1) + 1) + - (A. 18) 

PROBLEMS 

A-l. Show by division and by direct expansion in a Taylor series that 

—— = 1 + * + *2 + + ••• + xn + ••• 1 — x 

For what range of x is the series valid? 

A-2. Expand cosx about the point * = 7T/4. 

A-3. Use a series expansion to show that 

[ 1 ex — e~x 

dx= 2.1145.... 
o * 

A-4. Use a Taylor series to expand sin 1 x. Verify the result by expanding the integral in 
the relation 

sin 1 * 

A-5. Evaluate to three decimal places: 

ri 

- I 

dt 
Vl - t2 

[ exp(-x2/2 )dx 
) 

Compare the result with that determined from tables of the probability integral. 

A-6. Show that if /(x) = (1 + x)n (with |x| < 1) is expanded in a Taylor series, the re-
sult is the same as a binomial expansion. 



APPENDIX 

Elliptic Integrals 

There is a large and important class of integrals called elliptic integrals that can-
not be evaluated in closed form in terms of elementary functions. Elliptic inte-
grals occur in many physical situations; for example, see the exact solution to the 
plane pendulum in Section 4.4. Any integral of the form 

(,a sin 6 + b cos 6 + c)±1/2 dd, or R{x,Vy)dx (B.l) 

where R is a rational function, y = + bxs + cx2 + dx + e, with distinct linear 
factors and a, b, c, d, and e constants (with not both a, b zero) is an elliptic inte-
gral. It is customary, however, to transform all elliptic integrals into one or more 
of three standard forms. These standard forms have been much studied and tab-
ulated. Several handbooks are available with tables of values for them* 

B.l Elliptic Integrals of the First Kind 

F(k,<f>) = 
Jo 

dd 

V l - ft2 sin2 9 
k 2 < 1 (B.2a) 

or if z = sin 6 

F(k, x) = 
rx dz 
o V ( 1 - z2)(l - k2z2)' 

k2 < 1 (B.2b) 

* O n e of the best of these is Abramowitz a n d S tegun (Ab65). See also extensive numer ica l tables in 
Adams a n d Hippisley (Ad22) a n d short tables in Dwight (Dw61). 
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B.2 Elliptic Integrals of the Second Kind 

E(k, <f>) = V l - k2 sin2 0 dd, fp < 1 (B.3a) 

or if z = sin 0 

f x 11 - fe2z2 

*) = I y j dz, k2 < 1 (B.3b) 

B.3 Elliptic Integrals of the Third Kind 

r<t> 
n(w, k,<f>) = — , (B.4a) 

Jo (1 + n sin2 9) V l - k2 sin2 6 

or if z = sin 6 

dz 
n(n, k, x) 

.0(1 + nz2) V ( 1 - z?)(l - k2z2) 

These standard forms obey the following identities, which are often helpful: 

(B.4b) 

F(k, <f>) = F(k, TT) - F(k, TT -

E{k, tf>) = E(k, TT) - E(k, 
TT - </>)! 

TT - (F>)J 
(B.5) 

and 

F ( K . RRITT + D>) = m F ( K . TT) + F ( K . ^ n 
(B.6) 

F(k, MTT + </>) = mF(k, TT) + F(k, 
E(k, MTT + </>)= mE{k, TT) + E(k , <t>)l 

where m is an integer. 
If tables are not handy or if <f> or x is needed as a variable, the standard inte-

grals may be approximated by expanding the integrand in an infinite series and 
integrating term by term. For example, consider 

IVr= Jo 
E(k, (f>) = V l - A2 sin26 dd 

Using the binomial theorem on the integrand 

(1 - k2 sin2 d)1/2 = 1 — ^ k 2 sin2 0 — ^ k4 sin4 0 -
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SO 

E(k, <f>) = 1 - - k2 sin2 6 - I k 4 sin4 6 -
2 8 

1 • 3 • 5 ••• ( 2 n - 3 ) 

= 0 -

2 - 4 - 6 - - ( 2 n ) 

k2 

sin2" d - dd 

2 J 

* „ 1 - 3 - 5 ••• ( 2 n - 3 ) , 
sin2 0d0 . ;—~——~—: k2n 

o 2 • 4 • 6 ••• ( 2 n ) 

4-
sin2n0 dd - (B.7) 

Similarly, the binomial theorem can be used to expand (1 — k2 sin2 d) 1/2 to 
yield 

<f> 
F(k, <j>)=cf> + ^ k 2 

f<t> 3 
sin2 ddd + - k4 

o 8 sin4 6dd + 

1 » 3 ' 5 ••• ( 2 n — 1 ) 9 
+ k2n 

2 • 4 • 6 ••• ( 2 n ) 

•4> 
sin2" ddd + (B.8) 

EXAMPLE H.I 

Put the integral v r — k2 sin2 6 dB into standard form. 
<t>x 

Solution. Recall from calculus that for any integral 
write 

f(x) dx it is possible to 

f ( x ) d x = I f ( x ) d x + f ( x ) d x 

so 

V l - k sin2 6 dd 
ro = v r r k2 sin2 6 dd + r v r r 

Jo 
& sin2 d dd 

But there is another property of integrals: 

f { x ) d x — f { x ) d x 

so 

I '4> 2 f<t>2 f<P\ 

V l - A2sin2 0d0 = V l - k2 sin2 ddd - V l - k2 sin2 d dd 
<t>, Jo Jo 
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or 

P V l - A2 sin2 6 dd = E(k, <j>2) - E(k, <t>x) (B.9) 
Ui 

The terms on the right can be looked up in a handbook. 

EXAMPLE B.2 

Transform the elliptic integral 

dd 
—. = , where n2 > 1 

Jo V l - n2 sin2 0 

into a standard form. 

Solution. To reduce this integral to standard form, the radical must be trans-
formed to v r — A2 sin20, with k2 < 1. To do this, consider the transformation 
n sin 0 = sin /3. Differentiating, we have 

n cos 6d0 = cos /3 d f i 

so 

dd = 
cos 
n cos 6 

Using the identity sin2 9 + cos2 6 = 1 leads to 

cos 0 = V l - sin2 6 = yji _ sin /3 
n 

Also, cos /3 = V l — sin2 /3, and V l — n2 sin2 6 = V l — sin2/3. Hence the in-
tegral becomes 

dd 

o V l - n2 sin2 0 Jo • I 
sin~'(n sin tf>) V l ~ sin2 /3 

n ^ . ^ l J V l - sin2 /3 

- i f 
w j o 

sin"'(n sin 
<43 

|sin2/3 
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SO 

f4> dd fsin-1(»i sin < d p 

jo V l - w2 sin2 6 n J o 
sin2 )3 

where 1/rc2 < 1. The integral on the right is now in standard form. 

(B.10) 

EXAMPLE B.3 

Transform the elliptic integral 

f t dd 
0 V c o s 20 

into a standard form. 

Solution. Let /a = sin 0; then d/x = cos 0 dd. Because cos 2 0 + sin 2 0 = 1, 
cos 0 = V l — sin2 0 = V l — /x2, so dd = dn/\/\ — /JL2. By another trigono-
metric identity, cos 20 = 1 - 2 sin2 0 = 1 - 2/a2. Thus V c o s 20 = V l - 2/a2, 
and 

dd ("sin (f> du 

jo V c o s 20 Jo V l - v 2 V l - 2m2 

Let z = V 2 fi; then dz = V 2 du, so 

r4 1 f V 2 » n 4 

f Jo 
dz 

jo V c o s 20 V2J0 V ( 1 - Z 2 ) ( l - ± z 2 ) 

The integral on the right is in standard form. 

(B . l l ) 

PROBLEMS 

B-l. Evaluate the following integrals using a set of tables, 
(a) 7^0.27, t t / 3 ) (b) £(0.27, t t / 3 ) 
(c) 7^0.27, ITT/4) (d) £(0.27, 77t/4) 

B-2. Reduce to standard form: 

(a) r v ^ = = « r / 3 * 
Jo V l - 4sin20 J-1/4V 1 - Ẑ  

B-3. Find the binomial expansion of (1 — k2 sin2 0)~1 / 2 and then derive Equation B.8. 



APPENDIX 

Ordinary Differential 
Equations of 

Second Order* 

C 

C.l Linear Homogeneous Equations 
By far, the most important type of ordinary differential equation encountered in 
problems in mathematical physics is the second-order linear equation with con-
stant coefficients. Equations of this type have the form 

d2y dy j + a ^ + h = f ( x ) ( C . l a ) 

or, denoting derivatives by primes, 

y" + ay' + by = f(x) (C.lb) 

A particularly important class of such equations are those for which f(x) = 0. 
These equations (called homogeneous equations) are important not only in 
themselves but also as reduced equations in the solution of the more general type 
of equation (Equation C.l). 

We consider the linear homogeneous second-order equation with constant 
coefficients first.* 

y" + ay' + by = 0 (C.2) 

*A s tandard treatise o n di f ferent ia l equa t ions is that of Ince ( In27) . A listing of many types of equa-
tions a n d thei r solut ions is given by Murphy (Mu60) . A m o d e r n viewpoint is con t a ined in the book 
by Hochs tad t (Ho64) . 
f T h e first publ ished solution of an equa t ion of this type was by Euler in 1743, bu t the solution appears 
to have been known to Daniel a n d j o h a n n Bernoull i in 1739. 

599 



600 C / ORDINARY DIFFERENTIAL EQUATIONS OF SECOND ORDER 

These equations have the following important properties: 

a. 
b. 

c. 

If )>! (x) is a solution of Equation C.2, then cxyx (x) is also a solution. 
If ^(x) and ^C*) a r e solutions, then ^(x) + ^(x) is also a solution (principle 
of superposition). 
If yi(x) and y%(x) are linearly independent solutions, then the general solution 
to the equation is given by Ci>j(x) + c<2y2{x). (The general solution always 
contains two arbitrary constants.) 

The functions ^(x) and y2(x) are linearly independent if and only if the 
equation 

A^(x) + fiy2(x) = 0 (C.3) 

is satisfied only by A = /JL = 0. If Equation C.3 can be satisfied with A and /u, dif-
ferent from zero, then ^ (x ) and jy2(JC) are said to be linearly dependent. 

The general condition (i.e., the necessary and sufficient condition) that a 
set of functions yi,y2,y$,... be linearly dependent is that the Wronskian determi-
nant of these functions vanish identically: 

y\ y 2 >3 yn 

y[ >2 - y'n 

y] > 2 • • y: 

y(n-1, 1) • 

= 0 (C.4) 

where y(n) is the nth derivative of y with respect to x. 
The properties (a) and (b) above can be verified by direction substitution, 

but (c) is only asserted here to yield the general solution. These properties apply 
only to the homogeneous equation (Equation C.2) and not to the general equa-
tion (Equation C.l) . 

Equations of the type C.2 are reducible through the substitution 

y = eT (C.5) 

Now 

y' = reTX, yn = rV* (C.6) 

Using these expressions for y' and y" in Equation C.2, we find an algebraic equa-
tion called the auxiliary equation: 

r2 + ar + b = 0 (C.7) 

The solution of this quadratic in r is 

r = - | ± ^ V a 2 - 4 b 
2 2 

(C.8) 

We first assume that the two roots, denoted by rx and r2, are not identical and 
write the solution as 

y = en* + eTix (C.9) 
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Because the Wronskian determinant of e x p ^ x ) and exp(r2x) does not vanish, 
these functions are linearly independent. Thus, the general solution is 

y = cxer*x + r\ ^ r2 (C.10) 

If it happens that rx = r2 = r, then it can be verified by direct substitution 
that xexp(rx) is also a solution, and because exp(rx) and xexp(rx) are linearly 
independent, the general solution for identical roots is given by 

y = cxeTX + fyxe™, rx = r2 • r (C.l l) 

EXAMPLE C.l 

Solve the equation 

y" - 2y' - Sy = 0 

Solution. The auxiliary equation is 

r2 - 2 r - 3 = ( r - 3 ) ( r + 1) 

The roots are 

n = 3, r2 = - 1 

The general solution is therefore 

y = cxeix + c2e~x 

= 0 

(C.12) 

(C.13) 

(C.14) 

(C.15) 

EXAMPLE C.2 

Solve the equation 

y" + Ay' + 4y = 0 

Solution. The auxiliary equation is 

r2 + 4r + 4 = (r + 2)2 = 0 

The roots are equal, are r = — 2. The general solution is therefore 

y = cxe~2x + c2xe~2x 

(C.16) 

(C.17) 

(C.l 8) 

If the roots rx and r2 of the auxiliary equation are imaginary, the solutions 
given by cx e x p ^ x ) and c2 exp(r2x) are still correct. 
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To give the solutions entirely in terms of real quantities, we use the Euler re-
lations to express the exponentials. Then, 

erxx — gaxgipx _ gax( CQS + j s j n px) 

grtx - eaxe-ipx _ gCtx( CQS _ j s j n ^ ^ 

and the general solution is 

y = + c%eriX 

= eax[{cx + c2)cos/3x + i{cx - c2)sin/3x] (C.20) 

Now Cj and c2 are arbitrary, but these constants may be complex. However, not 
all four elements can be independent (because there would be four arbitrary 
constants rather than two). The number of independent elements can be re-
duced to the required two by making cx and c2 complex conjugates. Then the 
combinations A = C\ + c2 and B = i(cx — c2) become a pair of arbitrary, real 
constants. Using these quantities in the solution, we have 

y = eax(A cos fix + B sin (3x) (C.21) 

Equation C.21 may be put into a form that is sometimes more convenient by 
multiplying and dividing by /x = VA 2 -I- B2: 

y = neax[(A/n) cos + (B//x) sin )3x] (C.22) 

Next, we define an angle 8 (see Figure C-l) such that 

sin 8 = A/fx, cos 8 = tan 8 = A/B (C.23) 

Then, the solution becomes 

y = ixeax( sin 5 cos j3x + cos 8 sin fix) 

= \xeax sm((3x + 5) 

Depending on the exact definition of the phase 8, we may write the solution 
alternatively as 

(C.24a) 

(C.24b) 

A 

B y 
FIGURE C-l 

(C.19) 

y = ixeax sin(/3x + 5) 

y = fieax cos((3x -f 8) 
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EXAMPLE C.3 

Solve the equation 

y"+2y' + 4y = 0 (C.25) 

Solution. The auxiliary equation is 

r2 + 2 r + 4 = 0 (C.26) 

with 

- 2 ± V 4 - 16 r r = —— j 1 — = — 1 ± t V 3 (C.27) 

Hence, 

a = —1, (3 = V 3 (C.28) 

and the general solution is 

j = e-x(q cos V 3 x + c2 sin V3x) (C.29) 

or 

y = fxe~x sin [ ( V S x + 8) ] . (C.30) 

Summarizing, then, there are three possible types of general solutions to 
homogeneous second-order linear differential equations, as indicated in 
Table C-l. 

TABLE C-l 
Roots of the auxiliary equations General solution 

Real, unequa l (rj # r2) Cier,x + c2er,x 

Real, equal = r2 = r) qe™ + c2xerx 

Imaginary (a ± i/3) eax(cl cos fix + c2 sin fix) 
or 

fieax sin(/3x + 8) 

C.2 Linear Inhomogeneous Equations 
To solve the general (i.e., inhomogeneous) second-order linear differential 
equation, consider the following. Let y = u be the general solution of 

y" + ay' + by= 0 (C.31) 

and let y = v be any solution of 

y" + ay'+ by = / ( * ) (C.32) 
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Then, y = u + v is a solution of Equation C.32, because 

y" + ay' + by = (u" + au' + bu) + (v" + av' + bv) 

= 0 + / < * ) 

Because u contains the two arbitrary constants cx and c2, the combinations u + v 
satisfies all the requirements of the general solution to Equation C.32. The func-
tion u is the complementary function and v is the particular integral of the equa-
tion. Because a general method of finding u has been given above, it only re-
mains to find, by inspection or by trial, some function v that satisfies 

v" + av' + bv = / ( x ) (C.33) 

EXAMPLE C. l 

Solve the equation 

y" 4- by' + 6y = x2 + 2x (C.34) 

Solution. The auxiliary equation is 

' r2 + 5 r + 6 = (r + 3 ) ( r + 2) = 0 (C.35) 

rx = - 3 , r2 = - 2 (C.36) 

so the complementary function is 

u = cxe~ix + c2e~2x (C.37) 

Because the right-hand side of the original equation is a second-degree polyno-
mial, we guess a particular integral of the form 

v = Ax2 + Bx + C (C.38) 

Then, 

v' = 2 Ax+ B (C.39) 

v" = 2A (C.40) 

Substituting into the differential equation, we have 

2 A + 5(2 Ax + B) + 6 (Ax2 + Bx + C) = x2 + 2x (C.41) 

or 

(6 A)x2 + (10A + 65) x + (2A + 5B + 6C) = x2 + 2x (C.42) 

Equation coefficients of like powers of x: 

6A = 1 
10A + 6B = 2 } (C.43) 

2A + 5B + 6C = 0 
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Solving, 

Hence, 

A = l> B = -}-> C = - (C.44) 
6 18 108 

+ 1 1 1 v = ~xr + —x — 
6 18 108 
1 8 x 2 + 6 x - 11 

108 

The general solution is therefore 

(C.45) 

1 8 x 2 + 6 x — 1 1 
y = u + v = c^s* + c2e~2x + — (C.46) 

The type of solution illustrated in this example is called the method of 
undetermined coefficients. 

EXAMPLE C.5 

Solve the equation 

y" + 4y = 3* cos x 

Solution. The auxiliary equation is 

r2 + 4 = (r + 2 i ) ( r - 2i) = 0 

with roots 

n = 
r2 = 

a + i/3 = 0 + 2il 
a - ii3 = 0 - 2if 

so 

a = 0, (3 = 2 

and the complementary function is 

u = eax{cx cos fix + c2 sin )3x) 

= cx cos 2x + c2 sin 2x 

(C.47) 

(C.48) 

(C.49) 

(C.50) 

(C.51) 

To find a particular integral, we note that from x cos x and its derivatives it is pos-
sible to generate only terms involving the following functions: 

* cos x, x sin x, cos x, sin x 
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Therefore, because these functions are linearly independent, the trial particular 
integral is 

v = Ax cos x + Bx sin x + C cos x + D sin x (C.52) 

v' = A(cos x — x sin x) + B(sin x + x cos x) 

— C sin x + D cos x (C.53) 

v" = —A(2 sin x + x cos x) + B(2 cos x — x sin x) 

— C cos x — D sin x (C.54) 

Substituting into the original differential equation, 

(3D - 2A)sin x + (2B+ 3C)cos x + 3(A - l )x cos x + (3£)x sin x = 0 (C.55) 

The coefficient of each term must vanish (because of the linear independence 
of the terms): 

3 D = 2 A, 2 B = - 3 C, A = 1, SB = 0 (C.56) 

from which 

A = 1, B= 0, C= 0, D = \ (C.57) 
3 

The general solution is therefore 

2 y = q sin 2x + c2 cos 2x + x cos x + - sin x (C.58) 

If the right-hand side,/(x), of the general equation (Equation C.l or C.32) is 
such that /(x) and its first two derivatives (only second-order equations are being 
considered) contain only linearly independent functions, then a linear combina-
tion of these functions constitutes the trial particular integral. In the event that the 
trial function contains a term that already appears in the complementary func-
tion, use the term multiplied by x; if this combination also appears in the comple-
mentary function, use the term multiplied by x2. No higher powers are needed be-
cause only second-order equations are being considered and only exp(rx) or x 
exp(rx) occur as solutions to the reduced equation; (x2) exp(rx) never occurs. 

PROBLEMS 

C-l. Solve the following homogeneous second-order equations: 
(a) y" + 2 / - Sy = 0 (b) y" + y = 0 
(c) y" - 2y' + 2y = 0 (d) y" - 2y' + by = 0 
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C-2. Solve the following inhomogeneous equations by the method of unde te rmined co-
efficients: 
(a) y" + 2y' - 8 y = 16x (b) y" - 2 y ' + y = 2e*x 

(c) y" + y = sinx (d) y" - 2 y ' + y = ?>xex 

(e) y" — 4)i' + 5y = e2x + 4 s in* 

G-3. Use a Taylor series expansion to obtain the solution of 

y " + y 2 = X 2 

that obeys the conditions )>(0) = 1 and y'(0) = 0. (Differentiate the equation suc-
cessively to obtain the derivatives that occur in the Taylor series.) 



APPENDIX 

Useful Formulas 

D.l Binomial Expansion 

+ — + (""W + 1*1 < 1 ( D - l ) 

X 3 

+ ••• + ( - ! ) ' ( " ) * ' + |*| < 1 (D.2) 

where the binomial coefficient is 

fn\ — 

I rj (ro — r)!ri 

Some particularly useful cases of the above are 

(D.3) 

( i ± xy* = i ± ••• ( d . 4 ) 
z, o l b 

( 1 ± x ) 1 / 3 = 1 ± X-x - i * 2 ± ^ , 3 _ . . . ( D < 5 ) 

*An extensive list may be found, for example, in Dwight (Dw61). 

608 
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(1 ± x)"1/2 = 1 + l x + ^x2 + - ^ x 3 + ••• 
2 8 16 

1 2 14 
( i ± * r i / 3 = i + - * + ± x 2 + — x 3 + ••• v ' 3 9 81 

(1 ± x)"1 = 1 + x + x2 + x3 + 

(1 ± x)"2 = 1 + 2x + 3x2 T 4x3 + ••• 

(1 ± x)"3 = 1 + 3x + 6x2 + 10x3 + ••• 

For convergence of all the above series, we must have |x| < 1. 

D.2 Trigonometric Relations 

sin(A ± B) = sin A cos B ± cos A sin B 

cos (A ± B) = cos A cos B T sin A sin B 

2 tan A 
sin 2A = 2 sin A cos A = 

1 + tan2 A 

cos 2A = 2 cos2 A — 1 

sin2 | = i ( l - cos A) 

A 1 
cos2 — = - ( 1 + cos A) 

2 2 

sin2 A = - ( 1 — cos 2A) 

sin3 A = - ( 3 sin A - sin 3A) 
4 

sin4 A = ^(3 — 4 cos 2A + cos 4A) 

cos2 A = ^(1 + cos 2A) 

cos3 A = -(3cos A + cos 3A) 
4 

cos4 A = ^(3 + 4cos 2A + cos 4A) 
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(D.6) 

(D.7) 

(D.8) 

(D.9) 

(D.10) 

(D.l l ) 

(D.12) 

(D.13) 

(D.14) 

(D.15) 

(D.16) 

(D.17) 

(D.18) 

(D.19) 

(D.20) 

(D.21) 

(D.22) 
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tan (A + B) = 

tan 

t a n A + t a n B 
1 — t a n A t a n B 

2 A _ 1 — c o s A 
2 ~ 1 + c o s A 

s i n x = 
2 i 

eix + e-ix 
COS X = 

exx = c o s x + i s i n x 

(D.23) 

(D.24) 

(D.25) 

(D.26) 

(D.27) 

D.3 Trigonometric Series 

sin x = x — 
X 3 

3! 
X 5 X7 

+ — + • • • 

5! 7! (D.28) 

cos x = 1 -
X 2 

2! 
X 4 X 6 

+ + . . . 
4! 6! (D.29) 

tan x = X + 
X 3 

3 
|x| < t t / 2 (D.30) 

s in - 1 x = X + f ! 
6 

n*i < i 
\ | s i n - 1 x| < 7t/2 

(D.31) 

cos - 1 x = 
77" 

2 ~ 
X 

X s 3 s 
V 5 — • • 

6 40 
r i x i < i 

< C O S - 1 X < 77• 
(D.32) 

t a n - 1 x = x — 
x^ 
3 

X 5 X7 

|x| < 1 (D.33) 

D.4 Exponential and Logarithmic Series 

2 3 0 0 n X£ X 3 V 1 * 
^ = 1 + X+ — + — + ••• = ZJ — (D.34) 

2! 3! »>=o n! 

X 2 X 3 X 4 

l n ( l + x ) = x - — + — - — + • • • , | x | < 1 , x = l (D.35) 
2 5 4 

l n [ V ( x V a 2 ) + 1 + (x/a)] = s i n h - ^ / a (D.36) 

= - l n [ V ( x 2 / f l 2 ) + 1 - ( x / a ) ] (D.37) 
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D.5 Complex Quantities 

Cartesian form: 2 = x + iy, complex conjugate z = x - iy, i = \ / - T (D.38) 

Polar form: z=\z\e'0 (D.39) 

z = \z\e~i0 (D.40) 

zz* = |z|2 = X2 + y2 (D.41) 

Real part of r Re z = - ( z + z*) = x (D.42) 

Imaginary part of z: Im z = - - ( z - z) = y (D.43) 

Euler's formula: eiB = cos 6 + i sin 6 (D.44) 

D.6 Hyperbolic Functions 

sinh x = (D.45) 

€x "I" €~x 

cosh x = (D.46) 
2 

e2*- 1 
+ 1 

tanh x = 2 x ^ 1 (D.47) 

sin ix = e'sinh x (D.48) 

cos ix = cosh x (D.49) 

sinh ix — i sin x (D.50) 

cosh ix = cos x (D.51) 

sinh_1x = tanh - 1 / —. X ) (D.52) 
VVx 2 + l j 

= ln(x + V x 2 + 1) (D.53) 

= cosh-i( V ^ T T ) , j > 0 ' x > 0 
; 1 < 0 , x < 0 

x 

(D.54) 

( \ / x 2 - A 
cosh_ 1x = ± tanh - 11 I, x > l (D.55) 

= ± ln(x + V x 2 - 1), x > 1 (D.56) 
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cosh"1 X = ± s i nh _ 1 (Vx 2 - 1), * > 1 (D.57) 

d 
— sinh 31 = cosh 31 (D.58) 
dy 

d 
— cosh y = sinh y (D.59) 
dy 

sinh(xj + x2) = sinh xx cosh x2 + cosh sinhx2 (D.60) 

cosh(xj + x2) = cosh X) coshx2 + s inhxj sinh x2 (D.61) 

cosh2* - sinh2* = 1 (D.62) 

PROBLEMS 

D-l. Is it possible to ascribe a meaning to the inequality zx < z2? Explain. Does the in-
equality | z, | < I z21 have a different meaning? 

D-2. Solve the following equations: 
(a) z2 + 2z + 2 = 0 (b) 2z2 + z + 2 = 0 

D-3. Express the following in polar form: 
(a)zj = i (b) z2 = — 1 
(c) z3 = 1 + t V 3 (d) 24 = 1 + 2i 
(e) Find the product ZjZ2 (f) Find the product ZjZj 
(g) Find the product z3z4 

D-4. Express (z2 — 1)~1/2 in polar form. 

D-5. If the function w = sin - 1 z is defined as the inverse of z = sin w, then use the Euler 
relation for sin w to find an equation for exp ( iw) . Solve this equation and obtain 
the result 

w = sin - 1 z = —i ln(tz + \ / \ — z2) 

D-6. Show that 

y = Ae» + Be~ix 

t 

can be written as 

y = C cos(x — S) 

where A and B are complex but where C and 8 are real 

D-7. Show that 
(a) sinh(*! + x2) = sinh xx cosh x2 + cosh sinh x2 

(b) cosh(*! + x2) = cosh X! cosh x2 + sinh xx sinh x2 
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Useful Integrals 

E.l Algebraic Functions 

I 

I 

dx 1 
a2 + x2 t a 

xdx 1, 
a2 + x2 2 

dx 1 

tan - i l * 

x* 

+ X2) 2 fl2 y a 1 + x 2
y 

dx _ 1 (ax — b\ 
a2x2 - b2 ~ 2ab "la* + b I: 

= - —-tanh_1(^-
ab \ b j 

I 
dx 

Va + bx b 
= - V a + bx 

I dx 

TT 

a2x2 > b2 

2v2 a ' x < b2 

V x 2 + a2 
= l n ( x + V x 2 + a2) 

(E.l) 

(E.2) 

(E.3) 

(E.4a) 

(E.4b) 

(E.4c) 

(E.5) 

(E.6) 

This list is confined to those (nontrivial) integrals that arise in the text and in the problems. 
Extremely useful compilations are, for example, Pierce and Foster (Pi57) and Dwight (Dw61). 

613 



614 E / USEFUL INTEGRALS 

*?dx X /— a2 . X 
—. = V ar — xr + —sin 1 -
V ^ V 2 2 2 a 

(E.7) 

d x _ = _ L i n ( 2 V a V a x 2 + bx + c + 2ax + b), a> 0 (E.8a) 
V ax2 + bx + c Y o 

1 . / 2ax + b \ \a > 0 

V ^ S i n W 4 a c - b2J Uac > b2 
(E.8b) 

1 _./ 2ax + b 
sin 11 

a < 0 

b2 > Aac 
V ^ a W b 2 - 4ad [ ) 2 f l X + b\ < V 6 2 - 4ac 

(E.8c) 

x d x 
= = - \ / f l x 2 + 6 x + c — 

V f l x 2 + 6 x + c a 2aJ 

dx 

dx 1 

x V ax2 + bx + 
- — /- sinh M -
c V t V | x | V 4 a c - 6 2 

\ / ax2 + bx + c 

bx + 2c 

1 . _ , / 6 x + 
— sin " 
— c x| V * 

\ l c > 0 

r \4ac > 

2c \ (c < 0 

~—~4ac/ \ b 2 > 4 a 

(E.9) 

(E.lOa) 

(E.lOb) 

2c 
—p l n f — — \ / a x 2 + bx+ c + — + b ), c > 0 
V ^ V * * / 

(E.lOc) 

"X/ax2 + bx + c dx = 
2 ax + b 

4 a 
Vax2 + bx+ c + 

4 ac - b2 dx 

8 a W a x 2 + bx+ c 

(E.11) 

E.2 Trigonometric Functions 

i sin2 x dx = ^ — ; sin 2x 
2 4 

9 X 1 • r. 
cos x dx = — + - sin 2x 

2 4 

dx 

a + b s i n x y/fl2 — $ 
tan - l a tan(x/2) + b 

_ V a 2 - b2 
> b2 

(E.12) 

(E.13) 

(E.14) 
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dx 
:tan - l 

a + b cos x "v/o2 — b2 

dx b sin x 

\a ~ b) tan(x/2) 

_ V a 2 - b2 _ 

a 

, a2 > b2 (E.15) 

dx 

(a + b cos x)2 - a2) (a + b cos x) b2 — a2 a + b cos x 
r 

tan x dx = —ln|cos x| 

tanh x dx — In cosh x 
eax 

eax sin xdx = — ~(a sin x — cos x) 
cr + 1 

eax 2' 
e"*sin2 xdx = —r :1a sin2x — 2 sin x cos x + -

a2 + 4 V a, 

e~ax'2dx = V n / a 
J-00 

(E.16) 

(E.17a) 

(E.17b) 

(E.18a) 

(E.18b) 

(E.18c) 

E.3 Gamma Functions 

r (n) = 
•00 

0 

o 

x" le Xdx 

[ l n ( l /x)]n~xdx 

T(w) = (n — 1)!, for n = positive integer 

nT(n) = T(n + 1) 

r @ = V . 

T ( l ) = 1 

0.906 

• f t 
0.919 

(E.19a) 

(E.19b) 

(E.19c) 

(E.20) 

(E.21) 

(E.22) 

(E.23) 

(E.24) 
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T(2) = 1 (E.25) 

Y 

ri dx VTT 
ri 

Jo V l - X" n
 r ( I + I 

n 2/ 

m + I 

(E.26) 

r1 n» + Dr, 2 j 
xm(\ - x2)ndx = 7 (E.27a) 

Jo f m+ 3 \ 

v + 

cosn xdx = — 7 f , n > - 1 (E.27b) 

r f + J 



APPENDIX 

Differential Relations 
in Different Coordinate 

Systems 

F.l Rectangular Coordinates 

V dU grad U = V£/ = 2 , e , — (F.l) 
« dx, 

2d A, 
— - (F.2) 

« dXi 

2dAh eiik—-et- (F.3) 
v.* J dXj 

F£> TJ 

V 2 [ / = V- V f / = 2 — r (F.4) » 

F.2 Cylindrical Coordinates 
Refer to Figures F-l and F-2. 

Xj = r cos (f>, x2 = r sin <f), x3 = z (F.5) 

r = Vxf + x|, (f> = tan - 1 —, z = x3 (F.6) 
Xj 
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618 F / DIFFERENTIAL RELATIONS IN DIFFERENT COORDINATE SYSTEMS 

FIGURE F-2 

ds2 = dr2 + r2 d(f>2 + dz2 (F.7) 

• dv = rdr d<f>dz (F.8) 

difj 1 difj difj 
grad <A = Vtfj = e — + e ^ - r r + e, f - (F.9) 

dr r d<p dz 

1 d 1 dA+ ' dA, 
div A = - - (rAr) + " T J + — (F.10) 

r dr r d(p dz 

f\dAz dAA (dAr dAz\ fid 1 dAr\ 

n / i a2<A 



635 F / DIFFERENTIAL RELATIONS IN DIFFERENT COORDINATE SYSTEMS 

F.3 Spherical Coordinates 
Refer to Figures F-3 and F-4 

Xj = r sin 9 cos (f>, x2 = r sin 9 sin <f>, x3 = r cos 9 

r = Vxf + x| + x|, 9 = cos - 1 —, (f> = t an - 1 — 
r Xj 

ds2 = dr2 + r2d92 + r2 sin2 9 d<j)2 

dv = r2 sin 9 drd9 d(f> 

FIGURE F-3 



620 F / DIFFERENTIAL RELATIONS IN DIFFERENT COORDINATE SYSTEMS 

# 1 # 1 dip 
grad (A = V<£ = e — + e e ~ — + e^ . — 

dr r
 v

 r sin 9 dq> 

divA = 
rz dr r sin 9 86 

8 1 dA,$ 
(Ae sin 9) + —:—r + 

r sin 9 d<j) 

(F.17) 

(F.18) 

1 
curl A = e r —; 

+ e 

r sin 9 

1 

r sin 9 

d dA<, 

~dAr d 
+ e j , -

T r2 dr\ dr r2 sin0 d9\ 
+ 

d 8Ar 

1 d V difT 

d9j ' r2 sin2 0 

(F.19) 

(F.20) 



APPENDIX G 
A "Proof' of the Relation 

= 2 j X ' 2 

/ x n 

Consider the two inertial systems K and K' that are moving relative to one an-
other with a speed v. At the instant when the two origins coincide (t = 0, t' = 0), 
let a light pulse be emitted from the common origin. The equations that de-
scribe the propagation of the wave fronts are required, by the second Einstein 
postulate, to be of the same form in the two systems: 

X x f - C2*2 = X * 2 = S 2 = 0 > i n A : ( G > l a ) 
j M 

E x ' 2 - c2t'2 = 2 * ; 2 = 5'* = 0, inK' (G.lb) 
j M 

These equations state that the vanishing of the four-dimensional interval be-
tween two events in one inertial reference frame implies the vanishing of the in-
terval between the same two events in any other inertial reference frame. But we 
need more than this; we must show, in fact, that s2 = s'2 in general. 

If we require that the motion of a particle observed to be linear in the system 
A^also be linear in the system K', then the equations of transformation that con-
nect the xM and the x^ must themselves be linear. In such a case, the quadratic 
forms s2 and s'2 can be connected by, at most, a proportionality factor: 

s'2 = KS2 (G.2a) 

The factor K could conceivably depend on the coordinates, the time, and the rela-
tive speed of the two systems. As pointed out in Section 2.3, the space and time as-
sociated with an inertial reference frame are homogeneous, so the relation between 
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622 G / A " P R O O F " O F T H E RELATION E x 2 = E x ; 2 

<» M 

s2 and s'2 cannot be different at different points in space nor at different instants 
of dme. Therefore, the factor K cannot depend on either the coordinates or the 
time. A dependence on v is still allowed, however, but the isotropy of space forbids a 
dependence on the direction of v. We have therefore reduced the possible depend-
ence of s'2 on s2 to a factor that involves at most the magnitude of the speed v; that 
is, we have 

where —v occurs because the velocity of K relative to K' is the negative of the ve-
locity of K' relative to K. But we have already argued that the factor K can de-
pend only on the magnitude of v. We therefore have the two equations 

Combining these equations, we conclude that K2 = 1, or K(V) = ±1. The value 
of K(V) must not be a discontinuous function of v, that is, if we change vat some 
rate, K cannot suddenly jump from +1 to —1. In the limit of zero velocity, the 
systems # a n d K' become identical, so that K(V = 0) = +1. Hence, 

s ' 2 = K(V)S2 

If we make the transformation from K' back to K, we have the result 

s2 = K(-V)S'2 

(G.2b) 

(G.3) 

K = +1 (G.4) 

for all values of the velocity, and we have, finally, 

(G.5) 

This important result states that the four-dimensional interval between two 
events is the same in all inertial reference frames. 



APPENDIX 

Numerical Solution 
for Example 2. 7 

In this appendix, we show the MathCad solution that produced Figures 2-8 and 2-9 
for Example 2.7. This program was written for MathCad for Windows, version 
4.0. 

g : = 9.8 acceleration of gravity 

th := 60 • | —— | initial angle yi8o y 8 

v o : = 6 0 0 

u : = vo • cos (th) initial velocity 

v := v o . s j n (th) initial horizontal velocity 

i : = 1 . .6 initial vertical velocity 

0 . 0 0 0 0 0 0 1 

0.01 
0.02 
0.04 
0.08 

0.005 

table of drag coefficients 

t := 0, 1 .. 130 range of time values 

u 
x(t, K) := J J ' (1 — exp( — K-1)) calculate horizontal position 
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624 H / NUMERICAL SOLUTION FOR EXAMPLE 2.7 

t K-V + g 
y(t, K) := — g«— H ——r—• (1 — exp( —K-t)) calculate vertical position 

K (K) 

[Now plot y(t,kj) versus x(t,kj) to produce Figure 2-8.] 

1 . 5 - 1 0 4 

y(t,ki), 

y(t,k2), 

y(_U8)_, 

y(t,k4), 

y(t,k5), 

y(t,k6), 

M O 

5 0 0 0 -

- 5 0 0 0 
0 M O 4 2-10 3 - 1 0 4 4 - 1 0 

x(t,k1), x(t,k2), x(t,k3), x(t,k4), x(t,k5), xft.kg) 

FIGURE 2-8 

Now set up an equation to solve Equation 2.45 for Tfor any value of the retard-
ing force constant k. 

f(k, T) := root 

j := 1 , 2 . . 8 1 

k • v + g 
T ~ • (1 - exp( —k• T) ) ,T 

g - k 
(2.45) 

Kj := -0 .001 + 0.001 -j + 0.00000001 

Tr0 == 100 

T r j : = f ^ T r j . , ) 

T r i := 106.074 

Set up range of values to cal-
culate; 80 values. 

This will allow us to calculate 
over a range of k values from 
0 to 0.08. 

The time value for k = 0 is 
106 s. This is a guess to get 
the calculation started. 

We now determine the solu-
tion for the time T for all 
the values of k. Solve 
Equation 2.45. 

This is the value of T for kl . 
We do not bother to calcu-
late all the others here. 



625 H / NUMERICAL SOLUTION FOR EXAMPLE 2.7 

f(k, T) := root 

R, := f(Kjf Trj) 

R! = 3.182-104 

u 
x — — • (1 — e x p ( - k - T ) ) , x 

Now we want to calculate the range R for all the values of T (as a function of k) 
that we have just found. To do this, we need to solve Equation 2.43 for each of 
the values of k and t = T that we have just found. 

x : = 100 This is the guess for the first 
value of x. The actual value 
of the guess does not matter. 
This is the Equation 2.43 
that we need to solve to find 
the range R. 

Now calculate the range R 
for all the values. 

We just list the first value and 
plot the remainder. This is 
the range for no air resis-
tance, that is k = 0. 

Now let's calculate and plot the range determined from the approximate calcu-
lation. Calculate Equation 2.55. 

f 4 • K; • v\ 

[Now plot Rj and Rpj versus Kj to produce Figure 2-9.] 

Plot approximate and numerical 
solutions. Figure 2-9. 

FIGURE 2-9 



Selected References 

T h e following texts are particularly r e c o m m e n d e d as general sources of collat-
eral reading material . 

A. General Theoretical Physics 
Blass (B162), Theoretical Physics. 
Lindsay a n d Margenau (Li36), Foundations of Physics. 
Wangsness (Wa63), Introduction to Theoretical Physics. 

B. Elementary Mechanics 
Baierlein (Ba83), Newtonian Dynamics. 
Barger and Olsson (Ba73), Classical Mechanics. 
Davis (Da86), Classical Mechanics. 
Fowles and Cassiday (Fo99), Analytical Mechanics. 
French (Fr71), Newtonian Mechanics. 
Knudsen and Hjo r th (KnOO), Elements of Newtonian Mechanics. 
McCall (McOl), Classical Mechanics. 
Rossberg (Ro83), Analytical Mechanics. 

C. Intermediate Mechanics 
Arya (Ar98), Introduction to Classical Dynamics. 
Becker (Be54), Introduction to Theoretical Mechanics. 
Lindsay (Li61), Physical Mechanics. 
Scheck(Sc99), Mechanics. 
Slater and Frank (S147), Mechanics. 
Symon (Sy71), Mechanics. 

D. Advanced Mechanics 
Baruh (Ba99), Analytical Dynamics. 
Goldstein (Go80), Classical Mechanics. 
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Landau and Lifshitz (La76), Mechanics. 
McCuskey (Mc59), An Introduction to Advanced Dynamics. 

E. Mathematical Methods 
Abramowitz and Stegun (Ab65), Handbook of Mathematical Functions. 
Arfken (Ar85), Mathematical Methods for Physicists. 
Byron and Fuller (By69), Mathematics of Classical and Quantum Physics. 
Churchil l (Ch78), Fourier Series and Boundary Value Problems. 
Davis (Da61), Introduction to Vector Analysis. 
Dennery and Krzywicki (De67), Mathematics for Physicists. 
Dwight (Dw61), Tables of Integrals and Other Mathematical Data. 
Kaplan (Ka84), Advanced Calculus. 
Mathews and Walker (Ma70), Mathematical Methods of Physics. 
Pipes and Harvill (Pi70), Applied Mathematics for Engineers and Physicists. 

F. Special Relativity 

Einstein (Ei61), Relativity. 
French (Fr68), Special Relativity. 
Resnick (Re72), Basic Concepts in Relativity and Early Quantum Theory. 
Rindler (Ri82), Introduction to Special Relativity. 
Taylor and Whee le r (Ta66), Spacetime Physics. 

G. Chaos 
Baker and Gollub (Ba90), Chaotic Dynamics. 
Bessoir and Wolf (Be91), Chaos Simulations. 
Hilborn (Hi94), Chaos and Nonlinear Dynamics. 
Moon (Mo92), Chaotic and Fractal Dynamics. 
Rasband (Ra90), Chaotic Dynamics of Nonlinear Systems. 
Rollins (Ro90), Chaotic Dynamics Workbench. 
Sprott and Rowlands (Sp92), Chaos Demonstrations. 
Strogatz (St94), Nonlinear Dynamics and Chaos. 

H. Numerical Methods 
Dejon g (De91), Introduction to Computational Physics. 
J o h n s o n and Reiss (Jo82), Numerical Analysis. 
Press, Teukolsky, Vetterling, and Flannery (Pr92), Numerical Recipes. 
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Answers to Even-
Numbered Problems 

Chapter 1 

10. (a) v = 2bw cos wt i — bw sin wtj (b) 90° 

a = —a>2r 

|v | = bw[3 cos2 wt + l ] l 

la• b X cI 
12. h = 

a X b + b X c + c X a 

A = | | (b - a) x (c - b) | = | | (a - c) X (b 

= | | (c - b) X ( a - c ) | 

/ 9 1\ / - 5 - 5 \ - 3 
14. (a) - 1 0 4 (b) 13 9 (c) 3 - 5 (d) 3 0 

\ 5 2 / \ 25 1 4 / \ 4 - 6 

26. a e = 
3 v^ 
4 k'' 

3 ^ 
4 k 'V 1 + cos 6 ; 9 = 

V2kr 

34. J (A X A)dt = (A X A) + C, where C is a constant vector 

36. 7rc2d 

38. -TT 

-4> 

01 

40. (a) * = - 2 m , ) = 3 m, zmax = 72 m; (c) SE 

633 



634 ANSWERS TO EVEN-NUMBERED PROBLEMS 

Chapter 2 

2. Fe = mR{ 0 - 0 2 sin 0 cos 0) 

^ = wi?(20 (j> cos 0 + 0 sin 0) 

4. 13.2 m - s " 1 

6. (a) 210 m b e h i n d (b) can be n o m o r e than 0.68 s late 

2vl cos a sin (a — B) TT B v% 
1 4 - ( a ) d = — " T T o — ( b ) T + S <c) d> g cos2 /3 v ' 4 2 w g ( l + sin/3) 

2r;0 16. 
g-sin a 

18. (a) 35.2 m - s " 1 (b) 40.7°; 1.1 m 

20. 17.4° 
E y 

22. (c) = C1coscoct+ C2 sin a>cM 
B 

y(t) = — Cj sin + C2 cos (oct 

24. = 0.18; = 15.6 m / s 

26. 2.3 m; 1.1 m 
^3 - flV _ , Y l - 3 a V 

V1 + a) ; ^erba11 ~ H 1 + fl 

30. 71 m 

1 ± i j , k V3 + 4/tf 
32. sin 0O = ^ r ^ ^ 2 

2 1 + /x 

28. ^marble = M , , I ! ŝuperball = M , ) where fl = m/M 

m 
34. (a) y = -

a a \ wig 
m / 

(b) y = In 1 - — K ' y 2/3 \ mg 

36. R = — c o s 0 ^ s i n 0 + . / s i n 2 0 + ^ 
g \ V Vo 

38. (a) = - w w o 2 * - * 2 " ^ 
l 

(b) x(<) = [(ra + l )a*]»+ 1 

(c) F(t) = —mna2[(n + l)a*]-<2"+1>/<"+1> 

2Aa 2 sin at Aa212 cos at — 11 40. (a) a t = / = ; fln = A / 
V 5 — 4 cos at V 5 — 4 cos at 

nir 

(b) where ra = in teger 

42. Stable if R > b/2; unstable if R < b/2 
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48. T = 7Td3 /K 

50. (a) x(t) = 

mG 

F2t2 

ml + —r- - m0 I, v(t) = 
Ft 

2 + m + ~~r 

(c) t(v = c/2) = 0.55 yr; t(v = 0.99c) = 6.67 yr. 

4 U0xf x2\ [Wo 
52. (a) ,FXx) 1 - - j ) , ' —i~ I 1 2 I' (C) <° = 9: 

a1 \ ar V mar 
(d) v m i n = 

(e) x(t) 
a[ exp (t \ / 8 UQ /ma2) - l] 

[exp(tVsUQ/ma2) + l] 

54. (a) v = g/k = 1000 m / s , (b) height = — + ^ In ( — 
k kz \g + kv, 

= 680 m 

Chapter 3 

2. (a) 6.9 X l O ^ s " 1 (b) — ( 1 - 2.40 X 10~5) s"1 (c) 1.0445 
277 

mA2(Oo — 1 — mA2o)o 
4. <T> = <U> = U=- T = 

4 2 6 

6. 2.74 r a d • s _ 1 

12. 0 = - ~ sin 9 

14. x(t) = (cosh fit - s inh (it) [(Ax + A,) cosh <a2t + (A, - A 2 )s inh <o2t] 

x(t) = (cosh fit — sinh fit) [(A,<w2 — Ax/3) (cosh oj2t + s inh co2t) 

— (A2fi + A2a>2) (cosh w2t — s inh w2<)] 

Rx[R2(R2 + Rx) + a)2L|] + i[RxwL2 + (coLx - \/<oC)({Rx + R2)
2 + « 2 Z | ) ] 

26' (Rx + R2)
2 + w2L\ 

4 4 4 
28. F(t) = —sin t + — s m 31 + — s i n 5 1 + ••• 

it 3TT 57r 

2 4 4 
30. F(t) = cos 2wt - —— cos 4wt - ••• 

7T 37T 1577 

jF/(0) ( fie'P' 
32. (a) x(t) = ——I 1 — e~P'coshw2t s inh o)2t 

m V w2 

(b) x(t) = — e~pt s inh w2f, t > 0 
w2 
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34. x(t) = 
0 * < 0 
4 [1 - cos(0.5i)] m 0 < t < 4TT 
0 t > 4TT 

36. x(t) = 

Fo 

\ , I xo cos o)i(t — t0) + 1 1 sin 0}x(t — t0) (Oj to j a>i 

38. x(t) = 
CD 

M cos - y ) 2 + (CO + © ^ [ ( / S - y ) 2 + (© - Wj)2] 

-yt 

+ e-f 

2 ( y - fi) cos cot + ( [ 0 - y ] 2 + <a\ - w2) 

2(j8 - y) cos + ([/3 - y ] 2 + w2 - co!) 

sin cot 
co 

sin co^t 

ft>! 

t > t0 

40. A m p l i t u d e = —0.16 m m , m i n u s sign indica tes sp r ing is c o m p r e s s e d 

F 1 
42. (a) x(t) = 

w, 
44. — = 

mcoo (<w0 + OJ) (CO0 — TO) 

8 t t 

(CO0 sin cot — to sin (o0t). (b) x(t) = 
FnM pt "»Q 

6m 

<°o V 6 4 t t 2 + 1 

Chapter 4 

6. 0 

8. r = 4 

ml2 [.E - mgl( 1 - cos fl)] 1/2 

2mA 
F0 

10. On ly 0.6 a n d 0.7 a re chaot ic 

14. n = 30 

22. Transi t ions at Bx = 9.8 - 9.9, B2 = 11.6 - 11.7, a n d B3 = 13.3 - 13.4. 
Behavior: (i) o n e p e r i o d p e r t h r e e drive cycles w h e n B < Blt (ii) chaot ic 
w h e n Bx < B < Bt, (iii) m i x e d c h a o t i c / o n e p e r i o d p e r drive cycle ( d e p e n d -
ing o n initial condi t ions) w h e n B% < B < B3, a n d (iv) o n e p e r i o d p e r drive 
cycle w h e n B > B3 

Chapter 5 

2. p = 
C &}> 

- — — w h e r e C = — = const . 
2 TTGT dr 
GM 

6. g = - - ^ e r 
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8. gz = -2TTGP(VO? + (z0 - I)2 ~ Va2 + zg + l) 

10. 

16. Fz = 2 t r p f i M 

_ _/x 2GM, r- . /v , 2GM( V Z 2 + i?2 - z\ 20. <fr(z) = - (VTT^ - z), = j 

Chapter 6 

2 2 2 2 
8. (a) ax = = Cj = —7= -R (b) = a—7=; ^ = b—j=; = c — p 

V 3 V 3 V 3 v 3 
1 

10. R = ~H 
2 

14. length = 2 V 2 sin 
7T 

2 V 2 

l + f i - 1 and z = x3/2 
1 6 - J < * > = I S v F T i 

18. x = —y = \f—z where x > 0,31 < 0, z < 0. Parabolic line. 

Chapter 7 

4. m r — w?r02 + Ar" 1 = 0; —(mr26) = 0; yes; yes 
dt 

6. 2mS + m\ cos a — mgsin a = 0 

(m + M) £ + mS cos a = 0 

£ Ml 
10. (a) y(t) = - J 2 (b) y(t) = — ( 1 - cosh yt) 

g 

12. r(t) = r0cosh at + (sin at — sinh art 
2 a1 

.. a + g / b 
14. (a) 6 + sin 0 = 0 (b) 2 u \ / 

b V a + g-

•• § a 
16. 6 + - sin 6 a>2sin wt cos 0 = 0 

b b 

18 „_ Ssin0 0. a - E 
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1 k P2 k 
22. L = -mx2 - H = ^ + 

2 a 2m x 

24. L = + J202) + mgl cos 0 

1 
H = -—— — ~ma2 — mgl cos 0 

2 m r 2 
/>| . pe 

26. (a) H = - mgl cos 0; 0 = — ; = -mgl sin 0 
p2 

( b ) H = 2 ( m 1 + m2 + / /« 2) ~ W «»«<' - *> 

px = | OT] + W2 + 

A = _ 

Pl k 
28. p, = mf; pr = — pe = mr20; pe = 0 

m r r / 

3 2 - H - O - # + I i + -2 ~ Z> P r ~ - ~ i + 2m V r 2 r 2 sin2 6J r rr r2 mr3 mr5 sin2 0 ' 

$ c o t 0 

mr 2 sin2 0 V P+ = 0 

2 ^ „ X sin 0 + g cos 0 
34. (a) 3c = ai?(0 sin 0 + 0 2 cos 0); 0 = ^ ; w h e r e a = 

(b) A = 

i? M + m 
mMg( 3 sin 0 - a sin3 0 - 2 sin 0O) 

( A f + »i)( l - a sin2 0)2 

„„ rfx a// p dp dH 
38. — = — = — — = = — (kx + bx1) 

dt dp m dt dx 

d 2 x , Jcd2°i. „ , ^ , f „ f d 0 i \ 2 . „ f d e 2 \ 2 
40. 0 = 4 - + ^ 2 — c o s 0, + — c o s 0 2 j - ^ 2 sin sin 0 ; 

d% ( f x d2d2 
~2g sin 0j = 2 6 — + cos0! + - 02) 

fd02\2 

+ AUJsin(^ -
. „ rf202 d2x d2ei 

- g - s i n 02 = b ~ + — cos 02 + 6 — cos(0! - 02) 

( d d ^ 2 
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Chapter 8 

k k 
4. <U> = —; <T> = — 

a 2 a 

10. Parabola; yes 
12. 76 days 

Pf&k 1 
14. m = + -

22. N o 
24. (a) 1590 km (b) 1900 k m 
28. 2380 m / s 
30. Av = 3.23 k m / s ; parabola 
32. Stable if r < a 
38. Av = 5275 m / s (opposite to direct ion of mot ion ) ; 146 days 
40. Carrying the waste o u t of the solar system requires less energy than crashing 

it in to the sun 

42. 2.57 X 1 0 U J 

» - " - * / i ^ f * - * ' 44. — = 1 + e cos 6, where a = —-> e = A /1 H -r E 
r pk V \ a 

If 0 < e < 1, the orbi t is ellipsoid. If e = 0, the orbit is circular 

46. T = 9 X 107 yr. 

Chapter 9 
3 

2. O n the axis; —h f r o m vertex 
4 

2a . 6 _ n 4. x = — s i n - ; y = 0 
a Z 

Fo.. F0 F0. 
6 - = 4m V™ = ^ = Tm 

n 
8. x = 0; y = 

3 V 2 

g \ mx + wi2 V V V 
12. (a) yes (b) 11 m / s 
14. N o 

20. \/ga 

22. (a) two sets of solutions: vn = 5.18 km/s , vd = 14.44 km/s a n d vn= 19.79 km/s , 
vd = 5.12 km/s. (b)74.8° and 5.2°. (c) 30° 
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24. co = t»0 
-; T = mb(o0(o 

•6 

26. 

28. 

30. 

32. 

kr 
N = - ( r j - r2) X ( f j - r2) 

Vo 

4mxm2 

(mx + m2)2 

(a) ( - 0 . 0 9 i + 1.27 j ) N • s (b) ( - 9 i + 127j)N 

M, 
= W, = 

3 

34. ^ = w, = — p ; 0=45 ' 

36. 
m1 

m2 

W 

= 3 ± 2V/2; — = — (1± V 2 ) w i t h j + : a < ° 
> 0 

M^OTJ s i n 2 a — e w 2 ) 

sin2 a + m? 

(e + ^wijMj sin a 
mx sin2 a + m^ 

4.3 m / s , 36° f r o m norma l 

40. = 

v2 

along U! 

straight u p 

42. 

44. fiag\ 1 + 

46. o"(0) = —; trt= rra2 

48. o-1AB(V') = 

( mjk V 
\ 2 m | T 0 / 

1 - V 2 
w2 

1 -
»n2 

54. 

58. 

60. 
62. 
64. 
66. 

e"1 

vl 
2 g 
25 s 
273 s 
(a) 3700 km (b) 890 km (c) 950 km (d) 8900 km 
(a) 131 m / s . (b) 108 m 
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Chapter 10 

ar0 
2. T h e location is given by tan 6 = where 8 is the angle between the radius 

12. 0.0018 rad = 6 min 

16. (a) 77 km (b) 8.9 km (c) 10 km (d) 160 km (all to the west) 

18. 260 m to the left 

20. g(poles) = 9.832 m/s2 , ^ (equator) = 9.780 m/s 2 

22. 2.26 m m to the r ight 

Chapter 11 

2- H = H = + 4 / j 2); H = ~MR2; 

V 

and the horizontal; | af | = a + 

4. v0 = 0.5 0)R, in y direction; a circle 

20 

83 2 
U ' h = 4 = 3 2 0 M & 2 ; h = 5 M b 2 

32. 53.7 r a d / s 

34. « X = (oxexp(-bt/Ix) 

Chapter 12 

8. wj = V i T V i ^ / f ; = V 2 - V 2 
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16. 0O
 = - g M o ^ e 1; = <£o> Mode 2 

18. = 0; w2 = 

/ > / > / I 
V 1 4 V 1 4 V I 4 / 

20. 3 l = 

22. £»! = 2 J —; w2 = 2 W a , M ^ V M + w 

_j_Y a = M 
V l 4 / ' 3 2 V V 4 2 V 4 2 ' V 4 2 ' V 4 2 , 

3K „ /3K 
; = V M 

26. 4.57, 4.64, 4.81 r a d / s 

28. 02 max = 0.96 rad (but at this angle, small angle approximat ion is no t com-
pletely valid, so this is a rough estimate) 

Chapter 13 

mr IT 
4> = TV p 

The ampli tude of the nth m o d e is given by /xn = 
0, 

32 
n even 

n odd 

6. The second harmonic is down 4.4 dB; the third, 13.3 dB 

12. th(t) = e~Dt/2P Al expl ^ ~ ^ + A 2 e x p l"V5 - ^ ' pb 
20. <f,Bi - <f>Ai = tan c o t 0) <{>A% - <£Ai = - 0 

Chapter 14 

12. 55.3 m; 0.22 /as; 2.5 X 108m/s; 2.5 X 10 8 m/s 

cos 0' - )8 
16. cos 0 = — 

1 - /3 cos 0 
20. The astronaut ages 25.4 years; those on Earth age 26.7 years. 
22. 4.4 X 10 9 kg/s ; 1.4 X 1013 years 
24. 7mpc2, including the rest mass of the p ro ton (kinetic energy is 6 mpc2) 
28. 0.115c 
30. 0.8 MeV 
32. re l ec t ron = 999.5 MeV 

Tproton = 433 MeV 



INDEX 

Note: Page numbers followed by n indicate foot-
notes. 

A 
Acceleration, 30-34 

centripetal, 393 
force and, 56-58 

Acceleration vector, 30-31 
Acoustic systems, oscillation in, 123 
Action, 230 
Adams, John Couch, 313n 
Air masses, motion of, 398-399 
Air resistance, 59, 65-71 
Algebraic functions, 613-614 
Amplitude resonance frequency, 120-122, 123 
Angular frequency 

of damped oscillations, 109, 110 
of harmonic oscillations, 102 

Angular momentum 
conservation of, 77-78, 262-265, 289-290 
of rigid body, 419-424, 454-455 
in system of particles, 336-339 

Angular velocity, 34-37 
inertia tensor and, 420 

Anomalous dispersion, 542n 
Aphelion, 300 
Apocenter, 300 
Apogee, 300 
Apsidal angle, 311-312 
Apsidal distance, 299, 311 
Apsides, 295, 299, 300, 311-312 
Areal velocity, 290 
Asymmetric forces/potentials, 150 
Asymmetric top, 426 
Atomic clock, 556-558 
Atoms, oscillation of, 123 
Attenuated wave, 537, 538 
Attractor, 151, 153, 169 

chaotic, 169 
strange, 169 

Atwood's machine, 71-73 
Auxiliary equation, 600-603 
Axes of inertia, 424-428 

Axial vector, 25n 

Axis of rotation, instantaneous, 34 

B 
Baden-Powell, G., 535 
Beats, 475, 539 
Bernoulli 

Daniel, 468n, 599n 
Jakob,207n 
Johann , 207n, 21 In , 300n, 599n 

Bessel, F. W„ 464n 
B decay, 81-82 
Bifurcation, 170 

pitchfork, 172 
Bifurcation diagram, 171 
Binomial expansion formulas, 608-609 
Body cone, 450 
Boltzmann, L., 90 
Boundary-value problem, 513 
Bowditch, Nathaniel, 106n 
Brachistochrone problem, 211-213 
Brahe, Tyco, 290n 
Brillouin, Leon, 542n 
Butterfly effect, 145, 175 
C 
Calculus of variations, 207-225, 272-274 

with auxiliary conditions, 219-224 
basic problem in, 207-210 
brachistochrone problem and, 211-213 
constraint equations in, 219-222 
Dido Problem and, 222-224 
Euler's equation in, 210-211, 219-224 
second form of, 216-218 
extremum solutions and, 207-210 
for geodesic on sphere, 217-218 
Hamilton's principle in, 229-233 
S notation in, 224-226 
with several dependent variables, 218-219 
soap film problem and, 215-216 

Canonical conjugates, 269 
Canonical equations of motion, 265-274 
Catenary, 215 

643 
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Cauchy, August Louis, 447n 
Cavendish, Henry, 182 
Cayley, A., 9n 
Center of mass, in system of particles, 329-331, 

333, 411-412 
position vectors for, 336-337 

Center-of-mass coordinate system, 346-353 
elastic collisions in, 346-358 
laboratory coordinate system and, 346-347 

Center-of-momentum system, 579-583 
Central-force motion, 287-323 

apsides and, 295, 299, 300, 311 
areal velocity and, 290 
aspidal angle and, 311-312 
centrifugal energy and, 296-299 
conservation theorems for, 289-290 
effective potential and, 296-299 
elliptic, 301-303 
equation of motion for, 291-295 
equivalent one-body problem for, 288-289 
first integral of, 290 
Kepler's Laws and, 290, 303 
Lagrangian for, 289 
in noninertial reference frame, 393, 402-404 
orbital, 295-296, 300-323. See also Orbit(s) 
reduced mass and, 287-289 
in space dynamics, 305-311 

Central forces, 50 
Centrifugal force, 296-299, 391-395 

on Earth, 397 
Centripetal acceleration, 393 
Ceres (asteroid), 304 
Chaos, 144-178. See also Nonlinear oscilla-

tions/system 
butterfly effect and, 145, 175 
deterministic, 145 
identification of, 174-178 
initial conditions and, 145, 175 
in pendulum, 163-169 

Chaotic attractor, 169 
Characteristic equation 

for coupled oscillations, 479 
for moment of inertia, 425 

Characteristic frequencies, of coupled oscilla-
tions, 471-473, 474, 479, 483-490 

Characteristic polynomial, 425n 
Chasles' theorem, 412n 
Cidenas, 452n 
Circular orbit, 301 

stability of, 316-323 
Clausius, R.J. E., 278n 
Coefficient of restitution, 359 
Collisions. See also Scattering elastic, 345-358 

in center-of-mass coordinate system, 
346-358 

conservation theorems for, 346-352 
geometry of, 347-348 
kinematics of, 352-358, 359 
in laboratory coordinate system, 347-348 
velocity vectors for, 346, 351 
endoergic, 359 
exoergic, 359 

impact parameter for, 363 
impulsive forces in, 361-362 
inelastic, 358-362 
oblique, 360 
Q-value of, 359 
relativistic, 579-583 
Rutherford scattering formula for, 369-371 
scattering angles for, 363-369 

Column matrix, 9 
Comet 

Giacobini-Zinner, 311 
Halley's, 304-305, 311 
orbit of, 304-305 
Shoemaker-Levy, 311 

Complementary function, 118, 604 
Complex quantities, 611 
Compound pendulum, 413-415 
Cone 

body, 450 
space, 451 

Configuration space, 237, 274 
Conservation theorems, 260-266 

for angular momentum, 77-78, 262-264, 
289-290 

for central-force motion, 289-291 
for collisions, 346-352 
for energy, 78-81, 260-261, 290, 339-345 
in Lagrangian mechanics, 260-266 
for linear momentum, 52, 76-77, 261-262, 

265, 290-291, 331-339 
for rocket in free space, 372-374 
special relativity and, 562-566 

for mass-energy, 567 
as postulates vs. laws, 81 
for system of particles, 289-291, 331-352 

Conservative force, 81 
Conservative system, 342 
Constraint equations, 219-222 
Constraints, 228 

computation of, 450-452 
holonomic, 238-248 
nonholonomic, 248-250 
rheonomic, 238 
scleronomic, 238 
semiholonomic, 249n 
undetermined multipliers and, 250 

Continuous string, 513-516, 528n 
Continuous systems, 513-542 
Coordinates, rotating, 53-54, 388-391 
Coordinate systems, 3 - 6 

center-of-mass, 346-353 
cyclic, 269-270 
cylindrical, 31-34, 617-618 
differential relations in, 617-620 
generalized, 221n, 233-248, 274 
in inertial reference frame, 53-54 
for inertia tensor, 428-432 
laboratory, 346-358 
in Lagrangian mechanics, 257-258 
moments of inertia in, 428-432 
in noninertial reference frame, 387-407 
normal, 468, 471-472, 478, 485-490 



Index 645 

orthogonal, 7 -8 
plane polar, 31-33 
rectangular, 3-9, 617 
rotating, 53-54, 388-391 
spherical, 31-33, 619-620 
transformation of, 3-20. See also Trans-

formation (s); Transformation matrix 
Coriolis force, 392-395, 398-407 
Cosine, direction, 4, 6 
Cotes, Roger, 325n 
Cotes' spirals, 325n 
Coulomb scattering, 369-371 
Coupled equations, 406 
Coupled oscillations, 468-507 

antisymmetrical, 472 
beats and, 475 
characteristic frequencies (eigenfrequencies) 

for, 471-473, 474, 479, 483-490 
damped, 522-524 
degeneracy of, 379, 495-498 
eigenvectors for, 379, 479-483, 485-490 
forced, 522-524 
general problem of, 475-481 
harmonic, 469-481 
molecular vibrations as, 490-495 
nearest neighbor interaction of, 499 
normal coordinates for, 468, 471-472, 478, 

485-490 
symmetrical, 472 
of three linearly coupled plane pendula, 

495-498 
of vibrating string, 498-507, 513-538. See also 

Vibrating string 
wave equation for, 520-542 
weakly coupled, 473-475 

Coupled pendula, 164, 495-498 
Cowan, C. L., 81 
Critical damping, 114 
Critical frequency, 537 
Cross product, 25-28 
Curl, of vector, 38, 43, 79n 
Cutoff frequency, 537 
Cyclic coordinates, 269-270 
Cycloid, 213n 

Cylindrical coordinates, 31-34, 617-618 

D 
Damped oscillations, 100, 108-117. See also 

Oscillations 
amplitude of, 110, 111 
amplitude resonance frequency of, 120-123 
angular frequency of, 109, 110 
coupled, 522-524 
critically damped, 114 
damping force and, 109 
damping parameter for, 109 
decrement of motion for, 111 
in electrical circuits, 123-126 
equation of motion for, 109, 144 
kinetic energy resonance of, 122-123 
logarithmic decrement of motion for, 111 
overdamped, 114 

potential energy resonance of, 123 
resonance phenomena and, 120-123 
sinusoidal driving forces and, 117-123 
superposition principle and, 126-128 
total energy of, 111 
underdamping and, 109-113 

Damped wave, 537, 538 
Damping 

negative, 153 
radiation, 122 

Damping parameter, 109 
Dark matter, 190 
Decibel, 516n 
Decrement of motion, 111 
Definitions, vs. physical laws, 50 
Degeneracy, 379, 495-498 
Delta function, 133n 
Determinism, 144-145 
Deterministic chaos, 145 
Deuteron, 381 

binding energy of, 568 
Dido Problem, 222-224 
Difference equation, 169 
Differential equations 

first-order, 267 
partial, separation of variables for, 528 
second-order, 267 

Differential scattering cross section, 364 
Dirac, Paul, 89 
Direction cosine, 4, 6 
Dirichlet, Peter, 207n 
Discontinuous driving forces, 129-137 
Dispersion, 535 

anomalous, 542n 
normal, 542n 

Divergence, of vector, 38 
Divergence theorem, 42-43 
Doppler effect, relativistic, 558-561, 576-577 
Dot product, 21 
Double pendulum, 164 
Drag, 59, 65-71 
Driven oscillations, 100 

coupled, 522-524 
discontinuous, 129-137 
sawtooth, 128-129 
sinusoidal, 117-123 

Duffing equation, 161-162 

E 
Earth 

Coriolis force on, 398-401 
data for, 304 
gravitational force on, 395-397 
motion relative to, 395-407 
as noninertial reference frame, 387 
orbit around, 300. See also Orbit(s) 
precession of, 316, 451-452, 451n 
shape of, 451 

Eccentricity, orbital, 300 
Eddington, Arthur, 49 
Effective potential, 296-299 

of rigid body, 457 
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Eigenfrequencies, for coupled oscillations, 
471-473, 474, 479, 483, 485-490 

Eigenvalues, 440n 
Eigenvectors, 440n 

for coupled oscillations, 379, 479-483, 485-490 
orthogonal, 481-483 
orthonormal, 482 

Einstein, Albert, 89, 546n, 549n, 551 
Elastic collisions, 345-358. See also Collisions, 

elastic 
Elastic deformations, restoring forces for, 100 
Elastic forces, 50 
Electrical circuits, oscillations in, 123-126 
Electromagnetic field, particle motion in, 

73-76, 81 
Electrostatic scattering, 369-371 
Ellipsoid 

equivalent, 447 
momental , 447n 

Elliptical integrals, 594-598 
Elliptical orbit, 301-305 
Endoergic collisions, 359 
Energy, 82-87 

centrifugal, 296-299 
conservation of, 78-87, 260-261, 265, 290, 

339-345 
of elastic collisions, 352-358 
gravitational, 186 
heat as, 82-83 
kinetic. See Kinetic energy 
mass and, 567-569 
potential. See Potential energy 
rest, 567 
special relativity and, 566-569 
of system of particles, 339-345 
total. See Total energy 
of vibrating string, 516-520 

Eotvos, Roland von, 52 
Equation (s) 

auxiliary, 600-603 
characteristic (secular) 

for coupled oscillations, 479 
for moment of inertia, 425 

constraint, 219-222 
coupled, 406 
difference, 169 
Duffing, 161-162 
Euler-Lagrange, 21 In , 238 
Euler's. See Euler's equations 
first-order differential, 267 
Helmholtz, 530 
Lagrange's, 229, 231-258 
Laplace's, 194 
linear 

homogeneous, 599-603 
inhomogeneous, 603-606 

linear difference, 500 
logistic, map of, 170-172 
Lorentz, 92 
Maxwell's, 547, 551 
partial differential, separation of variables for, 

528 

Poisson's, 193-194 
second-order differential, 267 
Van der Pol, 153-155 
wave, 520-542 

Equation (s) of motion 
canonical, 265-273 
for coupled oscillations, 478-479 
for damped oscillations, 109, 144 
Hamiltonian principle and, 232-233 
Hamilton's, 265-273 
for harmonic oscillations, 100-101, 232-233 
Lagrange's, 229, 231-258, 267n, 269 
for noninertial reference frame, 393, 

402-404, 405 
for nonlinear oscillations, 149 
for orbit, 291-295, 313 
for particle, 55-76 
for plane pendulum, 155-156, 232 
for two-body systems, 291-295 
for vibrating string, 500-501, 522 

Equilibrium 
stable, 151 
unstable, 151-152 

Equilibrium points, 84-85 
Equinox, precession of, 312n, 451-452, 452n 
Equipotential surface, 194—195 
Equivalence principle, 52 
Equivalent electric circuits, 123-126 
Equivalent ellipsoid, 447 
Eros (asteroid), 304 
Euler, Leonhard, 49n, 207n, 418n, 424n, 441n, 

451n,599n 
Eulerian angles, 412 

for rigid body, 440-444 
Euler-Lagrange equation, 211n, 238. See also 

Lagrange's equations 
Euler's equations, 210-211, 219-224 

with auxiliary conditions, 219-224 
for force field, 446 
for force-free motion, 446, 448-450 
for rigid body, 444-448 
second form of, 216-218 
with several dependen t variables, 218-219 

Euler's theorem, 259 
Exoergic collisions, 359 
Exponential series, 610 
External force, in system of particles, 331-332 
External potential energy, 342 
External torque, 337-338 
Extremum solutions, 207-210. See also Calculus 

of variations 

F 
Feigenbaum's number, 173-174 
Fermat, Pierre de, 230n 
Fermat's principle, 207, 230 
Fermi, Enrico, 81 
Field vector, 188-189 
Finite rotation, 34 
First-order differential equations, 267 
FitzGerald, G. F., 552n 
FitzGerald-Lorentz length contraction, 552-553 
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Fixed-star reference frame, 53 
Flux, gravitational, 192-194 
Flux density, 363 
Flybys, 308-311 
Force, 55-76 

acceleration and, 56-58 
asymmetric, 150 
central, 50 
centrifugal, 296-299 
conservative, 81 
of constraint. See Constraints 
Coriolis, 392-395, 398-407 
definition of, 50 
discontinuous driving, 129-137 
elastic, 50 
external, 331-332 
frictional, 57-58 
gravitational, 56, 58, 183-184, 194-198 
impulsive, 361 
internal, 331-332 
in Lagrangian mechanics, 257-258 
line of, 194 
moment of, 77 
in Newton's First Law, 49-50 
in Newton's Second Law, 49, 50 
in Newton's Third Law, 49, 50-52 
nonlinear, 146-147 
vs. potential, 195-196 
restoring, 99-100 
retarding, 58-71 
in system of particles, 331-332 
tidal, 199-204 
total, 78 
velocity-dependent, 50, 59 
zero, 49 

Forced oscillations, 100 
coupled, 522-524 
discontinuous, 129-137 
sawtooth, 128-129 
sinusoidal, 117-123 

Forced-pivot pendulum, 163-164 
Foucault, J. L„ 404n, 407n 
Foucault pendulum, 404-407 
Fourier series, 127-129, 134, 498n 
Four-scalar, 572 
Four-vector, 572-574 
Frame of reference 

fixed-star, 53 
inertial 

in Lagrangian mechanics, 260-264 
in Newtonian mechanics, 53 

noninertial, 387-407 
Free body (particle), 49 
Free oscillations, 108 
Frequency 

characteristic, of coupled oscillations, 
471-473, 474, 479, 483-490 

cutoff (critical), 537 
of damped oscillations, 109, 110, 

120-123 
of electrical oscillations, 124-126 
of harmonic oscillations, 102 

Friction 
sliding (kinetic), 57-58 
static, 57, 58 
tidal, 204 

Functional, 208n 

G 
Galaxy, orbital speed in, 188-189 
Galilean invariance, 53, 547-548 
Galilean transformation, 547-548, 549 
Galileo, 49n, 52, 158n, 198, 407n 
Galileo (satellite), 310-311 
Gamma functions, 615-616 
Gaussian function, 133n 
Gauss' theorem, 42-43 
Generalized coordinates, 221n, 233-248, 274 

definition of, 233 
Lagrange's equations in, 237-248 
proper, 233 
suitability of, 234 

Generalized momenta, 265 
Generalized velocities, 234 
General relativity, 546n, 547 
Geodesic, 217-218 
Giacobini-Zinner comet, 311 
Gibbs, J . W„ In , 90, 434n 
Gibbs phenomenon , 129 
Grad, 38 
Gradient, 38 
Gradient operator, 37-40 
Gravitation, 182-204 

in noninertial reference frame, 395-397 
ocean tides and, 198-204 
rocket in vertical ascent and, 374-378 

Gravitational acceleration constant, 184 
Gravitational energy, 186 
Gravitational field vector, 183-184 
Gravitational flux, 192-194 
Gravitational force, 56, 58 

computation of, 183-184, 195-198 
direction of, 194-195 
magnitude of, 194-195 

Gravitational mass, 51-52 
Gravitational potential, 184-198, 297 

continuous, 188 
equipotential surface and, 194-195 
Laplace's equation and, 194 
lines of force and, 194 
orbital speed and, 189-190 
Poisson's equation and, 192-194 
as scalar quantity, 196 
of spherical shell, 186-188 
of thin ring, 190-192, 196-198 

Gravitational potential energy, 186, 192-193 
Great circle, 218 
Green, George, 134n 
Green's function, 136, 194 
Group velocity, 539-542 

H 
Hafele,J. C., 556 
Halley's comet, 304-305, 311 
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Hamilton, William Rowan, 9n, 40n, 207n, 230n, 
539n 

Hamiltonian dynamics, 267-277 
Hamiltonian function, 261 

Lagrangian function and, 237, 261, 265-274 
relativistic, 579 

Hamilton-Jacobi theory, 270n 
Hamilton's equations of motion, 265-274 
Hamilton's principle, 229-233, 272-274 

Lagrange's equations and, 257-258 
modified, 273 
Newtonian mechanics and, 257-258 
variational, 237-239 

Hard system, 146-147, 149, 150 
Harmonic oscillations, 100-137. See also 

Oscillations 
in acoustic systems, 123 
amplitude of, 101, 102 
amplitude resonance frequency of, 120-122 
angular frequency of, 102 
in atomic systems, 123 
coupled, 469-481. See also Coupled oscilla-

tions 
damped, 100, 108-117. See also Damped oscil-

lations 
driven (forced), 100 

coupled, 522-524 
discontinuous, 129-137 
sawtooth, 128-129 
sinusoidal, 117-123 

in electrical circuits, 123-126 
equation of motion for, 100-101 
free, 108 
impulsive forcing functions and, 129-137 
in isochronous system, 102 
kinetic energy resonance of, 122-123 
Lagrange equation of motion for, 232 
linear, 99-137 
in mechanical systems, 123 
one-dimensional, 100-104 
period of motion in, 102, 110 
phase diagram for, 106-108 
potential energy resonance of, 123 
representative point for, 108 
resonance phenomena and, 120-123 
restoring forces for, 99-100 
small oscillations assumption for, 102 
superposition principle and, 126-128 
total energy of, 101 
two dimensional, 104-106 

Heat, as energy, 82-83 
Heaviside function, In , 130-132 
Heisenberg, Max Born, 89 
Heisenberg's uncertainty principle, 89 
Helmholtz, Hermann von, 83, 530n 
Helmholtz equation, 530 
Hermitean tensor, 440n 
Hero of Alexandria, 229 
Histogram, 355 
Hohmann, Walter, 305n 
Hohmann transfer, 305-308 
Holonomic constraints, 238-248 

Homogenous equations, linear, 599-603 
Homogenous function, Euler's theorem of, 259 
Hooke, Robert, 305, 40In 
Hooke's law, 100 
Huygens, Christiaan, 158n, 297n, 346n, 418n 
Hyperbolic functions, 611-612 
Hyperbolic orbit, 301 
Hysteresis, 163 

I 
Identity matrix, 12-13 
Impact parameter, 363 
Improper rotations, 19 
Impulse, 361-362 
Impulse function, 130-137 
Impulsive forces, 361 
Inelastic collisions, 358-362 
Inertial mass, 51-52 
Inertial moment . See Moment of inertia 
Inertial products, 418 
Inertial reference f rame 

four-dimensional interval between two events 
in ,621-622 

in Lagrangian mechanics, 260-264 
in Newtonian mechanics, 53 

Inertia tensor, 415-440 
angular momentum and, 419-424 
angular velocity and, 420 
unde r coordinate transformations, 433-435 
diagonalization of, 435-437 
in different coordinate systems, 428-432 
elements of, 417-418 
of first rank, 434n 
as matrix, 434 
moment-of-inertia, 418, 425-428, 439-440, 

447 
principal axes of, 424-432, 438-439 
principal moments of, 418, 425-432, 

439-440, 447 
product-of-inertia, 418 
symmetric, 440 
transformation of, 433-440 
as vector, 434n 

Infinitesimal rotation, 34-37 
Inhomogeneous equations, linear, 603-606 
Instability, unbounded motion and, 151-152 
Instantaneous axis of rotation, 34, 388 
Integral(s), 613-616 

elliptical, 594-598 
line, 41-42 
particular, 604 

Intelsat satellite, 462 
Intensity, of scattered particles, 363-364 
Internal force, in system of particles, 331-332 
Internal potential energy, 342-343 
Internal torque, 338 
International Cometary Explorer, 311 
International Sun-Earth Explorer 3, 311 
Interplanetary transfer, 308 
Inversion, 13, 18 
Inversion matrix, 13, 18, 19 
Isochronous system, 102 
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J 
Jacobi, C. G. S., 207n, 270n 
Joule, James Prescott, 83 
Jumps, 161-163 
Jupi ter 

data for, 304 
precession of, 316 
travel to, 309, 311 

K 
Kater, Henry, 464n 
Rater's reversible pendulum, 464 
Keating, Richard, 556 
Kelvin, Lord, 265n, 535n 
Kepler, Johannes, 290n 
Kepler's Laws, 290, 303 
Kinetic energy, 78-81, 258-259, 278, 340-341. 

See also Energy 
of center-of-mass system, 352-353 
of elastic collisions, 352-358 
of rigid body, 415-417, 438 
rotational, 415-417, 438 
of scleronomic systems, 259 
special relativity and, 566-569 
of system of particles, 340-341, 352-358 
time-averaged, 519 
translational, 415-417, 438 
of vibrating string, 517 
virial and, 278 

Kinetic energy resonance, 122-123 
Kinetic friction, 57-58 
Kinetic potential, 196n 
Kronecker delta symbol, 7 

Laboratory coordinate system, 346-358 
Lactus rectum, 300 
Lagrange, Joseph, 207n, 230, 238n, 267n, 454n, 

468n 
Lagrange's equations of motion, 229, 231-258, 

267n, 269. See also Equation (s) of motion 
in generalized coordinates, 237-248 
Hamilton's equations and, 237, 261, 265-274 
Hamilton's principle and, 257-258, 272-273 
holonomic constraints in, 238-248 
Newton's equations and, 254-258 
nonholonomic constraints in, 248-250 
rheonomic constraints in, 238 
scleronomic constraints in, 238 
with undetermined multipliers, 248, 249, 

250 
utility of, 248, 250 
variational, 272-273 

Lagrange undetermined multiplier, 221 
Lagrangian function, 196n, 231 

Hamiltonian and, 237, 261, 265-271 
invariance of, 260-264 
relativistic, 578-579 
as scalar function, 237, 258 

Lagrangian mechanics 
conservation theorems in, 260-266 
energy vs. force in, 257-258 

Newtonian mechanics and, 254-258 
scalar operations in, 258 

Laplace, Pierre Simon de, 40n, 144 
Laplace's equation, 194 
Laplacian operator, 40 
Larmor, J. J., 549 
Law(s) 

alternative statements of. See Calculus of varia-
tions 

conservation, vs. postulates, 81 
Hooke's, 100 
Kepler's, 290, 303 
Newton's First, 48-49 
Newton's Second, 49 
Newton's Third, 49-53 
physical, 1, 48, 50 
of refraction, 230 
of resistance, 59i 
of universal gravitation, 182-184 

Least action principle, 230, 258 
Least constraint principle, 230 
Least curvature principle, 230 
Legendre, Adrien, 207n 
Legendre transformations, 266 
Le Verrier, UrbainJ . J., 313n 
Levi-Civita density, 25 
Lift, 59 
Light 

oscillation and, 123 
speed of, 89n 

Light cone, 570 
Limit cycle, 153-154 
Linear difference equation, 500 
Linear equations 

homogeneous, 599-603 
inhomogeneous, 603-606 

Linearly dependent functions, 600 
Linearly independent functions, 600 
Linear momentum 

conservation of, 52, 261-262, 265, 290-291 
for rocket in f ree space, 372-374 
in system of particles, 331-339 

special relativity and, 562-566 
Linear operator, 127 
Linear oscillations, 99-137. See also 

Oscillations 
Linear velocity, 30—34 

direction of, 35 
magnitude of, 35 

Line integral, 41-42 
Line of force, 194 
Line of nodes, 442 
LiouvilleJ., 90 
Liouville's theorem, 277 
Lissajous curve, 106 
Loaded string problem, 498-507. See also 

Vibrating string 
Logarithmic decrement of motion, 111 
Logarithmic series, 610 
Logistic map, 170-172 
Longitudinal vibrations, 491-495 
Longitudinal wave, 512 
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Lorentz, Hendrik A., 89, 546n, 549n, 550-551, 
552n 

Lorentz equation, 92 
Lorentz transformation, 548-555 
Lyapunov exponents, 175-178 

M 
Mach, Ernest, 49n 
Maclaurin, Colin, 590n 
Maclaurin's series, 590n 
Magnetic field, particle motion in, 73-76, 81 
Magnetic pendulum, 164 
Mapping, 169-174 

logistic, 170-172 
Margenau, H., 258 
Mars 

data for, 304 
precession of, 316 
travel to, 308 

Mass 
center of 

position vectors for, 336-337 
in system of particles, 329-331, 333, 411-412 

gravitational, 51-52 
inertial, 51-52 
in Newton's Third Law, 50-52 
reduced, 287-289, 303 
relativistic, 565 
rest, 564 
unit, 51 

Mass-energy equivalence 
kinetic energy and, 567 
momentum and, 568-569 

Mathematical physics, 513 
Matrix, 4 

addition of, 13 
column, 9 
geometrical significance of, 14-20 
identity, 12-13 
inversion, 13, 18, 19 
multiplication of, 9-12 
orthogonality of, 8, 18-19 
properties of, 6 -8 
rotation (transformation), 4—20 
rotation of, 14-20 
row, 9 
square, 9 
tensors and, 434 
transposed, 12, 18-19 

Matrix operations, 9-12 
Matrix theory, development of, 9n 
Maupertuis, P. L. M. de, 230, 258 
Maupertuis's principle of least action, 230, 258 
Maxwell, James Clerk, 80, 90 
Maxwell's equations, 547, 551 
Mecanique analytique (Lagrange), 238n 
Mechanical quantities, analogous electric quan-

tities and, 125, 1251 
Mechanics 

Lagrangian, 231-258 
Newtonian, 48-90. See also Newtonian me-

chanics 

quantum, 89 
statistical, 90 

Mercury, 304 
precession of, 312-313, 316 

Method of undetermined coefficients, 605 
Michelson-Morley experiment, 546, 549, 552n 
Minimal principles, 229-233 
Minkowski, Herman, 571 
Minkowski space, 571 
Modified Hamilton's principle, 273 
Molecular vibrations, 123, 490-495 
Momental ellipsoid, 447n 
Moment of force, 77 
Moment of inertia, 418, 425-428 

in different coordinate systems, 428-432 
principal, 425-432, 438-439, 447 
secular (characteristic) equation for, 425 

Moment-of-inertia tensor, 418, 425-428, 
439-440 

Momentum 
angular. Sec Angular momen tum 
conservation of, 52 
definition of, 50 
four-vector, 572-574 
generalized, 265 
linear. See Linear momen tum 
mass-energy and, 568-569 
position and, 88-89 
relativistic, 562-566 

Momentum space, 274 
Moon, tides and, 198-204 
Motion 

in complex systems, 90 
decrement of, 111 
equations of. See Equation (s) of motion 
logarithmic decrement of, 111 
of particle, 55-76 

in Atwood's machine, 71-73 
conservation theorems for, 76-82 
in electromagnetic field, 73-76, 81 
energy and, 82-87 
resistive forces on, 58-71 

unbounded , 152 
Muon decay, 555-556 

N 
Natural Philosophy (Thomson & Tait), 265n 
Neap tides, 203 
Neighboring function, 208 
Neptune 

data for, 304 
travel to, 309, 310 

Newton, Isaac, 49-50, 52, 59, 182, 198, 207n, 
305, 499n 

Newtonian mechanics, 48-90 
conservation theorems in, 76-82 
energy in, 82-87 
equation of motion for particle in, 55-76 
First Law of, 48-49 
frames of reference for, 53-54 
Lagrangian mechanics and, 254-258 
law of universal gravitation in, 182-184 
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limitations of, 88-90 
quantum mechanics and, 89 
Second Law of, 49 
system size and, 89-90 
Third Law of, 49-53 

strong form of, 329 
weak form of, 328-329 

time in, 89 
Newtonian relativity, 548 

principle of, 53 
Newton's rule, 359-360 
Niven, C., 434n 
Nodes 

line of, 442 
of wave function, 531 

Nonholonomic constraints, 248-250 
Noninertial reference frame, 387-407 

centrifugal force in, 391-395, 397 
Coriolis force in, 392-395, 398-401 
Earth as, 387, 395-407 
motion relative to Earth in, 395-407 
rotating coordinates in, 388-391 
tides as, 387 

Nonlinear oscillations/system 
amplitude of, 149 
attractor for, 151, 153 
chaotic nature of, 145. See also Chaos 
deterministic chaos and, 145 
equation of motion for, 149 
hard, 146-147, 149, 150 
hysteresis in, 163 
jumps in, 161-163 
limit cycle for, 153-154 
Lyapunov exponents for, 175-178 
mapping and, 169-174 
phase diagram for, 150-155 
phase lags in, 163 
plane pendulum as, 155-160 
progression of, 169-174 
self-limiting, 154 
separatrix in, 160 
soft, 146-147, 150 
van der Pol equation for, 153-155 

Nonsymmetrical coupled oscillations, 472 
Normal coordinates 

for coupled oscillations, 471-472, 478, 
485-490 

definition of, 468 
Normal dispersion, 542n 
S notation, 224-226 
Nuclei, collective excitation of, 123 
Numerical method, for retarding forces, 68-69 
Nutation, of rigid body, 459-460 

O 
Oblique collisions, 360 
Ocean tides, 198-204 

neap, 203 
as noninertial system, 387 
spring, 203 

Orbit(s) 
apocenter of, 300 

aspidal angle of, 311-312 
aspidal distance of, 299, 311-312 
in central field, 295-296 
circular, 301 

stability of, 316-323 
closed, 295, 311 
of comet, 304-305 
conic sections of, 300-301 
Cotes' spiral, 325n 
eccentric, 300 
elliptical, 301-305 
equation of motion for, 291-295, 313 
hyperbolic, 301 
latus rectum of, 300 
ma jo r /mino r axes of, 301-302, 304 
open, 295,311-312 
parabolic, 301 
pericenter of, 300 
period of, 302-303 
planetary, 301-305 
precessional rate for, 312-316 
of rocket, 305-311 
turning points (apsides) of, 295, 299, 300, 

311-312 
Orbital dynamics, 305-311 
Orbital speed, 188-189 
Orthogonal coordinate systems, 7 -8 
Orthogonal eigenvectors, 481—483 
Orthogonality, of rotation matrix, 8, 18-19 
Orthogonality condition, 8 
Orthogonal transformations, 8, 18-19 

angle-preserving property of, 23 
distance-preserving property of, 23 
geometrical representation of, 14-20 

Orthonormal eigenvectors, 482 
Oscillations, 99-178 

in acoustic systems, 123 
amplitude resonance frequency of, 120-122 
in atomic systems, 123 
coupled, 468-506. See also Coupled oscilla-

tions 
damped, 100, 108-117. See also Damped oscil-

lations 
driven (forced), 100 

coupled, 522-524 
discontinuous, 129-137 
sawtooth, 128-129 
sinusoidal, 117-123 

in electrical circuits, 123-126 
free, 108 
harmonic, 100-137. See also Harmonic oscilla-

tions 
impulsive forcing functions and, 129-137 
kinetic energy resonance of, 122-123 
linear, 99-137 
longitudinal, 491-495 
in mechanical systems, 123 
molecular, 123, 490-495 
nonlinear, 144-178 
nonsymmetrical, 472 
ocean tides and, 203 
potential energy resonance of, 123 
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Oscillations (continued) 
resonance phenomena and, 120-123 
restoring forces for, 99-100 
in steady-state systems, 100-129 
superposition principle and, 126-128 
symmetrical, 472 
transverse, 491-495 

Overdamping, 114-115 

Parabolic orbit, 301 
Partial differential equations, separation of vari-

ables for, 528 
Particle systems. See System of particles 
Particular integral, 604 
Particular solution, 118 
Pauli, Wolfgang, 81 
Pendulum (a) 

chaotic motion of, 163-169 
compound, 413-415 
coupled, 164, 495-498 
double, 164 
forced-pivot, 163-164 
Foucault, 404-407 
Kater's reversible, 464 
Lyapunov exponents for, 177-178 
magnetic, 164 
as nonlinear system, 155-160 
phase diagram for, 158-160, 168-169 
physical, 413-415 
plane, 155-160 

equation of motion for, 155-156, 232 
Pericenter, 300 
Perigee, 300 
Perihelion, 300 

precession of, 312-316 
Period, orbital, 302-303 
Period doubling, 166 
Periodic functions, Fourier's theorem and, 

127-128 
Permutation symbol, 25 
Perturbation method 

for nonlinear forces, 149 
for retarding forces, 67-68 

Phase (<t>), 533 
Phase angle, lOln 
Phase diagram, 107 

for harmonic oscillations, 106-108 
for nonlinear oscillations, 150-155 
for plane pendulum, 158-160, 168-169 
Poincare sections in, 166-169 

Phase lags, 163 
Phase plane, 107 
Phase space, 107 

particle density in, 274-277 
Phase velocity, 534-537, 576 
Physical laws, 1, 48, 50 

vs. definitions, 50 
Physical pendulum, 413-415 
Physical systems, oscillation in, 123-125 
Physics, mathematical, 513 
Pitchfork bifurcation, 172 

Plane of the elliptic, 451 
Plane pendula, 155-160. See also Pendulum (a) 

equation of motion for, 155-156, 232 
three linearly coupled, 495-498 

Plane polar coordinates, 31-33 
Planets 

data for, 304 
motion of, 300-305, 312-316. See also Central-

force motion; Orbit(s) 
reduced mass of, 303 
travel to, 308-311 

Plane wave, 513 
Pluto, 304, 316 
Poincare, Henri , 89, 145n, 166, 546n 
Poincare section, 166-168 
Poinsot construction, 447 
Poisson, S. D., 193, 267n, 398n 
Poisson brackets, 284 
Poisson's equation, 193-194, 267n 
Polar coordinates, 31-34 
Poles, precession of, 451-452, 451n 
Polynomial, characteristic, 425n 
Position 

momentum and, 88-89 
in Newtonian mechanics, 48-53, 88 

Position vector, 22, 30 
Positive definite quantities, 477n 
Potential 

asymmetric, 150 
effective, 296-299 

of rigid body, 457 
gravitational, 184-198, 297. See also 

Gravitational potential 
kinetic, 196n 
screened Coulomb, 319-320 

Potential energy, 78-80, 185-186. See also Energy 
of the body, 186 
centrifugal, 296-299 
external, 342 
gravitational, 186, 192-193 
internal, 342-343 
of system of particles, 341-345 
time-averaged, 519 
total, 342 
of vibrating string, 517-518 

Potential energy resonance, 123 
Precession 

Coriolis force and, 404-407 
definition of, 312 
of equinox, 312n, 451-452, 452n 
of planets, 312-316 
of poles, 451-452, 451n 
of rigid body, 450-453, 458-460 

Principal axes of inertia, 424-432, 438-439 
Principal moments of inertia, 418, 425-432, 

439-440, 447 
Principia (Newton), 49n, 182, 498n 
Principle(s) 

of equivalence, 52 
Fermat's, 207, 230 
Hamilton's, 229-233, 237-239, 257-258, 

272-274 
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Heisenberg's uncertainty, 89 
of least action, 230, 258 
of least constraint, 230 
of least curvature, 230 
minimal, 229-233 
of Newtonian relativity, 53, 548 
of relativity, 547 
of superposition, 127-129, 134, 471, 498n 

Probability theory, 90 
Problem-solving techniques, 55 
Product-of-inertia tensor, 418 
Products of inertia, 418 
Propagating wave, 526 
Propagation constant, 530 
Proper rotations, 19 
Proper time, 555 
Pulleys, in Atwood's machine, 71-73 

Q 
Qualitative analysis, 355 
Quantitative analysis, 355 
Quantum mechanics, 89 
Q-value, 359 

R 
Radiation damping, 122 
Radius of gyration, 463 
Rayleigh, Lord, 539n 
Rectangular coordinates, 3-9, 617 
Red shift, 560 
Reduced mass, 287-289, 303 
Reference frame 

fixed-star, 53 
inertial 

four-dimensional interval between two 
events in, 621-622 

in Lagrangian mechanics, 260-264 
in Newtonian mechanics, 53 

noninertial reference, 387-407 
Reflection coefficient, 533 
Refraction, Snell's law of, 230 
Reich, F., 401n 
Reines, F., 81 
Relativistic collisions, 579-583 
Relativistic Doppler effect, 558-561, 576-577 
Relativistic Hamiltonian, 579 
Relativistic kinematics, 579-583 
Relativistic Lagrangian, 578-579 
Relativistic length contraction, 552-553 
Relativistic mass, 565 
Relativistic momentum, 562-566 
Relativistic triangle, 574 
Relativity, 546 

general, 546n, 547 
mass-energy equivalence in, 567 
Newtonian, 548 
principle of, 547 
special, 89, 546-583 
theory of, 546-547 

Representative point, 108 
Resonance 

amplitude, 120-122, 123 

kinetic energy, 122-123 
potential energy, 123 

Rest energy, 567 
Rest mass, 564 
Restoring forces, 99-100 
Retarding forces, 58-71 

numerical method for, 68-69 
perturbation method for, 67-68 

Rheonomic constraints, 238 
Right-hand rule, 14n 
Rigid body, 411-462. See also System of particles 

angular momentum of, 419-424, 454-455 
asymmetric top as, 426 
center of mass of, 339-341, 411-412 
definition of, 411 
effective potential of, 457 
equations of motion for, 442-443 
equivalent ellipsoid for, 447 
Eulerian angles for, 440-444 
force-free motion of, 448-454 
inertia tensor of, 415—440. See also Inertia 

tensor 
kinetic energy of, 415-417, 438 
nutation of, 459-460 
Poinsot construction for, 447 
precession of, 450-453, 458-460 
principal axes of inertia for, 424-432, 

438-439 
principal moments of inertia for, 418, 

425-432, 439-440, 447 
rotational stability of, 460-462 
rotor as, 426 
simple planar motion of, 412 
spherical top as, 426 
symmetric top as, 426 
in uniform force field, 454-460 

Rockets. See also Space travel 
in f ree space, 371-374 
orbital dynamics and, 305-311 
vertical ascent under gravity of, 374-378 

Rotating coordinates, 53-54, 388-391 
Rotation 

direction of, 14 
finite, 34 
improper, 19 
infinitesimal, 34—37 
instantaneous axis of, 34 
proper, 19 

Rotational kinetic energy, 438 
of rigid body, 415-417, 438 

Rotation matrix. See Transformation matrix 
Rotation vectors, 35-36 
Rotor, 426 
Row matrix, 9 
Rumford, Count, 82-83 
Rutherford scattering formula, 369-371 

S 
Satellites, rotational stability of, 462 
Saturn 

data for, 304 
travel to, 309-310 
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Sawtooth driving forces, 128-129 
Scalar 

definition of, 2, 20 
world, 572 

Scalar function, gradient of, 37-40 
Scalar product, 21-23 

vector product and, 26-27 
Scattering, 345. See also Collisions 

axially symmetric, 347n 
electrostatic, 369-371 
flux density (intensity) in, 363-364 
in force field, 345-346 
histogram for, 355 
Rutherford, 369-371 

Scattering angle, 350, 363-369 
Scattering cross section, 363-369 

differential, 364 
isotropic, 368 
total, 369, 371 

Schrodinger, Erwin, 89, 540n 
Scleronomic constraints, 238 
Scleronomic systems, kinetic energy in, 259 
Screened Coulomb potential, 319-320 
Second-order differential equations, 267 
Secular equation 

for coupled oscillations, 479 
for moment of inertia, 425 

Self-limiting system, 154 
Semiholonomic constraints, 249n 
Semimajor axis, of orbit, 304 
Separation of variables, 528 
Separatrix, 160 
Shoemaker-Levy comet, 311 
Signal velocity, 541-542, 576 
Similarity transformation, 434 
Sinusoidal driving forces, 117-123 
Sliding friction, 57-58 
Small oscillations assumption, 102 
Snell, Willebrord, 230n 
Snell's law of refraction, 230 
Soap film problem, 215-216 
Soft system, 146-147, 150 
Solar system 

objects in, data for, 304 
orbital motion in. See Orbit(s) 

Sommerfeld, Arnold, 542n 
Space 

homogeneity of, 261-262, 265 
isotropic, 53, 262, 265 
momentum, 274 
phase, 107, 274-277 
world (Minkowski), 571 

Space cone, 451 
Spacetime, 569-579 
Space travel. See also Rockets 

central-force motion in, 305-311 
Hohmann transfer in, 305-308 
interplanetary, 308-311 

Special relativity, 89, 546-583 
center-of-momentum system in, 579-583 
collisions and, 579-583 

covariance in, 548-555 
Doppler effect and, 558-561, 576-577 
energy and ,566-569 
experimental verification of, 555-558 
four-vector and, 572-574 
Galilean invariance and, 547-548 
Hamiltonian in, 579 
kinematics in, 579-583 
Lagrangian in, 578-579 
length contraction and, 552-553 
light cone and, 570-571 
mass and, 565 
momentum and, 562-566 
rauon decay and, 555—556 
spacelike interval and, 570-571 
spacetime and, 569-579 
time dilation and, 554-555, 556-558 
timelike interval and, 571 
twin paradox and, 561-562 
velocity addition rule for, 574-576 
worldline and, 570 
world space and, 571 

Speed, orbital, 188-189 
Speed of light, 89n 
Spherical coordinates, 31-33, 619-620 
Spherical symmetry, 289 
Spherical top, 426 
Spiral galaxy, orbital speed in, 188-189 
Spring tides, 203 
Square matrix, 9 
Stable equilibrium, 151 
Standing waves, 531 
Static friction, 57, 58 
Statistical mechanics, 90 
Steady-state solution, 119 
Steiner's parallel-axis theorem, 430 
Step function, 130-132 
Stirling, James, 590n 
Stake's law of resistance, 59 
Stokes's theorem, 42-43 
Strange attractor, 169 
Sun 

mass of, 304 
orbit around, 300. See also Orbit(s) 
tides and, 202 

Superposition principle, 127-129, 134, 471, 
498n 

Sylvester, J. J., 9n 
Symmetrical coupled oscillations, 472 
Symmetric tensor, 440 
Symmetric top, 426 

force-free motion of, 448-454 
in uniform force field, 454-460 

System of particles 
angular momentum of, 336-339 
center of mass in, 329-331, 333, 339-341, 

411-412 
position vectors for, 336-337 

central-force motion in, 287-323 
collisions in, 345-362. See also Collisions 
conservation theorems for, 289-290 
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conservative, 342 
energy of, 339-345 
equations of motion for, 291-295 
equivalent one-body problem for, 

288-289 
external force in, 331-332 
external torque in, 337-338 
final state of, 346n 
initial state of, 346, 346n 
internal force in, 331-332 
internal torque in, 338 
linear momentum of, 331-335 
qualitative analysis of, 355 
quantitative analysis of, 355 
rigid body as, 411. See also Rigid body 

T 
Tait, P. G„ 265n 
Taylor, Brook, 589n 
Taylor's theorem, 589 
Tensor 

Hermitean, 440n 
inertia, 415-440 
matrices and, 434 
symmetric, 440 
unit, 432 
as vector, 434n 

Terminal velocity, 63 
Theorem (s) 

Chasles,' 412n 
conservation, 260-266, 289-291 
divergence, 42-43 
Euler's, 259 
Fourier's, 127-128 
Gauss,' 42-43 
Liouville's, 277 
Steiner's parallel axis, 430 
Stokes's, 42-43 
Taylor's, 589 
virial, 277-278 

Theory of relativity. See Relativity 
Thomson, William, 265n, 535n 
Tides, 198-204 

neap ,203 
as noninertial system, 387 
spring, 203 

Time 
absolute, 89 
homogeneity of, 53-54, 260, 265 
in Newtonian mechanics, 89 
proper, 555 
in special theory of relativity, 89 

Time-dependent wave function, 524n 
Time dilation, 554-558 

twin paradox and, 561-562 
Time-independent wave function, 524n 
Timelike interval, 571 
Top. See also Rigid body 

asymmetric, 426 
spherical, 426 
symmetric, 426 

force-free motion of, 448-454 
in uniform field, 454-460 

Torque, 77 
external, 337-338 
internal, 338 

Total energy, 80. See also Energy 
special relativity and, 567-569 
of system of particles, 339-345 
of vibrating string, 519 

Total force, 78 
Trade winds, 399 
Transformation (s) 

Eulerian angles in, 412, 440-444 
Galilean, 547-548, 549 
of inertia tensor, 433-440 
Legendre, 266 
Lorentz, 548-555 
orthogonal. See Orthogonal transformations 
similarity, 434 

Transformation matrix, 4-20. See also Matrix 
addition of, 13 
column, 9 
definition of, 4 
geometrical significance of, 14-20 
identity, 12-13 
inverse of, 13, 18 
multiplication of, 9-12 
orthogonality of, 8, 18-19 
properties of, 6 -8 
rotation of, 14-20 
row, 9 
square, 9 
transposed, 12, 18-19 
transpose of, 18-19 

Transient effects, 119, 129 
Translational kinetic energy, 438 

of rigid body, 415-417, 438 
Transposed matrix, 12, 18-19 
Transverse vibrations, 491-495 
Transverse wave, 512 
Traveling wave, 526 
Trigonometric functions, 614-615 
Trigonometric relations, 609-610 
Trigonometric series, 610 
Turning points (apsides), 295, 299, 300, 

311-312 
Twin paradox, 561-562 
Two-body system, 287-323, 346. See also Central-

force motion; Orbit (s); System of particles 
collisions in, 345-362 
conservation theorems for, 289-290, 331-352 
equations of motion for, 291-295 
equivalent one-body problem for, 288-289 
spherical symmetry in, 289 

U 
Unbounded motion, 152 
Uncertainty principle, 89 
Underdamping, 109-113 
Unit mass, 51 
Unit tensor, 432 
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Unit vector, 23-24 
Unstable equilibrium, unbounded motion and, 

151-152 
Uranus 

data for, 304 
travel to, 309, 310 

Van der Pol equation, 153-155 
Variational calculus. See Calculus of variations 
Vector(s), 1-2, 23-43 

acceleration, 30-31 
addition of, 20-21 
axial, 25n 
components of, 20-21, 29 
curl of, 38, 43, 79n 
definition of, 2, 20 
differentiation of, 29-30 
direction cosines of, 21 
divergence of, 38 
field, 188-189 
gradient operator of, 38-40 
gravitational field, 183-184 
integration of, 40-43 
line integral of, 41-42 
magnitude of, 21 
multiplication of, 21-23 

scalar product of, 21-23 
vector product of, 25-28, 30-34 

position, 22, 30 
rotation, 35-36 
tensor as, 434n 
transformation properties of, 20-21, 36 
unit, 23-24 
velocity, 30-33 

Vector differential operators, 37-40 
Vector product, 25-28 

derivatives of, 30-34 
scalar product and, 27 

Vector sums, 20-21 
derivatives of, 30-34 

Velocity, 30-34 
angular, 34-37 

inertia tensor and, 420 
areal, 290 
force and, 50, 59 
four-vector, 573 
generalized, 234 
group, 539-542 
linear, 30-34, 35 
phase, 534, 576 
in quantum mechanics, 89 
retarding forces and, 58-71 
signal, 541-542, 576 
terminal, 63 
wave, 537 

Velocity addition rule, 574-576 
Velocity vector, 30-33 

Venus 
data for, 304 
precession of, 316 
travel to, 311 

Vibrating string, 498-507, 513-538. See also 
Coupled oscillations 

continuous, 513-516, 528n 
damped, 522-524 
energy of, 516-520 
equation of motion for, 500-501, 522 
phase velocity of, 534-537 
plucked, 515-516 

Vibrations. See also Oscillations 
longitudinal, 491-495 
molecular, 123, 490-495 
transverse, 491-495 

Virial theorem, 277-278 
Viviani, Vincenzo, 407n 
Voigt, W., 549 
Voyager spacecraft, 309-310 

W 
Wallis, John , 346n 
Wave 

damped (attenuated), 537, 538 
dispersion of, 535 
longitudinal, 512 
phase (0) of, 533 
phase velocity of, 534 
plane, 513 
standing, 531 
transverse, 512 
traveling (propagating), 526 

Wave equation, 513, 520-522 
boundary conditions for, 532 
general solutions of, 524-527 
one-dimensional, 513 
separation of, 527-533 
wave function in, 524 

Wave form, 534 
Wave function, 524 

nodes of, 531 
time-dependent, 524n 
time-independent, 524n 

Wave number, 530 
complex, 536 

Wave packet, 540-541 
Wave velocity, 537 
Weakly coupled oscillations, 473-475 
Weierstrass, Karl, 207n, 485n 
Work, 78-79. See also Energy 
Worldline, 570 
World scalar, 572 
World space, 571 
Wren, Christopher, 305, 346n 
Wronskian determinant, 600 

Z 
Zero force, 49 


